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Abstract

The performance of Internet services—be it file download completion times, video
quality, or lag-free video conferencing—is heavily influenced by network parameters.
These include the bottleneck bandwidth, network delays, and how fairly the bottleneck
link is shared with other services. However, current techniques to evaluate service
performance in emulated and simulated networks suffer from three major issues: (a)
testing predominantly in settings representing the "edge" of the Internet, and not
the core; (b) focus on evaluating Congestion Control Algorithms (CCAs), neglecting
the impact of application-level controls like Adaptive-Bitrate (ABR) algorithms on
network performance; (c) testing in settings that do not necessarily reflect the network
conditions experienced by services with expansive CDNs. The goal of this thesis is to
improve the state of the art in emulated testing for a more up-to-date evaluation of
Internet service performance.

To highlight the need to perform Internet evaluations in settings representing
congestion at the core of the Internet, we test CCAs with core Internet speeds and
flow counts. We find that this dramatically alters fairness outcomes, and challenges
long-standing assumptions about CCA behavior that were built on measurements
performed at in settings representing the edge of the Internet, emphasizing the need
to run Internet evaluations in more diverse settings.

We then challenge the implicit assumption that CCA evaluations alone are suf-
ficient to predict the network behavior of services that use them. We perform this
analysis through the lens of fairness, and build Prudentia, an Internet fairness watch-
dog, that measures how fairly two Internet services can share a bottleneck link. In
addition to discovering extreme unfairness on the Internet today, we gain key insights
into improving current testing methodology – (a) The most and least fair services both
use variants of the same CCA, highlighting the need to test services in addition to
CCAs; (b) network settings can drastically affect even service-level fairness outcomes,
necessitating their careful selection.

Lastly, we infer the network conditions experienced by users of Netflix, a global
video streaming provider, and contrast them with those used in typical Internet
evaluations. We find that Netflix users experience shorter RTTs, greater maximum
observed queuing delay, and greater ACK aggregation, all parameters that play an
important role in determining CCA behavior. This highlights the need for more
service operators to run similar analyses and share their respective perspectives of
prevalent network conditions, so that the networking community can include these
settings in the design and evaluation of Internet services.
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Chapter 1

Introduction

1.1 Motivation
Internet service operators are constantly improving their services to provide users

with the best possible Quality-of-Experience (QoE). This includes improving network
performance through changes to the Congestion Control Algorithm (CCA) used by the
services, TCP-stack level parameter tuning and improvements such as RACK [34] and
TLP [39], and application-layer improvements such as modification to the Adaptive Bitrate
Algorithm (ABR) for video streaming services.

However, testing how these changes affect users is difficult. The Internet is constantly
evolving, with changes in link bandwidths, usage patterns, increasing prevalence of
newer link types such as cellular connections. Even the infrastructure used to serve users
content is changing, with expansive user-proximal CDNs becoming increasingly common.
Nevertheless, operators still need to be able to test their changes to understand if and by
how much they improve QoE for users, both to know whether to deploy the changes and
to understand how to iterate on these changes to further improve QoE. The goal of this
thesis is to better enable Internet service operators and the research community to test
emerging algorithms and understand their behavior and performance in the face of newly
emerging Internet phenomena.

Network performance testing approaches lie on a spectrum, with A/B testing on
one end, and emulated and simulated testbeds on the other, where interpretability and
reproducibility must be traded off for realism. A/B tests, for example, provide the most
realistic test results, as it allows performance to be measured on actual user devices on
the networks used by those users. However, they provides little insight into why the
change in performance occurred, or how close it is to the best possible performance the
service could obtain. This is primarily due to the fact that A/B tests typically lack visibility
into all the properties of the path, such as the available path capacity, jitter, or the queue
size on the bottleneck link. Emulation and simulation in controlled testbeds, on the other
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2 Introduction

hand, provide much more visibility into the causes of the measured performance, and in
root-causing issues that are discovered. However, most emulation and simulation based
evaluations today are limited in scale, and do not necessarily reflect newer trends in how
services are accessed on the Internet—including congestion at core Internet links, the
testing of services and their complex network behavior in addition to CCAs, and the
prevalence of expansive user-adjacent CDNs.

The goal of this thesis is to enhance emulated and simulated testbeds to enable diag-
nosable, debuggable insights in more relevant testing conditions. This work is not aimed
at replacing A/B testing, but rather, complementing it—allowing service operators and
researchers a deeper understanding of why services behave the way they do, in conditions
that capture important emerging trends on the Internet.

Thesis Statement: Extending emulation environments to capture emerging trends
in Internet evolution enables causal debugging and analysis of congestion control
algorithms and Internet services in more up-to-date settings, allowing us to build more robust
CCAs and services for the Internet.

Over the course of this thesis, we examine three key trends in Internet evolution
that are currently unaccounted for in most Internet evaluation testbeds, that serve as
our case-studies. We discuss the effects these trends have on popular assumptions about
Internet performance, and how to account for them in future testbeds. Specifically, we
examine:

• The comparatively recent discovery that there is persistent contention on peering
links [37], which see magnitudes larger flow counts and path capacities than those
used in typical testbeds.

• The dominance of services like video streaming and video conferencing, with their
own complex application-level control loops, that change network behavior in ways
that cannot be understood by evaluating the CCA alone.

• The rise of large services and CDNs using specialized user-proximal infrastructure
that changes various parameters like the RTT ranges commonly used in testbeds,
and the emergence of complex CCAs that are affected by network parameters not
typically emulated in testbeds such as ACK aggregation.

1.2 Summary of Contributions
1.2.1 Evaluation at the Scale of the Core of the Internet

Does CCA behavior studied in residential link settings stay the same when
there is congestion at the core of the Internet?

CCA testbeds have typically emulated link bandwidths with at most hundreds of Mbps,
and with a few to tens of flows competing for bandwidth on a shared bottleneck link to
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understand inter and intra-CCA interactions. This is due to the implicit assumption that
congestion occurs primarily at the residential edge of the Internet, at the routers within
people’s homes or in the last few hops from ISPs to their users.

However, recent work has shown that congestion occurs even at peering links at the
core of the Internet, where thousands of flows compete for bandwidth [37]. These peering
links experience magnitudes greater bandwidths, often tens of Gbps, with thousands of
flows simultaneously competing for that bandwidth. The question then is, do the beliefs
we hold about CCA performance, based so far on evaluations in residential “edge" network
conditions, continue to hold even at the scale of the core of the Internet?

Unfortunately, testing at core Internet scale isn’t as simple as tweaking a few network
properties in existing testbeds. At Gigabit bandwidths, state of the art simulated testbeds
like ns3 [60] take days to run a single 10 minute experiment [74]. Similarly, state of the art
emulated testbeds like mininet [22] and Mahimahi [113] fail to keep up with line rates
as high as 10 Gbps. Luckily, all is not lost! We solve this problem by building our testbed
on top of BESS [19], a highly performant software switch, that is capable of emulating
Gbps bandwidths without performance degradation. Our testbed can emulate thousands
of simultaneous flows at Gbps bandwidths. We use it to re-examine a number of fairness
properties and CCA models believed to be true based on experiments in edge network
conditions, and see if they still hold at scale.

These efforts were not in vain: we find that long-trusted CCA models must be applied
with carefully considered caveats when there is congestion at core Internet links, and that
CCA properties like throughput fairness can differ drastically at scale. These findings are
especially important given that almost every single CCA and Internet service performance
evaluation for the Wide Area Network (WAN) in the last decade has focused exclusively
on the residential edge. As an example of the potentially devastating impact of this narrow
focus—BBRv1, Google’s new congestion control algorithm which has seen widespread
adoption on the Internet [157, 106], seems perfectly fair to other BBRv1 flows at low flow
counts and RTTs. However, at the scale of a core Internet link, fairness degrades to the
extent that certain BBRv1 flows are almost completely starved, breaking the inherent
promise of the Internet being a shared resource where multiple flows can seamlessly
multiplex. This is in addition to bottleneck queues remaining almost completely filled for
the duration of the competition between these flows, breaking the promise of low-latency
that BBR broke onto the scene with.

In §3, we discuss these and more findings about how CCA behavior changes at scale,
especially when it comes to inter and intra-CCA interactions, and make a case for including
core-link congestion scenarios in standard CCA evaluations.

If we were to rely solely on A/B testing, we would never be able to tell if a BBRv1
flow was starving due to insufficient bandwidth on the path or due to a breakdown in
competition dynamics at high flow counts, and as a result never discover this fatal flaw
with the CCA. This is exemplified by the fact that BBRv1 was indeed deployed after being
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thoroughly A/B tested. Without the queue occupancy visiblity provided by our emulated
testbed, we would also not know what BBRv1 was failing to keep its promise of keeping
queues low (which, as disucss in §3, is also the most likely explanation for its breakdown in
fairness). This serves as a clear example of how emulated testbeds help us not just observe
potentially damaging behavior, but help us understand why this behavior occurs in the
first place.

1.2.2 Accounting for Application Stack Impact on Network
Performance

Do complex Internet services result in emergent network behavior that is
different from that of the underlying CCA?

Most CCA performance evaluations today focus almost exclusively on studying CCA
behavior and properties with a bulk download workload, neglecting the wide variety of
services the CCA may be actually deployed in. Once upon a time, this made sense—the
majority of traffic on the Internet was simple bulk file transfers, and it was primarily the
CCA that determined the manner and rate at which the data was transferred.

However, more than 60% of traffic on the modern Internet is sent by significantly more
complex applications like video streaming and video conferencing. Such applications come
with their own intricate application control loops to improve user Quality-of-Experience
(QoE), such as Adaptive Bitrate Algorithms (ABRs) that reduce video quality in response
to poor network conditions. Given how drastically such algorithms can change the
quantity of data being transferred, it is quite possible that these play a significant role
in determining network performance and behavior in addition to the CCA. However,
modern CCA evaluations do not typically evaluate CCAs with these modern workloads,
and instead with bulk file transfers.

To bridge this gap, one would need to be able test services in addition to CCAs.
However, testing real deployed services in emulated testbeds is not trivial: it is typically
infeasible to obtain proprietary server-side code for services to run in a fully contained
environment, and creating emulated clients for popular services is a laborious and error-
prone endeavor. Instead, we embrace a hybrid approach, with actual service clients
running on commodity hardware, connecting to standard customer-facing instances of
their respective servers like an actual user would. However, we route the traffic from
and to these clients through BESS, which emulates our bottleneck link, and can therefore
configure path properties like bottleneck path capacity and queue size, and Base RTT. This
provides us with the best of both worlds—the fidelity of measuring actual services being
consumed on commodity hardware in the same manner a real user would, while retaining
the configurability and debugging capability of emulated testbeds. We use this testbed to
build Prudentia, an Internet fairness watchdog that evaluates throughput fairness outcomes
and QoE degradation when real world services, in addition to CCAs, compete over a shared
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bottleneck link.
In §4, we discuss our results, and demonstrate the importance of testing deployed

services in addition to CCAs—the most and least fair services we observe use variants of the
same underlying CCA, showing that testing the CCA alone does not predict performance
outcomes of the services that use those CCAs. Prudentia also finds that there is significant
unfairness when a number of services compete on today’s Internet, that network settings
can have a large impact on service-level fairness outcomes, and that silent updates to
CCAs and services on the Internet significantly changes their fairness properties. In a
nutshell, this chapter shows how testing services in addition to CCAs enhances the realism
of future testbeds, and provides insights into real-world performance that could not have
been obtained by testing CCAs alone.

Fairness evaluations are where emulated testbeds shine, and where A/B testing has
little to no chance of serving as a substitute. In an A/B test, it is next to impossible to
know if the low throughput obtained by a service was due to competition with another
service, or simply poor link conditions. If service operators were to rely on A/B tests alone,
it can quickly lead to a race to the bottom, with various services deploying increasingly
aggressive CCAs and application-layer algorithms as they find it provides an increase in
performance. Howeve, in reality, they would actually be causing increased queuing and
congestion when they compete with other services (and potentially even other instances
of the same service!), leading to an overall reduction in QoE not just for one user, but other
users of the same or different service on the shared bottleneck link.

1.2.3 Network Conditions Experienced by Users of a Large
Internet Service

How do the network conditions experienced by users served by an expansive
CDN differ from those used in typical emulated and simulated testbeds?

Emulated and simulated testbeds today evaluate a wide range of RTTs, path capacities,
and maximum queuing delays, with each study often evaluating different ranges of these
values. Newer CCAs like BBR are also affected by path properties that were previously
considered to have little impact on CCA performance, like ACK aggregation, which is
therefore not emulated in most testbeds, and whose extent and prevalence on the Internet
is not well understood. This lack of a common benchmark for Internet evaluations stems
from a combination of two factors: the Internet is wide and varied, with potentially as many
unique network conditions as there are users, and we posses little to no understanding of
the network conditions experienced by users when they actually consume a real Internet
service.

These testbeds fail to keep up with a key trend on the modern Internet: large amounts
of traffic today is served by a few large services and CDNs, that have built their own
expansive infrastructure to serve their users more efficiently. This changes a number
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of path property ranges commonly used in testbeds, such as Base RTT—which is likely
significantly lower due to the edge-adjacent nature of these CDNs—potentially rendering
obsolete decades of Internet performance evaluations and studies. However, the prevalence
of these CDNs also presents a unique opportunity: data from a CDN could help us finally
understand the network conditions most commonly experienced by real users. This would
allow us to work towards a unified benchmark for Internet performance evaluations that
focuses on the network conditions most likely to be experienced by real users of Internet
services, allowing for more realistic and relevant testing and design of CCAs and services.

