Adithya Abraham Philip

Accurately Parameterizing Internet Performance Testing for Realistic Evaluations

Abstract

The performance of Internet services–be it file download completion times, video quality, or lag-free video conferencing–is heavily influenced by network parameters. These include the bottleneck bandwidth, network delays, and how fairly the bottleneck link is shared with other services. However, current techniques to evaluate service performance in emulated and simulated networks suffer from three major issues: (a) testing predominantly in settings representing the "edge" of the Internet, and not the core; (b) focus on evaluating Congestion Control Algorithms (CCAs), neglecting the impact of application-level controls like Adaptive-Bitrate (ABR) algorithms on network performance; (c) testing in settings that do not necessarily reflect the network conditions experienced by services with expansive CDNs. The goal of this thesis is to improve the state of the art in emulated testing for a more up-to-date evaluation of Internet service performance.

To highlight the need to perform Internet evaluations in settings representing congestion at the core of the Internet, we test CCAs with core Internet speeds and flow counts. We find that this dramatically alters fairness outcomes, and challenges long-standing assumptions about CCA behavior that were built on measurements performed at in settings representing the edge of the Internet, emphasizing the need to run Internet evaluations in more diverse settings.

We then challenge the implicit assumption that CCA evaluations alone are sufficient to predict the network behavior of services that use them. We perform this analysis through the lens of fairness, and build Prudentia, an Internet fairness watchdog, that measures how fairly two Internet services can share a bottleneck link. In addition to discovering extreme unfairness on the Internet today, we gain key insights into improving current testing methodology – (a) The most and least fair services both use variants of the same CCA, highlighting the need to test services in addition to CCAs; (b) network settings can drastically affect even service-level fairness outcomes, necessitating their careful selection.

Lastly, we infer the network conditions experienced by users of Netflix, a global video streaming provider, and contrast them with those used in typical Internet evaluations. We find that Netflix users experience shorter RTTs, greater maximum observed queuing delay, and greater ACK aggregation, all parameters that play an important role in determining CCA behavior. This highlights the need for more service operators to run similar analyses and share their respective perspectives of prevalent network conditions, so that the networking community can include these settings in the design and evaluation of Internet services.

Thesis Committee

Thesis Document