In §5, we leverage this opportunity by examining real user traffic from Netflix, a
large video streaming on demand service with an expansive CDN, to infer the network
conditions experienced by its users. We report properties such as the Base RTTs, peak
observed queuing delay and ACK aggregation levels experienced by its users. We find
that Netflix experiences significantly lower Base RTTs, higher peak queuing delay, and
more ACK aggregation than used in most modern Internet evaluations. We hope that
this finding encourages other large Internet service owners to perform similar analyses
and release their own perspectives on what network conditions their users experience. In
conjunction with measurements such as Internet speed tests, this sets on the path towards
more realistic configuration of emulated and simulated testbeds, further bridging the gap
in fidelity between emulated/simulated testbeds and A/B tests.

1.3 Thesis Outline
We begin by discussing important background and related work in §2, followed by

a deep-dive into each of the major contributions of this thesis. We discuss the benefits
and insights from evaluating CCAs at scale in §3. We then demonstrate the necessity
to evaluate Internet services in addition to CCAs in §4, accompanied by a number of
insights into the state of service-level throughput fairness on the Internet today. We then
move on to examining the network conditions experienced by Netflix, a global video
streaming service, in §5, with the hope of informing future Internet evaluations of the
network conditions real users of a service experience. Finally, in §6, we discuss the overall
implications of the work done in this thesis, the work that can be done to carry forward
its torch, and a vision for the future of Internet performance evaluations as a whole.



Chapter 2

Background & Related work

“It’s like in the great stories,Mr. Frodo.
The ones that really mattered.”

— Samwise Gamgee
The Lord of the Rings: The Two Towers

To better contextualize the contributions in this work, it is important to understand
how Internet performance evaluations are typically conducted (§2.1), the capabilities of the
testbeds used to conduct these evaluations (§ 2.2), and what past measurement studies tell
us about emerging Internet trends and parameterizing emulated and simulated testbeds
(§ 2.3).

2.1 Internet Performance Evaluations
Internet performance evaluations typically test either the CCA or a service, and often

with different performance metrics under consideration. CCAs are typically evaluated
on their ability to maximize throughput or fully utilize available path capacity [170],
keep queuing delays low (typically measured using median/average or tail latency) [170],
minimize packet loss, and share path capacity fairly with other connections [78, 149, 146,
27]. Internet services on the other hand, tend to be evaluated with QoE metrics such as
video quality and rebuffer rate [138, 90], and are almost never evaluated in the context of
their inter-service interactions or fairness properties. However, both CCA and Internet
service evaluations tend to be conducted in “residential" network conditions, as opposed
to the scale at the core of the Internet, which is one the gaps we aim to bridge with our
study of CCA performance with thousands of flows in § 3.

Some notable studies, such as that by Spang et al. on correct A/B testing practices for
CCAs [137], evaluate the effect of CCA performance with real video streaming workloads
to Netflix users. However, typical CCA studies evaluate the CCA in isolation from the
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8 Background & Related work

service it is to be used in, leaving unanswered questions about its performance when
actually deployed in an application on the Internet. We demonstrate the drawbacks of this
approach by testing the throughput fairness of inter-service interactions with Prudentia
in §4.

A body of work aims to provably verify CCA performance outcomes in a variety of
scenarios using analytical techniques [10, 2]. Similar to emulation and simulation-based
testbeds, these approaches are limited by the realism of the network model they use. We
expect that our work discussing the path properties experienced by Netflix users in §5 will
aid this line of research too.

2.2 Emulation & Simulation Frameworks
Emulation: Anumber of emulation platforms such asMininet‘[22] andMahi-Mahi [113]

exist to help quickly bootstrap emulated network testbeds. Another popular emulation
platform is netem, which comes included with Linux. These testbeds typically support
emulating a number of properties, from path capacities to packet loss rates, to adding
artificial delays. However, both these approaches fail to scale to the Gigabit bandwidths
and flow counts necessary in this thesis, which is why we used BESS [19], a software
switch developed at Berkeley.

Simulation: While emulated testbeds provide more configurability, visibility and
reproducibility than A/B tests, they still pale in comparison to the reproducibility and
precise configurability provided by simulated networks. Network simulators like ns2, ns3
and htsim allow users to create complex network topologies, and parameterize them with
an almost limitless range of popular network parameters.

Unfortunately, while network simulators provide the most reproducibility, it is typically
difficult to run real-world applications on them. Even testing CCAs often requires a version
of the CCA translated into simulation framework. Efforts have been made to run actual
network stacks and binaries through capabilities such as Direct-Code-Execution (DCE) on
ns3, but getting full-fledged GUI-based applications like a YouTube browser client running
within these simulators remain an uphill task. Additionally, while theoretically possible
to emulated multi-Gigabit links on such simulators, this can results in simple 10 minute
simulations taking even days to complete depending on the processing power of the
host machine. Making simulators performant for such tasks typically requires making
workload-specific optimizations to simulator code.

2.3 Internet Measurement Studies
As the goal of this thesis is to better parameterize Internet testbeds to reflect emerging

Internet trends, it is important to examine the sources of data that might help us track
these trends.

A major source of guidelines for parameterizing emulated and similar testbeds comes
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from Internet measurement studies such as speed tests. Notable sources of data for such
studies include Ookla’s Speed Test [116], the speed test data set offered by Measurement-
Lab (M-Lab) [99], and the data gathered by Cloudlfare’s speed test [36]. These tests have
data from users all over the world, conducted across a variety of devices and ISPs.

Another rich source of data, though more geographically restricted, comes from the
Measuring America Broadband dataset [44]. This is a United States-government sponsored
initiative that uses specialized wired hardware in volunteer’s homes to conduct periodic
“active probes" to measure various path properties like path capacity, base RTT and jitter.
A mobile application counterpart exists to measure connectivity from user’s smartphones
too.

While providing one of the best views we have into the network conditions experienced
by users on the Internet at scale, speed tests are not without their issues. They can be
biased towards more tech-savvy users who know how to run them, and towards times
when the Internet is particularly bad (as users typically test their speed when something
goes wrong). They are also from the vantage point of the speed-testing-entity’s server
infrastructure, which need not reflect the content serving infrastructure of the services
that those users consume. That said, they are still one of the largest datasets the broader
community has to parameterize testbeds for more realistic evaluations. We aim to further
bolster this dataset by investigating and reporting the range of path properties experienced
by users of an actual Internet service, Netflix, in §5.



Chapter 3

Evaluating Congestion Control
Algorithms at Scale

“Yesterday,” he said, “we was not believing in
giants, was we? Today we is not believing in
snozzcumbers. Just because we happen not to
have actually seen something with our own two
little winkles, we think it is not existing.”

— Roald Dahl, The BFG

3.1 Chapter Overview
Much of our knowledge regarding the performance and fairness of congestion control

algorithms (CCAs) is based on models and observations that assume congestion occurs
primarily at the “edge" of the Internet, close to users. These studies therefore assess CCAs
in small-scale edge environments involving a few tens of flows and bandwidths of up
to a few hundred megabits per second [29, 57]. For instance, the model by Mathis et al.
[97] and Padhye et al. [117] predict the throughput of a NewReno flow as a function of
packet loss and round-trip time (RTT), and the BBR model by Ware et al. [162] predicts
the throughput of BBR when competing with other CCAs. Application developers can use
such results to decide which CCA best suits the network conditions they experience or to
debug performance issues. The original BBR paper [28] used measurements performed at
edge-scale to show that BBR is perfectly fair to other BBR flows. However, recent work [37]
indicates that congestion can occur at the core of the Internet, where thousands of flows
share links with tens of Gigabits of bandwidth. This raises the question: Are the beliefs we
hold about CCA performance, based on measurements done solely in edge-scale scenarios,

10
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still true at the scale of the core of the Internet?1

As discussed in §1, existing emulated and simulated testbeds are either simply not
capable of emulating Gigabit bandwidths and thousands of flows, or take prohibitively
wrong [74] to run even short simulations. We overcome with roadblock by building a
testbed with BESS [19], a highly performant software switch, which serves as our Gbps-
capable bottleneck link. We use this testbed to re-evaluate a number of beliefs based on
edge-scale evaluations. Specifically, we ask:
• Throughput Model: The commonly accepted Mathis analytical model [97] for TCP
throughout prediction says that the throughput depends only on the RTT and loss.
Does this model accurately predict TCP NewReno’s throughput at scale?

• Intra-CCA fairness: NewReno, Cubic, and BBR have shown to be fair at lower flow counts
when all the flows have the same CCA and RTT [35, 57, 61, 103]. Does this continue to
hold at scale?

• Inter-CCA fairness: Does the Inter-CCA unfairness observed in the home link setting,
where Cubic takes up to 80% of link bandwidth when competing with NewReno [57], or
BBR starves competing NewReno and Cubic flows [162, 176, 132, 61], continue to hold
at scale?
And indeed, we find that some edge-derived expectations do not hold at scale:

• The Mathis model [97] for NewReno throughput relies on a parameter 𝑝 which is
commonly interpreted as the network loss rate [131, 129]. While using loss rate for 𝑝
works well in edge settings, we find that using packet loss rate for 𝑝 at scale results
in more than 45% error in estimating throughput. Instead, operators should use direct
measurements of the congestion window halving rate for throughput estimates at this
scale.

• BBR surprisingly becomes unfair at scale even when competing with solely other BBR
flows at the same RTT, with a Jain’s Fairness Index (JFI) as low as 0.4. This is in contrast
to the fairness observed by past research in the edge setting or at low flow counts, where
the JFI is typically 0.99 [132, 176, 61].

On the other hand, our findings validate at scale prior claims about CCAs which were
derived from analyses evaluating the edge:
• A single BBR flow takes up 40% of link capacity even when competing with thousands
of NewReno or Cubic flows at scale. Prior work had only measured this phenomenon
at up to 16 competing flows [162, 132, 160], and our measurements illustrate that this
phenomenon persists even at scale. This confirms the prediction from the model by
Ware et al. [162].

• The intra-CCA fairness of NewReno and Cubic and the inter-CCA unfairness of Cubic

1This research has been presented at the Internet Measurement Conference, 2021[122], and content
including text and images in this chapter may originate verbatim from the published paper.
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Figure 3.1: Testbed topology for emulated settings.

competing with NewReno, continue to hold at scale. The extreme inter-CCA unfairness
when multiple BBR flows compete with multiple Cubic or NewReno flows also persists
at scale.
Overall, our results emphasize the need to include core-scale evaluations in CCA

performance tests. For example, applying the Mathis model over the Internet precisely
will require end-host TCP instrumentation to obtain the congestion window values as
one cannot rely on just measured packet loss. BBR’s unexpectedly high unfairness when
competing with just other BBR flows at scale further highlights the importance of explicitly
including evaluations with thousands of flows and Gbps bandwidths as part of future CCA
design and evaluation roadmaps. These additions will help emulated and simulated testbeds
come closer towards achieving the fidelity that A/B tests provide, with the additional benefit
of providing the visibility and debuggability that A/B tests cannot.
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3.2 Related Work & Motivation
We begin this section with an introduction to CCAs, followed by past work on through-

put models and fairness. Lastly, we discuss congestion at the core of the Internet and CCA
results in data centers and high bandwidth settings.
CCA Background: Today there are many CCAs on the Internet, including NewReno [56],
Cubic [129], Vegas [25], Copa [11], and BBRv1 [28] (hereafter referred to as ‘BBR’) as well
as BBRv2 [16] (which remains a work in progress). Developers and network administrators
evaluate CCAs for many important properties, including (1) throughput, or the rate at
which a connection transfers data [97, 117, 57] and (2) fairness, or how equitably multiple
connections share throughput when competing over a bottleneck link [35, 129, 103].
Throughput Models: To help us understand how well a CCA performs in a given
network setting, analytical models predict the throughput of a connection as a function of
key network properties (e.g., loss, delay). For example, the NewReno models by Mathis
et al., [97] and Padhye et al., [117] predict the throughput of a NewReno flow given the
network RTT and loss rate. Researchers have derived other models with similar goals
for Cubic [57] and BBR [162]. In this chapter, we revisit the simpler model for NewReno
throughput by Mathis et al. [97] and investigate the fairness implications of the BBR model
by Ware et al. [162].
Fairness: Fairness determines how deployable a CCA is. Say, for example, that Cubic
flows completely starve NewReno flows when competing for bandwidth over a shared link.
This would result in Netflix streams (which use NewReno) seeing degraded performance
every time they share a bottleneck link with large downloads using Cubic. Fairness is
typically evaluated in two settings: (1) Intra-CCA fairness, where all competing flows
have the same CCA; and (2) Inter-CCA fairness, where the competing flows have different
CCAs.

Past research has found that in the wide-area context, NewReno, Cubic, and BBR all
exhibit high intra-CCA fairness when all flows have the same RTT, with most flows getting
the same throughput [35, 57, 28, 61]. There is also work on intra-CCA fairness when
flows have different RTTs [93, 57, 103, 78]. In this chapter, as a simpler starting point, we
specifically evaluate the same-RTT setting.

In the inter-CCA setting, prior work shows that Cubic flows compete unfairly with
NewReno, with Cubic obtaining up to 80% of total bandwidth [57]. Past research also finds
that BBR competes unfairly with both Cubic and NewReno, with a single BBR flow taking
up 40% of link capacity irrespective of the number of competing Cubic and NewReno flows
[162, 132]. Multiple BBR flows competing with an equal number of Cubic flows also result
in the BBR flows obtaining 90% to 95% of link bandwidth with large buffers [130] and up
to 99% with small buffers [61]. We re-evaluate all of these properties at scale.
Congestion in the core: Many prior CCA efforts implicitly assume that Internet con-
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Table 3.1: Deriving the Mathis constant 𝐶 using the packet loss rate results in different flow
count-dependent constants in CoreScale vs EdgeScale, while using the CWND halving rate results
in closer and more consistent values across settings and flow counts.

p EdgeScale
CoreScale Flow Count
1000 3000 5000

Packet Loss 1.78 3.95 3.64 3.24
CWND Halving 1.47 1.36 1.36 1.34
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Figure 3.2: The median prediction error for the Mathis model in CoreScale is ≤ 10% using CWND
halving rate, but 45% to 55% with packet loss rate. In EdgeScale both packet loss rate and CWND
halving rate result in <10% error.

gestion occurs mostly at the network edge, evaluating only tens of flows at the scale of a
hundred Mbps [28, 57, 97]. However, both older and more recent work [3, 37] show that
there is persistent congestion on inter-provider links in the Internet core. This is significant
in the light of analysis that the properties of CCAs can change as network parameters
scale; e.g., the work of Appenzeller et al. [6] finds that when thousands, rather than tens,
of NewReno flows compete over a “core” bottleneck link, they desynchronize, allowing
the use of smaller router buffers compared to recommendations in the edge setting.
CCAs in data centers and high-bandwidth settings: While past research has investi-
gated CCA properties in the data center setting [72, 82, 4, 33, 127], we are interested in
the wide-area setting, which sees higher RTTs and has routers with larger buffers [6, 98].
There is also work on CCA fairness at Gbps bandwidths [61, 78, 103, 1], but they typically
evaluate tens to a few hundred flows, not thousands. To the best of our knowledge, the
Mathis model and fairness properties of CCAs when thousands of flows compete on Gbps
links have not been rigorously studied in the wide-area setting.

3.3 Problem Scope and Methodology
In this section, we define the scope and methodology of our analysis, its relevance, and

its limitations.

3.3.1 Problem Scope
Before we begin, we concretely define the two settings of interest for our study:

• EdgeScale: This represents the edge-link setting with a bottleneck bandwidth of 100
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Mbps with 2 to 50 competing flows and a 3MB buffer.
• CoreScale: The “at scale" setting with a bottleneck bandwidth of 10 Gbps [55], 1000 to
5000 competing flows, and a 375MB buffer.
In both cases, a drop-tail queue is used at the bottleneck link, and the buffer size is

approximately 1 BDP (bandwidth-delay product) based on the bandwidth of the bottleneck
link and assuming a maximum RTT of 200ms. We choose this size based on the rule of
thumb used to size router buffers [6]. It is the smallest buffer that would allow a single
NewReno flow to saturate the link. While past work has shown that smaller buffers equal
to a fraction of the BDP are sufficient to ensure upto 99% link utilization at scale [6, 17],
recent work [98] has found that in practice ISPs still use extremely large buffers.
CCAs Analyzed: We focus our evaluation on three popular CCAs: NewReno, Cubic, and
BBR. These CCAs are chosen based on both the depth of their research literature and their
widespread usage on the Internet today [107, 111, 107]:
1. NewReno is a classic example of a loss-based CCA. It is widely used today, most notably

by Netflix [107], which is believed to make up 13% of all traffic on the Internet [111].
2. Cubic is another loss-based CCA [57]. It is currently the default CCA on Linux and

Windows Server and is the standard baseline almost every newCCA is comparedwith [93,
103, 162, 28].

3. BBR (specifically, BBRv1) is a comparatively newCCAproposed byGoogle [28]. However,
it is used by YouTube [107], which accounts for 16% of all Internet traffic [111]. While a
new version ‘BBRv2’ [16] exists, at the time of this study, it is was a work in progress.
We, therefore, focus on the well-studied BBRv1 [61, 130, 162, 132].

3.3.2 Setup and Methodology
Studying TCP properties at scale is challenging; e.g., traditional packet-level simu-

lators such as ns-3 [60] take several days for a simple Gbps-scale experiment [74], and
past work on data-center networking that uses such simulators at scale typically run
experiments modeling just a few seconds [84]. Approximations (e.g., flow or fluid model
simulations [64]) may not accurately capture fine-grained dynamics. To achieve both
fidelity (e.g., running actual TCP stacks) and scale, we use a simple testbed setup described
below.

Our testbed uses a physical network with a dumbbell topology, with ten sender-receiver
node pairs connected to a BESS software switch [19], as seen in Figure 4.1. We choose this
topology as it is a common topology used to evaluate throughput models and fairness,
and has been used to model a wide variety of scenarios [57, 103, 130, 97]. The bottleneck
bandwidth for the experiments is varied between EdgeScale and CoreScale by changing the
bandwidth and buffer size on the BESS software switch. We use a software switch as it
allows greater control over the queue size and bottleneck bandwidth than the physical
switches available to us, while still being closer to using physical network elements
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than a simulator like ns-2 [153] or ns-3 [60]. The edge link bandwidths between the
sender/receiver nodes and bottleneck link at the BESS switch is always 25 Gbps, which
guarantees that congestion occurs at the BESS switch. The base RTT of flows is set using
netem [147] to add the appropriate delay at the receiver, similar to past work [130, 103,
172]. We calculate the packet loss rate by logging packet drops at the bottleneck queue
in the software switch, and use the Linux tool tcpprobe [151] to measure the congestion
window halving rate to validate the Mathis throughput model. The testbed was hosted on
CloudLab [40].
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(b) EdgeScale

Figure 3.3: The ratio between packet losses and congestion events (i.e., CWND halvings) changes
between CoreScale and EdgeScale, and across across different flow counts within CoreScale.
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Figure 3.4: BBR shows intra-CCA unfairness in CoreScale, with JFIs as low as 0.4. Milder unfairness
can also be seen beyond 10 flows in EdgeScale, with JFIs as low as 0.7.

All TCP flows are distributed equally across each of the sender-receiver pairs and send
infinite data, as common in past experiments [57, 103, 172, 61, 130]. The flows run for
a maximum duration of 3 hours, significantly longer than past studies [162, 130, 61, 57],
or until the metric being evaluated changes by less than 1% over 20 minutes. When an
experiment starts, each flow waits a random period of time between 0 and 2 minutes before
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it establishes a connection with the receiver, and the throughput obtained by all flows in
the first 5 minutes of the experiment is ignored.

Limitations: As observed by many others, capturing the dynamics of Internet links with
high fidelity — including random loss, arrival, and departures of new flows, application-
level sending behaviors, etc — is perhaps impossible to achieve perfectly [170, 12, 167].
Furthermore, understanding the behaviors of CCAs can be challenging in “real” settings
where many uncontrolled variables combine to influence CCA behavior. We instead opt to
focus directly on only two key variables: the number of concurrent flows (which increases
by two orders of magnitude between EdgeScale and CoreScale) and the link capacity (which
increases similarly between EdgeScale and CoreScale). Therefore, when we say ‘at scale’,
we refer to the setting where the bottleneck bandwidth is 10 Gbps and the flow count
ranges from 1000 to 5000 flows. By controlling all other aspects of the experiment (all flows
have the same, lengthy duration; there is no random loss; buffer sizes are approximately 1
BDP in both settings; all flows have the same RTT etc.) we can more easily inspect the
impact of these two variables on CCA behavior.
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Figure 3.5: Cubic takes 70–80% of total throughput when competing with an equal number of
NewReno flows in CoreScale.
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Figure 3.6: 1 BBR flow takes 40% of total
throughput when competing with thousands
of NewReno flows in CoreScale.
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Figure 3.7: 1 BBR flow takes 40% of total
throughput when competing with thousands
of Cubic flows in CoreScale.

3.4 Revisiting the Mathis Throughput Model

Background: The Mathis model [97] predicts the throughput of a NewReno flow as a
function of loss (𝑝) and round-trip time (RTT ). It depends on two constants: 𝐶 , which may
be different for different CCAs, and MSS (maximum segment size), which in our case is
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fixed to 1448 bytes. The Mathis model equation can be expressed as:

Throughput =
MSS ∗𝐶
RTT ∗ √𝑝 (3.1)

The original paper by Mathis et al. [97] states that 𝑝 refers to the congestion event rate.
This can be interpreted in one of two ways: (a) the congestion window (CWND) halving
rate or (b) the packet loss rate. While the original paper states that the CWND halving
rate should be used for TCP with selective ACKs, subsequent research has often applied
the packet loss rate instead [131, 129]. We, therefore, evaluate the Mathis equation with
both the packet loss rate and the CWND halving rate.

The original paper derives a constant𝐶 = 0.94 for NewReno with delayed and selective
ACKs [97]. The paper also demonstrates how to derive𝐶 empirically for varying NewReno
configurations. For our modern NewReno [114, 95] stack we derive𝐶 empirically following
themethodology described byMathis: we calculate the𝐶 whichminimizes the least squared
prediction error of the Mathis equation at a given flow count and setting. For the following
results, all flows run NewReno and have a 20ms RTT.

Observation 1: Deriving𝐶 using packet loss rate results in flow-count dependent values and
different values in CoreScale vs. EdgeScale. Using CWND halving rate produces consistent 𝐶
values across both settings and flow counts. (Table 3.1)

Table 3.1 shows the empirically derived “best-fit” constant 𝐶 for NewReno in a few
example settings. We see two main observations here. First, when using the packet loss
rate the 𝐶 value is quite different between EdgeScale and CoreScale and also changes
between different flow counts in CoreScale. This violates the Mathis model which states
that 𝐶 depends only on the CCA being used, and should not change with the number
of competing flows or bottleneck bandwidth. However, using the CWND halving rate
produces a more consistent constant that changes only slightly between the EdgeScale and
CoreScale, and does not change significantly between flow counts within CoreScale.

Observation 2: Using the CWND halving rate results in accurate predictions (≤ 10%median
error) in CoreScale; using packet loss rate results in 45%-55% median error. In EdgeScale,
however, both are accurate. (Fig 3.2)

Fig 3.2 shows the median Mathis prediction error at different flow counts in CoreScale,
while the two horizontal lines represent the median prediction error obtained in EdgeScale.
These results show that the Mathis model does indeed hold at scale, as long as we use the
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CWND halving rate for 𝑝 . The 45%-55% median error when using the packet loss rate
implies it cannot be used to accurately predict NewReno throughput at scale, even though
the packet loss rate works well in EdgeScale. The error at scale is foreshadowed by the
significantly different 𝐶 values derived across settings and flow counts when using the
packet loss rate.

Observation 3: The ratio between packet losses and congestion events (i.e., CWND halvings)
changes between CoreScale and EdgeScale, and across across different flow counts within
CoreScale. (Fig 3.3)

While investigating why the packet loss rate results in different constants in EdgeScale
vs CoreScale, we discovered the ratio of packet loss rate to CWND halving rate is different
in the two settings. As seen in Fig 3.3, in EdgeScale, the ratio of packet losses to CWND
halvings is approximately 1.7 regardless of the number of concurrent flows. But inCoreScale
the ratio varies between 6 and 9 and depends on the flow count. This explains why using
packet loss rate results in different constants between EdgeScale andCoreScale, and different
constants within CoreScale at different flow counts. While the idea that packet loss rate
diverges from CWND halving rate is not new [46, 97, 117], we believe the drastic increase
in divergence as we move from EdgeScale to CoreScale is a new finding.

Since the ratio is stable for EdgeScale, there is no reason to doubt past research that uses
packet loss rate for 𝑝 when evaluating links with tens of flows and only tens or hundreds
of Mbps [131, 129]. However, our results show one should not use the packet loss rate for
estimating throughput over the Internet core.

We hypothesize that the reason for different packet loss rate to CWND halving rate
ratios is that losses are burstier at scale, causing multiple losses in the same burst or RTT
which result in only one congestion window halving. We corroborate this hypothesis
by measuring the burstiness of losses at the queue using the Goh-Barabasi burstiness
score [51] which ranges from -1 to 1, where a higher score means the drops are burstier.
We obtain median values close to 0.2 in EdgeScale and closer to 0.35 in CoreScale, implying
that losses are indeed burstier at scale (Figure not shown).

Implications: Overall, we find that the Mathis model for throughput still holds in
CoreScale, if 𝐶 is calculated using CWND halving rate and not the more commonly used
packet loss rate for the variable 𝑝 . Unfortunately, this makes applying the Mathis model in
practice more challenging, as obtaining the CWND halving rate requires end-host state re-
construction, where packet loss rate can be measured more easily via network-measurable
loss. Furthermore, our findings also change our expectations regarding NewReno’s per-
formance with respect to loss: a flow on a congested core link can tolerate four times the
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packet loss rate of a flow on a congested home link, and still obtain the same bandwidth
because the CWND halving rate is the same.

3.5 Revisiting Fairness
In this section, we measure how fairly competing flows share bandwidth in our

CoreScale setting.

3.5.1 Intra-CCA Fairness
Background: The classic metric used for measuring fairness is Jain’s Fairness Index (JFI)
[69], which ranges from 0 to 1 with a higher value indicating greater fairness. Past research
in the edge setting has found Cubic, NewReno, and BBR to be intra-CCA fair – i.e., fair
when competing only with other flows of the same CCA and RTT – with a JFI of 0.9 or
more [35, 57, 28, 130, 176].

Observation 4: NewReno & Cubic continue to show high intra-CCA fairness in CoreScale
with a JFI > 0.99, as expected from past research. (Figure not shown)

Both theoretical [35] and empirical studies [103, 57] have shown that when NewReno
flows compete with other NewReno flows, or Cubic flows compete with other Cubic flows,
throughput is shared almost equally when all flows have the same RTT. Our experiments
confirm this in the CoreScale setting: NewReno and Cubic show high fairness with a JFI >
0.99.

Observation 5: BBR surprisingly shows intra-CCA unfairness in CoreScale, with JFIs as low
as 0.4, which is not expected from past research. Milder unfairness also occurs when more
than 10 flows compete in EdgeScale, with JFI’s as low as 0.7. (Fig 3.4)

Fig 3.4 shows the JFI for BBR flows with the same RTT when they compete amongst
themselves at different flow counts. It also shows the JFI based on results from past work
(0.99) which finds BBR to be intra-CCA fair when all flows have the same RTT [28, 176,
132, 61].

We see that at scale BBR surprisingly becomes unfair at 20ms and 100ms RTTs, with
the JFI going as low as 0.4. We investigate further and discover that BBR shows signs of
unfairness even in EdgeScale, but at relatively higher flow counts (greater than 10) not
examined by past research. This unfairness is exacerbated at scale.

Cardwell et al. [28] argue that BBR flows, share bandwidth fairly amongst each other
at lower flow counts due to flow synchronization. While we have not verified it, we
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hypothesize that the unfairness in CoreScale might be due to BBR flows desynchronizing
at scale, similar to NewReno [6].
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Figure 3.8: BBR takes 99.9% of total throughput when competing with an equal number of NewReno
or Cubic flows.

Implications: Prior work showed that BBR is unfair when competing with other CCAs
(e.g. Cubic, NewReno) – however, it was assumed that if the entire Internet adopted BBR
users could expect fair outcomes. Our CoreScale experiments show that this is not the case
when thousands of flows compete in wide-area like settings; this emphasizes the need for
CCA testing and evaluation at scale to understand whether a new algorithm is acceptable
for deployment.

3.5.2 Inter-CCA Fairness
In this section, we evaluate how flows from different CCAs with the same RTT compete

with each other.
Background: Past research in the edge link setting found that Cubic competes unfairly
with NewReno, taking up to 80% of total throughput [57, 103] and that BBR is unfair to
both Cubic and NewReno [162, 130, 61]. We revisit these properties at scale.

For the following results, we measure the aggregate throughput obtained by the flows
of one CCA as a fraction of the total throughput obtained by all flows.

Observation 6: A single BBR flow takes 40% of total throughput when competing with thou-
sands of NewReno or Cubic flows in CoreScale, as predicted by past research in the edge setting.
(Figs 3.6, 3.7)

The BBR model by Ware et al. [162] shows that a single BBR flow could take 40% of
total throughput irrespective of the number of competing NewReno or Cubic flows. We
show that this result holds at scale and that a single BBR flow takes 40% of total throughput
even when competing with thousands of NewReno or Cubic flows, as seen in Figs 5 and 6.

Observation 7: BBR takes 99.9% of total throughput when competing with an equal number
of NewReno (or Cubic) flows in CoreScale, confirming past research in the edge setting. (Fig 3.8)
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Past research in the edge setting has shown that BBR can take up to 99% of total
throughput when competing with an equal number of Cubic flows [130, 176, 61]. Our
results show that this inter-CCA unfairness persists even in CoreScale, with BBR obtaining
up to 99.9% of total throughput when competing with an equal number of Cubic or
NewReno flows, as seen in Fig 3.8.

Observation 8: Cubic takes 70% to 80% of total throughput when competing with an equal
number of NewReno flows in CoreScale, confirming the unfairness results of past research in
the edge setting. (Fig 3.5)

Past research [57, 103] expects Cubic flows to get around 80% of total throughput when
competing with an equal number of NewReno flows in the edge setting. Our experiments
show this holds true even in CoreScale, as seen in Figure 3.5.
Implications: Our results confirm that the inter-CCA unfairness displayed by Cubic to
NewReno and BBR to both Cubic and NewReno persist at higher flow counts at scale. In
these settings, the disparities between flows can be even more extreme than at the edge
setting – with a single BBR flow attaining 4 Gbps and 5000 competing flows Reno or Cubic
flows obtaining just 1.2 Mbps each. While past work shows that a few ‘bad player’ flows
can impact fairness between a small number of users sharing an edge link (e.g. roommates
in a shared house, co-workers in an office), the fact that prior unfairness findings extend to
CoreScale suggests severely unfair outcomes where a single sender can impact thousands
of physical neighbors with whom he or she shares a large inter-domain link.

3.6 Chapter Summary
Conventional wisdom about congestion control adopted by application and systems

designers has been evaluated in settings implicitly assuming congestion at the edge. When
congestion occurs in the core, as shown by many measurements, it is not clear if these
accepted norms about throughput and fairness still hold. We revisit these and find that
the widely accepted Mathis model can be applied using either loss or congestion window
halving in edge settings, but these metrics diverge at scale. Similarly, we find that when
BBR competes with other BBR flows, it goes from being completely fair in the edge setting
to completely unfair at scale. This emphasizes the need for Internet performance evaluation
testbeds to include network conditions that reflect congestion at the core of the Internet for
more representative and complete testing, and further reduce the gap between emulated
or simulated testbeds and A/B tests.



Chapter 4

Prudentia: Evaluating Services In
Addition to CCAs

“The whole is something else than the
sum of its parts.”

— Kurt Koffka, Gestalt psychologist

4.1 Chapter Overview
Many emulated and simulated testbeds evaluating CCA performance almost exclusively

study CCA behavior and properties with a bulk file transfer workload, not accounting for
the fact that in practice, these CCAs are likely to also be used by other types of services
like video streaming on demand and real time video conferencing. Once upon a time,
this was unlikely to have been a major source of strife—the majority of traffic on the
Internet was simple bulk file transfers, and it was primarily the CCA that determined the
manner and rate at which the data was transferred. However, more than 60% of traffic
on the modern Internet is sent by significantly more complex applications like video
streaming [124], which come with their own intricate application control loops to improve
user Quality-of-Experience (QoE), such as Adaptive Bitrate Algorithms (ABRs) that reduce
video quality in response to poor network conditions. As a result, it is quite possible that
the network performance we believe a CCA provides might not hold when it is actually
deployed in these services.

To fix this gap in realism in modern emulated testbeds, we build Prudentia1 , an Internet
Fairness Watchdog which is capable of testing real services in addition to CCAs. We focus
on fairness, as it is one the key pillars of Internet performance: one of the Internet’s core

1The research paper describing Prudentia and its results was accepted and presented at SIGCOMM
2024 [121], and contents of this chapter may include text and images from that publication verbatim.
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promises is to multiplex shared resources but this promise fails if a user has to pause their
YouTube video every time their roommate needs to attend an online meeting. Furthermore,
the economic implications of unequal performance outcomes are troubling: the Internet
has been lauded over the past several decades as an open playing field for new entrants,
with any startup having the same access as established players have to customer ‘eyeballs’.
If the established players deploy aggressive services that shunt their competitors aside
under contention, new services may be unjustly perceived as low-quality and fail in the
economic marketplace.

However, most research around fairness continues to focus exclusively on CCA perfor-
mance, neglecting the impact application-level stacks can have on network performance.
In the rest of this chapter, we will discuss the learnings obtained from Prudentia, which
evaluates pairs of real services as they are deployed, accessing them through their browser-
based clients just like a real user would, while routing traffic through a bottleneck link
configured to emulate different link conditions. We use Prudentia to ask an overarching,
simple question: Are there ‘winners’ and ‘losers’ when popular services compete for bandwidth
on the Internet today?

A wide range of design choices can impact a service’s contentiousness (i.e. how much
‘pressure’ it puts on competing services) and its sensitivity (i.e., how much a service
suffers under competition)2. For example, BBR has been broadly attacked in the research
community and even the popular press [162, 154] because it leads to ‘unfair’ bandwidth
allocations in deep-buffered networks with long-lived bulk flows. However, as we will
show in §4.4, YouTube, which uses BBR for its congestion control, is in reality one of the
least contentious services that we tested. In short, choice of CCA fails to tell the whole
story about congestion at the service level.

We believe that it is important for a public and independent watchdog that identifies
winners and losers to exist. Unfortunately, industry lacks incentives to do such monitoring
on their own; for example, their engineers are rewarded for making services perform
faster but not for making them kinder to competitors’ traffic. Prudentia runs continuously
with live experimental results available online at https://www.internetfairness.net.
Over the two years Prudentia has been running, we observed changes in service stacks
which have both improved and degraded fairness outcomes. Using Prudentia, we evaluated
the behavior of several classes of applications under competition: video on demand, file
distribution, web browsing, real time video streaming, and iPerf (which provides us a
baseline to compare application-level testing against CCA-only testing).

Among our findings, presented in §4.4:
• The file-distribution service Mega [100] is substantially more contentious than any other

application we tested. In our moderately-constrained setting, services running alongside

2We borrow the terms contentiousness and sensitivity from performance modeling literature [94, 92]

https://www.internetfairness.net
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Mega achieved on average only 63% of their Max-Min Fair [18] (MmF) share of link
bandwidth; with some services achieving less than 20% of their MmF share.

• As mentioned above, YouTube – despite using much maligned BBR [146] – is among the
least contentious. In the highly-constrained setting, most applications competing against
YouTube achieved more than their MmF share (117% on average).

• Typically, losing services achieved on average 72% of their fair share (84% median) when
subjected to contention from other services. Even when each service competed against
another instance of itself (e.g., one OneDrive download versus one OneDrive download),
services achieved only an average of 88% of their MmF share.
Throughput is just one of the many metrics applications care about. In §4.5, we

demonstrate Prudentia’s ability to serve as a foundation for even more fairness metrics by
observing the effect of contention on network metrics like loss, latency and jitter, and QoE
metrics such as webpage load time.

In §4.6, we discuss results from Prudentia that shed light on the various factors affecting
fairness measurements. In §4.7, we use these insights to make recommendations about
how service providers might test their application for undesirable fairness outcomes so
that problematic applications or algorithms can be patched. We highlight the need to test
end-to-end applications, and not just CCAs; we also identify the need to test with multiple
experimental trials to identify highly variable services (whose performance instability
may be a problem on its own). To further encourage fairness testing, Prudentia allows
externally submitted services to be evaluated as a part of its testbed. Unfortunately, one
of our primary findings is many unfair outcomes are anomalous: other than exhaustive
all-to-all-testing, we are unable to find an approach to service testing that would identify
these negative interactions. We discuss challenges towards testing applications for fairness
further in §4.6. Lastly, we discuss related work in §4.8, and conclude with future directions
for Prudentia in §4.10.
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4.2 Goals and Metrics
Before digging into the mechanics of our measurement methodology (§4.3) we first

take a moment to ground the goals and philosophy behind our study.

4.2.1 Goals and Non-Goals
Our goals for this study are as follows:

(1) Provide a live, independent watchdog to highlight ‘winner’ and ‘loser’ perfor-
mance outcomes between competing highly popular services, so that operators
can take action to remediate these problems: To the best of our knowledge, this is
the first study to consider end-to-end network performance outcomes under contention at
the service level. Prior studies primarily focus on a single aspect of a service’s design, such
as CCA [23] or ABR [142]. Consequently, operators are often surprised at the negative
outcomes – which are only visible at a service level – that we have reported. We hope that
our data helps operators remediate these performance problems.
(2) Illuminate, where we can, common features and design decisions that might
lead to unfair outcomes: At the network level, we can observe some traits that we
suspect are leading to unequal performance outcomes. For example, some services rely on
multiple parallel TCP connections, which is well-known to lead to unequal throughput
allocations and is also visible from the network. Another observation we detect at the
network level is that some services use ‘bursty’ transmission patterns that can cause
intermittent packet loss. We hope that we can identify problematic design patterns that
operators might seek to avoid.
(3) Develop amethodology for testing the Internet for undesirable outcomes under
contention that operates at a service level: As we mentioned above, many operators
were surprised when we discovered poor performance outcomes involving their own
services – especially because they already test some aspects of fairness, such as CCA
fairness. We believe that the methodology we explore in this work will be useful to service
operators who should continuously test fairness outcomes for their end-to-end services
as deployed. To further this objective, we have open-sourced all of the code used to run
Prudentia [126].

It is also important to clarify non-goals for this project.
We do not aim to provide a comprehensive study of services, nor of all network
conditions on the Internet: Our study covers 12 popular Internet services including
file-sharing sites, video streaming, real-time video chat, and web browsing; we explore
these services in the context of two network environments. It takes 2 weeks for our testbed
to iterate over all pairs of services in both network environments3 Scaling further would

312 services translates to almost 80 pairs to test, with 10 trials each, in 2 network settings, with more
than 12 minutes between each experiment, adding up to more than 19,000 minutes or 13 days.
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require additional resources beyond those available at our non-profit institution. Nonethe-
less, our website – https://www.internetfairness.net – does accept submissions of
new web services for us to test and we can swap out services under study as feasible.
We do not aim to perform root cause analysis for every negative interaction we
discover, nor do we aim to solve fairness problems on the Internet: Ultimately,
only the operators of Internet services have the insight into their own end-to-end stacks
to fully diagnose the cause of undesirable performance under contention. We can identify
some problems, which are observable directly in the network, but we cannot, e.g., identify
that a proprietary ABR state machine chooses to ‘back off’ under contention too eagerly
when we do not have access to the ABR implementation itself.
Wedonot aim to determine that any service is ‘good’ or ‘bad’ in amoral sense: Most
operators we have spoken to about unfair outcomes have been genuinely surprised. Our
end-to-end testing methodology is new, and we don’t expect operators to have performed
similar tests themselves. Hence, it is our operating assumption that any unfairness we
observe is simply the result of intractable complexity in analyzing the performance impacts
of a complete service stack, and not of any ill will on an operator’s part.

4.2.2 What We Measure
There are many ways that service interactions can result in ‘winners’ and ‘losers’ or

‘unfair outcomes.’ Although the primary focus of the research community [80, 170, 162],
has been on throughput, services can also have problematic performance outcomes due to
interference inflating latency, causing persistent loss, introducing jitter, etc.. We provide
the most in-depth analysis of throughput, but explore additional quality-of-experience
metrics in §4.5.

Measuring throughput fairness itself is highly debated as there are many compet-
ing definitions of fairness, e.g. equal-rate fairness [70], proportional fairness [75], RTT-
fairness [146], and max-min fairness [24]. For better or worse, most Internet algorithms
(including many TCP congestion controllers [175, 65] and fair queueing schemes [144]) are
designed with max-min fairness (MmF) as their target. Hence, with regard to throughput,
we measure how closely outcomes achieve their MmF share – e.g., if a service’s MmF share
is 40 Mbps and it achieves 30 Mbps under contention, we would say it achieved 75% of its
MmF share.

This means that every experiment we run results in two numbers – the MmF share
attained by each competing service. When we measure an MmF share, we refer to the
service whose throughput is being measured as the ‘incumbent’ and the competing flow
as the ‘contender.’ We do not use Jain’s Fairness Index [70] because it collapses these
outcomes into one statistic: it can tell us that the outcome is imbalanced, but it cannot tell
us which service is the ‘winner.’ We do not use harm [161] because it focuses on defining
a ‘deployability threshold’ for services, and we do not aim to determine whether or not

https://www.internetfairness.net
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services should be considered deployable here, merely to quantify their behavior under
contention.

4.2.3 Does an unfair outcome mean that the contender is too
aggressive?

Observing an unfair outcome does not mean that the contending service is too aggres-
sive.4 In the performance contention literature [94, 92], a given performance measure
under contention is modeled as a function of the contentiousness of the contender, and of
the sensitivity of the incumbent.

Contentiousness captures the idea that contenders place some ‘pressure’ on competing
services, e.g. by usingmore than their fair share of bandwidth, or by choosing to send bursty
sequences of traffic likely to induce loss. Sensitivity captures the idea that incumbents have
some natural tendency to ‘back off’ given the presence of other services, e.g. choosing (or
choosing not to) reduce sending rates in response to loss, jitter, or an increase in latency.

Whether or not a service is ‘contentious’ or ‘sensitive’ is a somewhat subjective concept.
Most of the literature that attempts to model contentiousness and sensitivity does so by
modeling them as functions rather than scalar values that can be ranked [92]. When we
refer to a service as contentious, we mean that most services in our experiments that
compete with it will attain less than 100% of their MmF share. When we refer to a service
as sensitive, we mean that when that service competes with other services, it will generally
attain less than 100% MmF share itself.5

When we observe an unfair outcome, it could be that the contender is a relatively
contentious service. It could also mean that the incumbent is relatively sensitive. And,
further muddying the situation, sometimes we observe ‘idiosyncratic’ outcomes in which
the contender does not appear to be generally contentious and the incumbent does not
appear to be generally sensitive, but we nonetheless observe poor performance for the
incumbent (§4.4).

4.3 Methodology
Having described our high-level aims above, we now present our measurement method-

ology including our testbed design for network emulation (§4.3.1), how we ensure appli-

4Betteridge’s law of headlines states: ‘Any headline that ends in a question mark can be answered by
the word no.’ [20]

5Although we often see that more sensitive services are less contentious (and that more contentious
services are less sensitive) it is also possible for a service to be both contentious and sensitive, or uncontentious
and insensitive. A service that backs off in the face of a contender, but behaves in such a way (perhaps it is
bursty) to cause the contender to also slow down could be both sensitive and contentious. A service that
uses a very small amount of bandwidth and does not cede any bandwidth under competition is insensitive,
but since by default it also consumes very little bandwidth it is likely to also be uncontentious.
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Figure 4.1: We use a dumbbell topology with two clients simultaneously receiving data from 2
services, with all traffic passing through the software switch BESS which acts as our controlled
bottleneck link.

cation fidelity in our automated environment (§4.3.3), the services and period we tested
them in (§4.3.2), and finally how we measure statistical significance(§4.3.4).

4.3.1 Network Emulation
The Prudentia testbed is illustrated at a high level in Figure 4.1. The simple idea behind

this design is to have clients within the testbed access public Internet services over a
controlled network connection which is likely to naturally be the bottleneck link. The
upstream switch for our client is implemented using the BESS [19] software switch, which
allows us to control the access link speed, queue size, and add delay to ingress and egress
packets. BESS also allows us to measure queue occupancy and packet loss to enable deeper
analysis of service behavior under competition. Other than this manipulation of the access
link, all other traffic follows unmodified Internet paths from our institution to access live,
deployed services.

To avoid variations due to network complexities, we use wired connections with no
artificial loss or reordering; in the majority of our experiments all loss is due to queue
overflows at the bottleneck link. Wireless settings introduce an additional and interesting
setting to explore fairness outcomes, as the shared wireless channel becomes a new
contended resource, however we consider it out of scope for this work.
Bandwidth Settings: We use BESS to emulate two network settings with 8 Mbps
bottleneck bandwidth (which we refer to as a highly-constrained) and 50 Mbps (which we
refer to as a moderately-constrained). We choose these bandwidths because: (a) 50 Mbps is
the median broadband speed experienced by more than half the countries in the world
today [141] and (b) 8 Mbps represents the bottom 10% percentile of country-level median
bandwidths [141]. 8 Mbps is also approximately the bandwidth that a 2K video would
consume6, allowing us to examine how contentious video services can be in a scenario
where they can consume the entire link bandwidth.

6This number comes from the bitrates in Youtube’s manifest files which we downloaded using [171].
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Table 4.1: Services supported in the Prudentia testbed.

Service Category CCA Max Xput # Flows+

YouTube Video BBRv1.1 [107] 13Mbps 1
Netflix𝛿 Video NewReno [125] 8Mbps 4
Vimeo Video BBR* 14Mbps 2
DropBox File Transfer BBRv1.0 [108] ∞ 1
Google Drive File Transfer BBRv3 [65] ∞ 1
OneDrive File Transfer Cubic [102] 45Mbps 1
Mega File Transfer BBR* ∞ 5
Google Meet RTC GCC [31] 1.5Mbps 1
Microsoft Teams RTC Unknown 2.6Mbps 1
wikipedia.org Web BBRv1.0 ∞ >5𝛽
news.google.com Web BBRv3.0 ∞ >20𝛽
youtube.com Web BBRv3.0 ∞ >10𝛽

iPerf (BBR) Baseline BBRv1.0 (Linux 5.15) ∞ 1
iPerf (Cubic) Baseline Cubic (Linux 5.15) ∞ 1
iPerf (Reno) Baseline NewReno (Linux 5.15) ∞ 1

* These CCAs were determined using a CCA classifier described in a related work [157].
+ The number of flows that are transferring service workload-related data (e.g. video chunks for
video services) at the same time.
𝛿 Netflix is run on Safari, as DRM prevents it from running at the highest quality on Google
Chrome on MacOS [59].
𝛽 The number of flows used to load a webpage is variable and depends on the number of resources
being loaded by the page and the number of distinct domains they are fetched from. We have listed
the minimum number of flows we usually observe or these webpages.
Note: CCAs for YouTube, Netflix, Google Drive, Dropbox, and Wikipedia were confirmed with
engineers at the respective companies.

While these are the primary bandwidths Prudentia uses to evaluate fairness, in §4.6 we
run a one-off evaluation to examine how fairness evolves at other bandwidths. Prudentia’s
regular iterations over services (http://www.internetfairness.net) only include these
two settings because including more settings would multiplicatively increase the time to
cycle across all-pairs of services.
RTT Settings: We normalize round-trip times between services to 50ms; all services
we tested had an RTT to/from the testbed of ≤ 50ms and we used the software switch
to insert additional delay for all services to normalize to 50ms. We selected 50ms as the
highest RTT we recorded for a service was 40ms and we can only increase, not reduce, the
delay experienced by a service. For services that use multiple flows we normalize the RTT
based on the first flow of that service.
Queue Sizing: Finally, we set the queue size of our Drop-tail FIFO bottleneck queue to
approximately 4×BDP, based on input from large content providers who said that those

http://www.internetfairness.net
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are the buffer sizes they see in practice, and past work which implies that queues are at
least this big [47].7 In §4.6 we briefly examine the effect an even larger buffer would have
on fairness.
Background Noise: Although we fully control the client’s access link, we do not
control what happens over the Internet. Hence, it is impossible for us to prevent upstream
bandwidth bottlenecks, throttling, or sources of loss. However, we do mitigate these
effects using two techniques. First, to detect upstream throttling, we run all services ‘solo’
to detect their maximum transfer rate in the absence of contention; only one service is
throttled either by its server or network upstream (OneDrive, which should have achieved
higher throughput, see Table 4.1). Second, to mitigate the effects of upstream congestion
caused by transient traffic, we run multiple experiments between every pair and repeat
experiments every two weeks; we also discard any experiments with more than 0.05%
packet loss external to our testbed. If we see experiments with high variability or a large
number of ‘outlier’ results, our scheduler automatically re-queues the service pair for
additional testing to achieve stronger statistical significance, up to a maximum of 30 trials.

4.3.2 Services & Period Under Test
Table 4.1 lists all of the services currently supported by the Prudentia testbed. These

services can be broadly categorized as on-demand video services, file transfer services,
real-time communication (RTC) services, web services, and baseline (iPerf) tests. We
highlight throughput outcomes for on-demand video and file transfer services in §4.4. We
focus on more application specific forms of performance interference (such as changes
in frame rate or above the fold page load times) for RTC and Web traffic in our ‘Beyond
Throughput’ discussion in §4.5. For each service, we list the CCA used by that service if
known from references or direct contact with operators. For two services we were unable
to obtain such ground truth information. Hence we used a CCA classification tool [148]
which identified BBR as the CCA for Vimeo and Mega. We also confirm this by verifying
the BBR bandwidth probe and RTT probe intervals in traces from our experiments with
Vimeo and Mega. Video and RTC services have a maximum transmission rate depending
upon their maximum bitrate encoding: 13 Mbps for YouTube, 14 Mbps for Vimeo, 8 Mbps
for Netflix, 1.5 Mbps for Google Meet and 2.6 Mbps for Teams. One Drive is the only non-
video service which otherwise had a throughput cap external to our testbed: downloads
run on a 1 Gbps link were also able to achieve only an average throughput of 45 Mbps.

All file transfer services attempt to download the same 10 GB randomly generated file,
and video streaming and RTC services play the reference Big Buck Bunny video [21].

Prudentia has been evaluating fairness amongst these services since 2022. Unless
otherwise noted, the numbers reported in this work are from the latest set of experiments,

7A quirk of the BESS software is that it only allows queue sizes in powers of two, hence the queue is in
reality set to the power of two nearest to 4×BDP.



32 Prudentia: Evaluating Services In Addition to CCAs

run between June 2023 - September 2023, and the RTC service evaluation in January 2024.

4.3.3 Application Fidelity
Automating end-to-end application behavior is challenging because seemingly simple

concessions to automation, such as using command-line tools or running applications
‘headless,’ can result in different application behavior. We use Google Chrome [54] con-
trolled by Selenium [133] rather than a command-line tool to make sure that service
accesses result in the same sequence of TCP/QUIC connections as would be invoked by
real client. Between experiments, we wipe all cookies and browser cache data to run all
experiments in a consistent, repeatable state in which all application data must be fetched
over the network.

Video playback was the most challenging class of services to automate. We were only
able to generate realistic network traffic for video when using a full-fledged web-browser,
on a server with a desktop-marketed GPU (we used Mac Mini Desktops), with a connected
4K monitor. The problem with other configurations, e.g., headless configurations, is that
video clients determine their bitrate selection not only on network connections, but also
based on their perceived client rendering capacity. Because we wanted to measure only
network effects, we needed a testbed which was not render-limited. For example, when we
attempted to run video traffic without a real HDMI adapter – sending output instead to a
virtual device xbuf – clients reduced their bitrate selection, percieving the device as unable
to keep up with the highest (4K) video bitrate. Even with a real monitor, clients without
GPUs or with GPUs that did not support native VP9 decoding [58] were unable to decode
at a sufficient rate, once again triggering a lower bitrate request by the client. We provide
these details because it is our understanding that video experiments in ‘headless’ modes
using the above features are not uncommon but, from our experience, these automation
tools are in reality a threat to validity of any experimental findings.

4.3.4 Statistical Significance
We run each experiment for a total duration of 10 minutes, and ignore the first and last

two minutes of the experiments, as this gave us the most consistent results across trials.
We run a minimum of 10 trials of each combination of contender and incumbent service,
and then run more trials in sets of 10 up to a maximum of 30 until the 95% confidence
interval of the median falls within +/- 0.5 Mbps in the highly-constrained setting and +/-
1.5 Mbps in the moderately-constrained setting. We find that almost all our experiments
achieve these tight bounds, except for two services that display inherent instability in
some fairness interactions. These are discussed in detail in §4.6. All our graphs show the
inter-quartile range (difference between the 25th and 75th percentile measurements) as
error bars. To limit the effect of temporally-localized performance issues, such as a service
slowing down due to a data-center outage or external network performance degradation,
we run the trials in a round-robin manner. A full run of one trial of every service competing
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Figure 4.2: Median MmF share obtained by an incumbent service when competing with a given
contender. Unless otherwise noted, all measured throughputs are within a 95% confidence interval
of +/- 0.4 Mbps in the highly-constrained setting and +/- 1.5 Mbps in the moderately-constrained
setting.
with every other service takes ∼20 hours.

4.4 Throughput Under Contention
Having described our methodology (§4.3) we now explore the data from our testbed.

In this section, we explore the traditional metrics of throughput fairness by looking at
on-demand video and file transfer services. In §4.5, we explore other metrics which suffer
under contention (such as latency, video resolution, and page load times) by inspecting
our web and real time communication services.

Figure 4.2 plots a heatmap of the MmF share (that is, the fraction of the max-min fair
allocation achieved by the incumbent service) for all-to-all experiments between video
streaming and bulk download services in the 8 Mbps (highly-constrained) and 50 Mbps
(moderately-constrained) settings. Numbers higher than 100 represent an outcome where
the incumbent achieves more than its MmF allocation; numbers lower than 100 represent
an outcome where the incumbent achieves less than its MmF allocation.

In the majority of experiments, the MmF allocation is simply 50% of the link capacity.
However, video services in the 50 Mbps setting are application-limited by their maximum
achievable bitrate and, in this setting, their MmF allocation is between 8 Mbps and 14 Mbps,
and their contenders’ allocation correspondingly higher, depending on the service as shown
in Table 4.1. Each datapoint represents a median of at least ten trials, with additional
experiments performed to ensure a 95% confidence interval of +/- 0.5 Mbps (in the highly-
constrained setting) or +/- 1.5 Mbps (in the moderately-constrained setting).

To read this graph, it is easier to look at rows and columns than individual datapoints.
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Figure 4.3: Mega, Netflix and Vimeo use up to 5, 4 and 2 concurrent flows respectively. In
the highly-constrained setting, this causes Netflix and Mega to be unfair to other services. In
the moderately-constrained setting, Netflix being application-limited prevents it from causing
unfairness. Vimeo (using 2 BBR flows) does not cause unfairness in either setting, potentially due
to the influence of its ABR algorithm.
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Figure 4.4: When Dropbox competes with Mega, it is able to ramp up quickly and utilize the
extra bandwidth between Mega’s bursts, allowing it to obtain 3–4× the throughput against Mega
compared to traditional CCAs like NewReno or Cubic. The x-axis is the time in seconds since the
start of the experiment.

Each row reflects the contentiousness of its respective service: how well incumbent
applications performed when competing with the service labeled in that row as a contender.
In the highly-constrained setting, for example, we can see that the YouTube row highlights
all services (except YouTube itself) in blue with values ≥100, reflecting that most services
perform well when competing against YouTube. On the other hand, each column reflects
the sensitivity of the service. Looking at the YouTube column, we can see that it is entirely
red: most of the time, YouTube performs poorly when it is competing against other services.
We therefore consider YouTube as both a generally sensitive and generally uncontentious
service.

Observation 9: Unfair outcomes are common in bandwidth-contended environments. (Fig 4.2)

Across our heatmaps in both themoderately-constrained setting and the highly-constrained
setting, it is the uncommon case for both incumbent and contender to receive exactly 100%
of their MmF share. In the highly-constrained setting setting, the median ‘losing’ service
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achieved 69% of their MmF share. 73% of losing services achieved 90% or less than their
MmF share, and 22% of losing services achieved 50% or less than their MmF share. In the
moderately-constrained setting, the skew is less but still often unfair: the median ‘losing’
service achieved 86% of its MmF share. Although these numbers are not meant to be rep-
resentative statistics for the Internet as a whole, they suggest that unfair outcomes are com-
mon on the Internet.

Observation 10: The most and least contentious services we measured use variants of the
same underlying CCA; CCA alone cannot account for the differing fairness outcomes.

Since both Mega and YouTube use variants of BBR as their underlying CCA8, one might
expect them to display similar fairness behavior. However, we see exactly the oppo-
site: Mega is one of the most contentious services we evaluate, while YouTube is one
of the least contentious (Fig 4.2). This is best observed in the highly-constrained set-
ting, where both YouTube and Mega are capable of fully utilizing the link. Services
that compete against Mega obtain less than 50% of their fair share on average, while
YouTube allows most competing services to get more than 120% of their fair share.
Mega’s contentiousness is most likely due to its use of multiple flows, while YouTube’s
sensitivity is most likely due to its ABR’s desire for stability and its discrete bitrate
ladder, both of which are application-level characteristics. These results justify our
core argument that fairness testing for the Internet must encapsulate the entire appli-
cation stack, both to capture the behaviour of potential CCA variants in deployment
(e.g. Google Drive uses an updated version of BBR), and because analyzing CCAs alone
would fail to predict the outcomes we observe for BBR-based or NewReno-based services.

Observation 11: Concurrent TCP flows – known to have negative fairness consequences –
are one cause of Mega’s unfairness. Concurrent TCP flows are also used by other services but
with less impact. (Fig 4.3)

Mega uses a custom javascript framework to open up to 5 concurrent BBR flows to
download files. For Mega, this can result in extreme disparities between the ‘winner’
(Mega) and ‘loser’ (any other incumbent). In the most extreme case, a competing One
Drive download is able to obtain only 16% of its fair share in the moderately-constrained
setting (Fig 4.2b).

Netflix and Vimeo also use up to 4 and 2 concurrent flows respectively. Note that the
fact that different video services use different flow counts (YouTube (1), Vimeo (2) and
Netflix (4)) indicates that while the browser typically controls the number of simultaneous
flows a webpage can use, services can implement additional client-side controls to further

8We have confirmed with contacts at Google that YouTube continues to use an older version of BBRv1
(rather than BBRv3), which is what we believe to be true for Mega as well.
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limit this. Fig 4.3 shows how these services using multiple flows impact services that
only use one. In the moderately constrained setting, neither of them are contentious
since they are both application-limited. In the highly-constrained setting, Netflix is more
contentious due to its use of multiple flows but Vimeo is not. We hypothesize that Vimeo’s
ABR algorithm chooses a more conservative bitrate than Netflix in the highly-constrained
setting, reducing its contentiousness.

Observation 12: Application-level scheduling and request patterns can shape fairness out-
comes. (Fig 4.4)

Since Mega uses five BBR flows, one might expect its fairness properties to match that
of five iPerf BBR flows. However, in separate experiments in the moderately-constrained
setting, we find that the two behave very differently. Dropbox achieves only 33% of its
MmF share against five BBR flows but achieves almost 90% of its fair share against Mega –
suggesting that Mega is less contentious than BBR alone. However, NewReno and Cubic
fare much better against five BBR flows (80-90% of fair share) as compared to Mega (22-27%
of fair share) – suggesting that Mega is more contentious than BBR alone.

We believe this odd behavior is most likely due to Mega’s “batching" behaviour; Mega
downloads files in batches of five chunks, with each of its five flows downloading a separate
chunk. If one flow finishes downloading a chunk early, Mega does not start downloading
a new chunk right away; it waits for all of the flows in a batch to finish before starting
another batch. This results in “bursty" traffic patterns, as shown in Fig 4.4. Dropbox
(which uses BBR) is able to ramp up sufficiently in-between bursts (Fig 4.4) to achieve an
almost fair outcome. In contrast, NewReno and Cubic are unable to ramp up significantly
before Mega’s next burst starts. It is also possible that Mega is running a slightly different
version of BBR– one of our later observations is that being a new, still frequently patched
CCA [155], even kernel updates can change BBR’s fairness outcomes.

4.5 Beyond Throughput Fairness
While throughput fairness is the standard metric evaluated by most studies of network

contention [80, 170, 162], there are other important performance metrics that can be
impacted by cross-traffic contention. In this section, we investigate the impact on QoE
metrics in real-time communication (RTC) services (§4.5.1), page load times in webpage
browsing (§4.5.2), as well as metrics such as link utilization and loss for our throughput-
intensive services (§4.5.3).

4.5.1 RTC Services
RTC services typically track a number of metrics that impact user perception. Here,

we examine the impact that contention has on video resolution, frames per second, freezes
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Figure 4.5: The degradation, or lack thereof, in various metrics when Google Meet and Teams
compete against other services. In the moderately-constrained setting, in most cases, both services
perform well in metrics other than latency. Howver, in the highly-constrained setting, many
competing services cause varying degrees of QoE degradation.

per minute, and high-delay packets – metrics which are often incorporated into higher
order ‘QoE’ measures. We define these metrics in Table 4.2; we defer evaluation of higher
order QoE metrics (e.g. VMAF [85], SSIM [159]) to future work.

Observation 13: Differing trade-offs made by applications can lead to different perceived
sensitivity at the user level (Fig.4.5)

In Fig 4.5 we show the resolution, FPS, FPM, and fraction of high delay packets for both
Google Meet and Microsoft Teams, under both the highly-constrained setting and the
moderately-constrained setting. In the highly-constrained setting, Google Meet degrades
in resolution more so than Teams and (not shown) correspondingly in bandwidth attained.
However, Google Meet suffers less degradation in FPS compared to Teams. Also, while
Google Meet tends to show a higher baseline of freezes per minute, it nevertheless suffers
fewer freezes per minute than Teams when exposed to certain competitors such as Netflix.

Hence, from a video quality perspective, Meet can be seen as more sensitive than
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Table 4.2: Quality metrics for real-time communication

Resolution The resolution the video played at for
the majority of the stream, represented
by the height in pixels (e.g. 720p, 480p).

Average
Frames Per
Second (FPS)

Average number of frames rendered per
second. A higher average FPS indicates
smoother video [136].

Average
Freezes Per
Minute (FPM)

The number of times a frame “freezes"
on the user’s screen. Measured using
the WebRTC definition of a freeze [136],
which checks if the frame inter-arrival
time exceeds 𝑚𝑎𝑥 (3 ∗ 𝛿, 𝛿 + 150𝑚𝑠),
where 𝛿 is the average frame inter-
arrival time.

Fraction High
Delay Packets

Fraction of packets that experience
greater than the ITU requirement of a
190ms RTT for RTC [66].

Teams – but from meeting a ‘real time’ bar for communication, Teams can end up being
more sensitive to certain services due to the lower FPS and increased occurrence of freezes.

Observation 14: Services using loss-based CCAs can cause as much as 92% of the packets to
exceed ideal RTT requirements (Fig 4.5g,4.5h).

We find that when competing against loss-based CCAs (and Mega), 40% to 90% of packets
can experience high delay beyond the requirements defined in ITU publications [66]. This
replicates a well-known and old finding – namely, that loss-based CCAs are problematic
for real-time networking – but we find it worth calling out in an era in which many
major providers seem to finally be shifting towards CCAs with lower queue occupancy
demands [107, 52]. We observe that all but one of the BBR based services cause almost
no latency anomalies for our RTC traffic. Nonetheless, our results with Mega reveal that
the deployment of low queue occupancy CCAs (or at least, the deployment of BBR) is
not a panacea for cross-traffic latency inflation: application layer decisions from Mega
lead it to cause just as much latency inflation as services using buffer-filling algorithms.

Observation 15: Layered and complex control loops in on-demand video and real time video
streaming services make predicting or understanding contention challenging.

Not shown in our figures, we also investigated the impact of RTC traffic on our throughput-
intensive services. Surprising us, in the highly-constrained setting, Teams causes Vimeo
to obtain a throughput of 2.5 Mbps, which is almost half of what it gets when competing
against iPerf flows running NewReno or Cubic. We did not expect to see this result because
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Teams is inherently bandwidth-limited to less than half of the bottleneck bandwidth link.
Unfortunately, further investigation would likely require a better understanding of Team’s
rate selection and pacing, as well as Vimeo’s ABR algorithm. Perhaps the root cause has
something to do with pacing, rate selection, or buffer filling. With more components to
analyze – and more of these components under proprietary domain – identifying the root
cause of outcomes under contention is now more complex than ever.

4.5.2 Web Browsing
We now turn to another complex metric, page load time (PLT) for web sites. We

measure PLT as the time it takes for 95% of a page’s default visible region (“above-the-
fold") to load for a user, based on Google’s SpeedIndex technique [139]. The pages are
loaded on a 4K display. In each trial between a webpage and a contender service, we first
start the contender service, and after 30 seconds load the page in a new Google Chrome
instance. We then repeat this page load 10 times, with a gap of 45 seconds between each
webpage load. Each time the page is loaded it is through a new Google Chrome instance
with its cache and cookies wiped. This is so we can better understand the impact competing
traffic has on a fresh page load in a reproducible manner; we would expect cached pages
to perform differently. Each trial is then repeated at least five times, providing a total of at
least 50 data points per service-webpage pair.

Observation 16: Competing traffic can double page load times in the 50 Mbps setting, and
triple it in the 8 Mbps setting, adding additional wait times of up to 4 and 14 seconds respec-
tively in the worst case (Fig 4.6).

We find that competing traffic can increase page load times, especially in the highly-
constrained setting. In the presence of Mega and Netflix, users visiting youtube.com
may have to wait for 21 seconds instead of just 8 seconds (median), a difference of 162%.
The increase in loading time is also clearly correlated with how many images are on the
webpage. Wikipedia, which is mostly text, is only minimally affected by competing traffic.
In contrast, YouTube, which consists of mostly images, sees the greatest increase in load
times.

In the moderately-constrained setting, aside from Netflix which is application-limited
and cannot utilize the full link, BBR has the least impact on page load times. This is likely
because BBR maintains small queues, allowing the bursty nature of webpage traffic to fill
the queue and quickly obtain the bandwidth it needs.

4.5.3 Link Utilization & Loss
We now briefly consider two other performance metrics, returning to our more through-

put intensive applications from the on-demand video and file transfer datasets.
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(b)Moderately-constrained setting
Figure 4.6: Page load times are increased by competing traffic in both bandwidth settings, almost
doubling it in the worst case. The greatest increase is seen with multi-flow services like Mega and
Netflix, and the least by delay-based CCAs like BBR. In the highly-constrained setting, Mega and
Netflix, both contentious, bursty services, cause high variance in page load times.

Figure 4.7: The unfairness YouTube suffers against Dropbox initially increases with the bottleneck
bandwidth, then suddenly becomes fair beyond 70 Mbps.

Observation 17: Application-level behaviors can cause both unfairness and under-utilization.

In most scenarios we see 95% or higher link utilization (a complete heatmap is in the
appendix of the SIGCOMM’24 Prudentia paper [121]). However, in some scenarios, we
observe both unfairness and under-utilization: not only are these services unable to obtain
their fair share, but this lost bandwidth is not utilized by contenders, and is effectively
wasted. In the moderately-constrained setting, we see this with Mega causing NewReno,
Cubic and One Drive to get less than 27% (Fig 4.2b) of their fair share while simultaneously
resulting in less than 85% total link utilization in all cases. We believe this is due to
the previously mentioned interaction of loss-based CCAs with Mega’s bursty traffic (see
Observation 4.4). The sudden burst of traffic causes NewReno and similar loss-based CCAs
to experience loss and back off, but unlike Dropbox, they are unable to recover in time to
utilize the unused bandwidth available between bursts. This is in spite of our buffer size
being 4×BDP, which is traditionally considered a “deep" buffer.

We also see under-utilization in the highly-constrained setting when video services
compete against each other. We suspect this is due to ABR algorithms prioritizing stabil-
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ity over maximal throughput and hence choosing to play a video consistently at lower
quality than potentially having to switch back and forth between higher and lower quality
video [142].

Observation 18: Multi-flow services induce the most loss, while BBR-based services induce
the least, resulting in no loss for single-flow BBR-based services competing with other single-
flow BBR services.

We obtain the loss rate for a service by measuring the fraction of packets of that service
that arrived at the bottleneck queue but were dropped (a complete heatmap is in the
appendix of the SIGCOMM’24 Prudentia paper [121]). When single-flow BBR services
such as Dropbox or Google Drive compete with other single-flow BBR services, they do
not end up filling the queue and as a result experience no loss in both settings. On the
other hand, in the highly-constrained setting, BBR does not prevent Mega from causing
the most loss of any service (8%), reflecting our observation above that multiple BBR flows
can also inflate latency. Aside from Netflix (which induces a loss rate of 4%), most other
service interactions result in loss rates close to or below 1%. In the moderately-constrained
setting, loss rates are even lower – close to 0% in almost all interactions.

4.6 Lessons for Testing
The primary lesson from Prudentia for operators is the importance of testing applica-

tions for their side-effects on competing applications. In this section, we also highlight a
few other aspects of testbed design and methodology which we draw from our experiences.

Observation 19: Buffer sizing significantly influences fairness and utilization outcomes,
underscoring the need to profile the properties of contended links in the wild.

We repeated our experiments with a doubled buffer size. This led to significant changes in
some of our results.

With a larger buffer, we find thatMega competingwith both loss-based CCAs (NewReno
and Cubic) in the moderately-constrained setting no longer results in link under-utilization;
both cases achieve more than 95% link utilization: the queue was now large enough to
absorb bursts from Mega without forcing NewReno and Cubic to experience loss and back
off each time, as seen for NewReno in Fig 4.8. The large queue also allows these CCAs
to have enough packets in the queue to keep throughput high until they recover from a
loss. NewReno and Cubic consequently obtain more than 92% and 97% of their fair share
respectively when competing with Mega, up from the 22% and 27% obtained when using
the original 4×BDP buffer.
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(b) (moderately-constrained setting, 8×BDP (2048 packet) buffer) Doubling the buffer size results in NewReno-
based iPerf obtaining a larger share of the queue when competing with Mega, preventing under-utilization.
Figure 4.8: Switching from a 4×BDP to a 8×BDP buffer results in NewReno-based iPerf obtaining
a larger share of the queue when competing with Mega, preventing under-utilization.

Conversely, NewReno’s MmF share against Cubic drops from 60% to 28% in the highly-
constrained setting when larger queues are used. This is unfortunate but understandable
as Cubic is well-optimized for larger buffers [57]. Larger buffers also increase the queuing
delay experienced by all services when competing against a loss based CCA, which can
negatively affect latency-sensitive services such as RTC.

These findings underscore the need for continued measurement studies (e.g. [37, 79])
so that operators can test their services given appropriate real-world parameters.

Observation 20: Contentiousness can have a non-monotonic relationship with increasing
bandwidth availability. 9 (Fig 4.7)

We performed all-pairs experiments at a range of bandwidths between 8Mbps and 100Mbps.
Overall, we did observe a general trend of fairness improving with higher bandwidths.
However, this was not always the case and in some scenarios we even observed fairness
degrade with increased bandwidth. For example, we find that as we increase the bottleneck
bandwidth from 8 Mbps to 50 Mbps, the MmF share acquired by YouTube from Dropbox
actually decreases (Fig 4.7). Even more surprisingly, when we go from 30 Mbps to 50 Mbps,
the raw throughput obtained by YouTube itself decreases. This means that YouTube plays

9This observation is based on experiments from the 2022 period referred to in §4.3.2.
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(Linux 4.15) increased between our measurements in 2022 and 2023. This coincided with BBRv3 being
deployed to Google Drive, and QUIC-stack tuning for YouTube.
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(b) Changes to BBR introduced in kernel updates between Linux 4.15 and Linux 5.15 made it less contentious
against Dropbox and Google Drive, but more contentious against YouTube.
Figure 4.9: Changes to services, and even kernel updates, can change fairness properties, necessi-
tating the use of a live watchdog that constantly monitors services.

at a lower quality when competing against Dropbox at 50 Mbps compared to 30 Mbps.
These results suggest that testing for equitable services will persist as necessary even as
broadband capacities increase with time.

Observation 21: Incremental changes in CCA design can lead to noticeable changes in con-
tentiousness. (Fig 4.9)

Through Prudentia’s live experiments, we were able to detect changes in Google Drive
and YouTube’s deployments between 2022 and 2023. We found that compared to 2022,
Google Drive and YouTube performed 46% and 172% better in 2023 against iPerf-based
BBR (see Fig 4.9a). Google engineers confirmed that this coincided with the deployment of
BBRv3 to Google Drive [65] and parameter tuning in YouTube’s QUIC stack.

We find similar changes in contentiousness when comparing BBR implementations in
different versions of the Linux kernel – the version of BBR available in Linux 5.15 causes
different fairness outcomes than that found in Linux 4.15 (see Fig 4.9b) – despite both
of these versions supposedly representing ‘BBRv1’. This serves as a word of caution for
service owners – when using an actively developed CCA like BBR, it is possible that an
innocent kernel upgrade might actually change the fairness properties of services running
on it.
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Table 4.3: Unfairness and fairness are not necessarily transitive. Service 𝛼 may cause 𝛽 to get an
unfair (or fair) share, and 𝛽 may cause 𝛾 to get an unfair (or fair) share, but this does not guarantee
that 𝛼 causes unfairness (or fairness) to 𝛾 . The lack of transitivity exemplifies the difficulty in
classifying most services as generally contentious or sensitive.

𝛼 𝛽 𝛾
BW

(Mbps)
MmF Obtained (%)

𝛽 (vs 𝛼) 𝛾 (vs 𝛽) 𝛾 (vs 𝛼)
Mega NReno Vimeo 50 22% 58% 104%
Cubic Dbox NReno 8 99% 106% 60%
BBR 1Drive YT 50 108% 106% 58%

These findings underscore the need for live and continuous testing to keep up with
the constant evolution of services and their underlying CCAs.

Observation 22: Many of the most harmful outcomes are anomalous: they are not the result
of one service being generally sensitive or contentious, but instead, the result of idiosyncratic
interactions between the two services under test. (Table 4.3)

While some services can be classified as generally “contentious" (e.g Mega) or generally
“sensitive" (e.g. YouTube) with a tendency to grab or yield resources against all competing
applications, we find that most services do not clearly fall into either of these categories.
For example, we can see that Cubic lets most incumbent services obtain close to their
fair share of bandwidth when competing with them. However, when competing with
NewReno, the latter receives only 21% and 60% of its fair share of throughput in the
moderately-constrained setting and highly-constrained setting, respectively (Fig 4.2). This
highlights the need to evaluate each contender against a wide variety of incumbents.
Simply extrapolating a service’s fairness from its interactions against a few incumbents
can lead to erroneous conclusions.

This is further reinforced by our finding that unfair outcomes do not follow a transitive
structure. A service 𝛼 that is unfair to service 𝛽 need not be unfair to another service 𝛾 ,
even if 𝛽 is unfair to 𝛾 . Table 4.3 shows a few examples of this lack of transitivity, extracted
from the set of results in Fig 4.2.

The above findings give us valuable guidance about testing new Internet services. For
example, we should reject claims that a service is ‘safe’ to deploy alongside video streaming
just because an experiment shows that the service is safe along a particular instance of
video streaming.

Observation 23: Service instability can lead to sometimes-harmful sometimes-not outcomes
between the same services. (Fig 4.10)

We observed that certain services exhibit a wider variance in the throughput outcomes
obtained when competing with other services, and do not meet the +/- 0.5 Mbps and +/-
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Figure 4.10: Each data point represents the throughput obtained by the service in bold in a single
trial. Certain services such as One Drive show unstable outcomes when interacting with other
services, while others are relatively stable.

1.5 Mbps 95% confidence interval range thresholds we place on the highly-constrained
setting and moderately-constrained setting respectively. We provide an example of what
this instability looks like in Fig 4.10. We observe this most consistently with Vimeo in the
highly-constrained setting and One Drive in both the highly-constrained and moderately-
constrained settings. We observe similar variance in outcomes with various RTC metrics
in §4.5.1. Operators should be concerned about services which are ‘sometimes’ overly
contentious, and run multiple trials to capture these issues.

4.7 Recommendations
Given our findings above, we now turn to making recommendations for future testing

of deployed Internet services by both service owners and the research community at large.
Application developers need to test for fairness, not just CCA developers: While
congestion control developers typically do test their services for fairness, application
developers do not under the assumption that CCA developers have ‘taken care’ of the
issue. Our findings show that application-layer decisions – such as ABR algorithms, the
use of multiple connections, or unexpected browser interactions – can lead to different
fairness outcomes than what one would expect given the underlying CCA. To this end, we
allow the submission of custom URLs for testing on the Prudentia website. More details
can be found at https://internetfairness.net/testing.
Pairwise testing – in a wide range of settings – is necessary: A surprising result from
our findings is that there are no “bellweather” Internet services that can predict the general
fairness properties of a service. In fact, many fairness outcomes were anomalous and
unpredictable. This combined with our finding that buffer size and bottleneck bandwidth
can affect fairness outcomes highlights the needs for thorough pair-wise fairness testing
of a large set of popular Internet services in a wide variety of network settings.
Services should be tested continuously: Many of the fairness properties we saw
change with small shifts in design. For example, we observed that QUIC parameter tuning
for YouTube, incremental updates to BBR in the Linux kernel, and the deployment of
BBRv3 to Google Drive changed their fairness properties. Other small shifts, such as
changes in application behavior, may also influence service outcomes. Hence, service

https://internetfairness.net/testing
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testing is not a ‘one and done’ endeavor.
Involve service owners in root-causing unfairness: The proprietary nature of CCAs
and ABR algorithms today limits third-party visibility into the precise causes of unfairness,
and consequently, the fixes for it. In conversations with various service owners, we found
that unfairness was usually an unintended and undesirable outcome, and one they are
keen to rectify. It is therefore in the mutual interest of both the research community and
service owners to work together to gain a better understanding of the underlying causes
that result in specific instances of unfairness. Prudentia aids this effort by identifying
and surfacing these instances for further investigation by both parties. To this end, the
Prudentia website makes potentially useful data like bottleneck queue logs and client
PCAPs for every experiment publicly accessible.
Should browsers play an active role in fairness?: Given that the most extreme cases
of unfairness we observe are due to the use of multiple connections by the browser, we
wonder if there are changes to be made to browsers themselves to enable fairer outcomes.

4.8 Other Related Work
There are two broad types of related work 1) fairness evaluations of CCAs [11, 29, 38,

156] and 2) frameworks for testing CCAs and deployed services [170, 90, 80].
Several studies have conducted experiments to evaluate the co-existence of CCAs. There

is the evaluations done in proposals for new CCAs to legacy CCAs where the deployability
has been justified through the lens of TCP friendliness using infinitely backlogged flows [11,
29, 38]. Turkovic et al. [156] did a detailed study of CCA interactions by first grouping
them into loss-based, delay-based, and hybrid groups and then studying the interactions
among them with bulk traffic. These studies have largely ignored and overlooked the other
traffic patterns like video streaming when evaluating CCAs. As we’ve shown in this work,
the workload used to evaluate CCAs impacts the fairness outcomes.

Several studies have built frameworks for studying the performance of CCAs and
services in a variety of network settings. Pantheon [170] is a framework built to test
CCAs under a variety of network settings, however this framework seeks to compare
the performance of CCAs in isolation; it does not test the interactions between CCAs.
MacMillan et al. [90] aimed at studying three modern video conferencing applications
(VCAs): Zoom, Google Meet, and Microsoft Teams to understand how they perform under
different network conditions. Apart from that, they have also studied how VCAs perform
in the presence of other applications like iperf3, YouTube, and Netflix. Kunze et al. [80]
conducted a study of how different content providers like Akamai interact with other
content providers as out-of-the-box CCAs on Linux servers. We distinguish ourselves from
this prior work by providing a study of broader scope over different application types,
including video services. Our testbed interacts with external services using a scripted
Google Chrome instance, and therefore should be easily extendable to other services which
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can be accessed through the browser.
In addition, some prior work has shown that CCA implementations differ from specifi-

cations, including silent updates to algorithms like BBR in deployment [107, 105]. This
motivates our conjecture that services need to be evaluated periodically and constantly.

4.9 Future Work
Going forward, we would like to scale Prudentia to test more services, networks

settings, and vantage points.
Services: To keep up with an evolving Internet, Prudentia is designed to allow the easy
addition of new browser-based services to its testbed. Drawing inspiration from Pan-
theon[170], we allow public PRs to our Github repository that automate the consumption
of new services. This is in addition to the existing capability Prudentia provides for service
owners to submit URLs for testing on its website.
Beyond pairwise testing: Past work has shown that a single BBRv1 flow can take up to
half the link capacity even when competing against up to a thousand NewReno and Cubic
flows [122, 162]. This behavior can be seen even in Prudentia’s results – when BBR-based
services compete against Netflix, which uses multiple NewReno flows, single-flow BBR
services get close to half the link capacity in spite of being at a flow-count disadvantage.
This raises the question of whether services that compete fairly against one other service
would continue to be fair when competing against multiple services.
Network settings: Past work has shown that fairness outcomes can depend on network
settings such as queue size, RTT, and background packet loss. It would be interesting to
examine how the fairness outcomes observed by Prudentia change when these parameters
are varied. For example, background packet loss would likely reduce the throughput
obtained by services using loss-based CCAs such as Netflix and One Drive. Similarly,
past work has shown that BBR’s fairness when competing against loss-based CCAs can
vary based on the queue size [29], and that NewReno suffers from poor performance
in networks with high RTTs [97]. Testing these varied network settings would require
modifying Prudentia to run multiple tests in parallel to ensure they all finish within a
feasible time-frame.
Vantage points: To limit confounding effects from Prudentia’s presence at a single
vantage point, and to help us better understand fairness outcomes, we normalize the RTT
of all competing services to 50ms. However, it is possible that in the real world services
with widespread CDN deploymets will consistently experience lower RTTs than other
services. Therefore it would be interesting to deploy Prudentia at various locations over the
world without RTT normalization, and examine how that changes fairness outcomes. We
hope by making Prudentia’s source code publicly available, we can aid efforts in deploying
Prudentia globally.
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4.10 Chapter Summary
In this work we presented Prudentia, a watchdog for Internet fairness. Using Prudentia,

we showed that to accurately predict service-level performance outcomes, it is important
to test not just CCAs but also the services that use them.

Some of Prudentia’s findings are altogether novel: for example, we are the first we
know of to characterize javascript file transfer applications like Mega, and our tests of
the interactions between RTC and On-Demand Video are counter-intuitive in that they
result in low latency for both players. However, other findings of Prudentia are not novel –
and perhaps should not exist in 2024. The networking community has known for decades
that using multiple flows can cause negative outcomes (see Observation 11) and that
buffer-filling algorithms are bad for real-time communication (see Observation 14). Here,
Prudentia serves as a reminder to operators and the community that these design choices
are nevertheless deployed on the Internet in large-scale, popular services.

Perhaps the most surprising aspect of operating Prudentia has been how many results
are anomalous or hard to diagnose. Many of our expectations – e.g., that more bandwidth
would always reduce contention, or that CCAs are the ultimate driver of fairness outcomes
– turned out to be entirely wrong. Given the proprietary nature of most services, it is
important for the research community to work hand-in-hand with servie owners to better
understand and rectify the causes of unfairness.

Prudentia also serves to highlight the importance of emulated testbeds even when A/B
testing is available. Most of the findings in this chapter would be impossible to obtain
using just A/B tests. One would never know whether poor throughput in an A/B test was
due to competition with a contentious service, or simple low path capacity. It is scenarios
like this where the controlled and observable nature of emulated testbeds, augmented with
the capability to test real services, serves to enhance the testing process, as opposed to
hold it back.

Prudentia runs continuously and is available online at
http://internetfairness.net.

http://internetfairness.net


Chapter 5

Network Conditions Experienced by
Users of a Large Internet Service

“If you know the enemy and know yourself, you
need not fear the result of a hundred battles.”

—Sun Tzu, The Art of War

5.1 Chapter Overview
Developers of novel congestion control algorithms (CCAs) and application-level mech-

anisms such as Adaptive Bitrate Algorithms (ABRs) include countless assumptions about
their deployment environment both in their process of design and testing. Testbeds [121,
60, 113, 170] carefully emulate what are believed to be “real world" conditions, allowing
developers to explore the behavior of their CCAs under parameterized throughput and
latency conditions, but also under complex network settings such as the presence of traffic
filters or ACK-aggregating hardware [170]. Ideally, testing environments should emulate
every detail of the messiness that exists between service and client in the real world.

Unfortunately, the network edge—from service infrastructure, typically hosted out of a
CDN or off-net, to eyeball infrastructure, passing through cellular or residential broadband
infrastructure—is a continually evolving and convolutedly managed datapath. Hence,
this ideal is almost certainly impossible: different Internet Service Providers (ISPs), of
which there are tens of thousands, have diverse policies (e.g., pacers, buffers, filters, and
proxies) and these policies are dynamic and proprietary. Together, the scale, dynamism,
and secretiveness about real networks make perfect replication an untenable proposition.

As a result, one approach to dealing with this complexity would be avoiding emulated or
simulated network testing altogether, and instead relying exclusively on A/B testing [165].
As noted previously, A/B testing is a common industry-standard [138, 137] for verifying

49
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the performance of CCAs and application-level changes in deployment, and to a lesser
extent in academia through platforms such as Puffer [169]. However, A/B tests provide a
longer turn-around time as they often require careful scrutiny before deployment, and
risk negative performance outcomes for real users. While A/B tests can provide the final
verdict about whether a new or updated CCA or ABR improves performance for users,
they are of limited utility in understanding why a change might have caused a performance
regression, as the path properties that caused this behavior are still unknown. As a result,
testing in realistic conditions in emulated or simulated network testbeds is still critical to
the development process of a CCA or application-level network algorithm.

As a result, the state of the art is for researchers, both industrial and academic, to per-
form opaque-box, end-to-end measurements of Internet connections and to infer individual
“path properties” to be emulated in the network. Services like M-Lab’s NDT, CloudFlare
Radar, Ookla SpeedTest, Netflix’s Fast.com, and RIPE Atlas offer invaluable measurements
of baseline RTTs, loss rates, and queuing delays; these observed measurements are often
then used by developers and testers of CCA services to configure their testbed or emulation
environment.

However, there are few tools to observe the hyperscaler and CDN edge, in spite of
almost two-thirds of Internet traffic today being served over these paths [76, 7]. Speed tests
such as those from Ookla and M-Lab do not necessarily reflect the CDN infrastructure that
is used to serve Internet traffic. While some speed tests are hosted on CDNs used to serve
real Internet traffic, like Cloudflare Radar and Fast.com, they still need to be actively run by
users. This leads to potential biases towards more tech-savvy users who know to run speed
tests, who might also run them more often when their Internet connection is experiencing
difficulties. They might also not run it on the device that is actually consuming the Internet
service—a buffering video on a user’s television might cause them to run the test on their
smartphone, instead of the television itself, as evidenced by device statistics reported in
past work [118].

In this work 1 we aim to augment the community’s understanding of path properties
at the far edge (from a hyperscaler content distribution network to individual clients)
by offering novel findings from over 2.4 million user sessions to Netflix, a large-scale
on-demand video streaming service. Netflix serves a diverse user base worldwide, with
sessions in more than a hundred countries, served from almost 20,000 servers spread
across 6,000 distinct locations, and is consumed over a variety of devices, including tele-
visions, laptops and smartphones, providing a rich and varied dataset. By estimating
path properties passively from normal user traffic, we avoid the biases introduced by tests
users need to actively conduct, and are able to report the path properties experienced by
users at the time they are actually consuming an Internet service. This diversity offers a

1This work is currently under submission, and text and images from the submitted work may be used
verbatim in this chapter.
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broad and representative view of path properties. While this approach does not entirely
eliminate demographic bias—Netflix’s users may not fully represent the entire Internet
population, and its CDN infrastructure and client device distribution might differ from
other large services—it provides an important perspective that enriches our understanding
of path properties beyond speed tests. We hope our contribution is a step towards other
large Internet service operators sharing their own insights, leading to a more complete
understanding of the path properties faced by Internet users today.

Over the course of this chapter, we measure various path properties from Netflix
user traffic, and compare the results with those from other measurement studies and
CCA evaluations. Compared to typical CCA evaluations and testbeds, Netflix experiences
lower Base RTTs, higher peak observed queuing delays relative to the Base RTT, greater
ACK aggregation, and TCP proxies. Compared to other measurement studies, Netflix
experiences lower queuing delays, and Base RTT that is higher than those from M-Lab
tests, but similar to those from Ookla and Measuring Broadband America [44]. Netflix also
encounters TCP proxies in 20% of its cellular sessions. ACK aggregation, a path property
that is increasingly important due to its interference with packet-train based throughput
measurement techniques employed by newer CCAs like BBR [10, 30], is surprisingly
omitted in most measurement studies and CCA evaluations. We discuss these results in
more detail in §5.4 through §5.6.

In the rest of this chapter, we explain the related work in §5.1, describe our data sources
and their limitations in §5.3, and elaborate on our findings on various path properties in
§5.4 through §5.6. We conclude by summarizing our findings and describing directions for
future work in §5.9.
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5.2 Inferring Path Properties: Related Work
The networking community employs two main methods to estimate path properties:

active and passive measurements. Active measurements send test traffic to probe the
network, while passive measurements analyze existing traffic. Each method has strengths
and limitations.

Active speed tests are particularly useful for individual users seeking to understand
the capacity of their own network link. They provide immediate insights into available
bandwidth and help diagnose connectivity issues. Among the most widely used tools are
Ookla’s Speedtest [116], M-Lab’s Network Diagnostic Tool (NDT) [49], fast.com [110], and
Cloudflare’s Radar [36], which run speed tests and report downlink and uplink speeds
as well as RTTs. Netalyzr tested for connectivity issues and speed, offering a broader
diagnostic perspective [79]. Numerous studies have examined the probing methods and
accuracy of speed tests, as well as compared different speed test methodologies [15, 91,
118]. The Measuring Broadband America project, sponsored by the FCC, measures directly
from home routers and conducts a more diverse set of measurements, including web and
video downloads, and RTT under load [44].

While some these datasets measure a magnitude lower number of client locations
than the hundreds of thousands used in this chapter, they have driven numerous analyses,
providing valuable insights into network performance trends and informing our under-
standing of broadband coverage and performance [145, 115, 118, 79]. They have revealed,
for example, that users on wireless links often do not achieve the subscription speeds they
pay their ISPs for [118], that there is occasional congestion in the core of the Internet [37],
and have contributed to measuring latency variation on the internet [62].

We present a comparison of the path property values experienced by Netflix sessions
to those from these large measurement datasets in the sections dedicated to the respective
path properties (§5.4, §5.5, §5.6).

Given the limitations of active measurements, this work adopts a complementary
passive approach. Previous studies have developed tools to facilitate the passive obser-
vation of TCP traffic, enabling the inference of various path properties. Some of these
tools instrument the TCP stack on the server [96, 123, 143], while others reconstruct
network behavior from packet traces traversing the network [119, 101, 120]. Utilizing
these passive techniques, researchers can perform root cause analysis of factors limiting
TCP throughput [135, 174], detect TCP proxies in cellular networks [50], and estimate
path capacity using packet inter-arrival times [42].

While passive measurements offer the advantage of capturing path properties as
users actively consume an Internet service, they are not without limitations. Our study
is influenced by our vantage point, specifically, Netflix infrastructure and users. First,
Netflix’s edge CDN is often in close proximity to users, which can result in lower base RTTs
and fewer potential bottlenecks. Second, we only observe video streaming traffic, which
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affects how we interpret certain path property estimates. For example, the peak observed
queuing delay might be lower than the maximum possible queuing delay on the path, as
video streaming does not necessarily saturate the link like a speed test would [138]. We
address these caveats when discussing each path property. Additionally, our measurement
demographic is limited to Netflix users, whose distribution may differ from the general
Internet user base. To enhance the relevance of our findings, we segment the data by
device type, network type (wired, wireless, cellular, where available), and country where
necessary. This segmentation allows services with specific user profiles, such as those
primarily serving smartphone users, to apply the most pertinent portions of our results.

5.3 Dataset
Our passive measurements originate from video on-demand streaming sessions at

Netflix, a global video streaming provider with hundreds of millions of users. A session
corresponds to an uninterrupted viewing of a specific video title by the user. Most viewing
hours occur on “Fixed Entertainment Devices" (FEDs) such as TVs and gaming consoles,
followed by laptops/desktops and smartphones. Content is delivered using TCP with a
variant of NewReno, a loss-based CCA, through an extensive CDN that aims to deliver
traffic as close to users as possible.

Where necessary, we contextualize the path properties experienced by our sessions
using the following per-session metadata:

1. Device Type: We categorize devices into three types: Fixed Entertainment Devices
(FEDs), such as smart TVs, set-top boxes, and gaming consoles; PCs, which include
laptops and desktops accessing Netflix through a browser-based client; and Mobile
devices, encompassing smartphones and tablets.

2. Client Network Type: The Netflix client logs the network type the device is connected
to at the start of each session, with some exceptions. For FEDs, we can identify
whether the connection is wired or wireless, such as Wi-Fi. Mobile devices are
typically connected via wireless networks, and we can distinguish between Wi-Fi
and cellular connections. However, for PCs, we lack network type information due
to the limitations of the browser-based client.

3. ISP Type: For some sessions, we can identify the Internet Service Provider (ISP) type,
distinguishing between cable, fiber (US only), and cellular ISPs. This allows us to
examine differences in path properties across ISP types.

4. Country: Netflix geolocates customers by (1) extracting the public IP address they
stream from and (2) using multiple commercially available databases to geolocate
their IP address. We use regional metadata to highlight differences in certain path
properties across various countries.
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For all path properties we rely on per-packet data enhanced with the TCP stack’s
internal state and measurements [143] that Netflix CDN servers log for 0.01% randomly
sampled streaming sessions. Since a single session may stream from multiple CDN nodes,
for simplicity, we consider only the traffic to the CDN node that transferred the most data
for each session. To ensure sufficient data for our estimation techniques, we limit our
analysis to sessions lasting at least two minutes. This leaves us with 2.4 million unique
sessions, from more than a hundred different countries and hundreds of thousands of
distinct devices, that we use in our analysis, sampled over the entirety of September 2024.

Ethical considerations. We follow strict ethical guidelines to ensure user privacy and
data protection. Netflix collects data solely to enhance user experience. Our analysis
is limited to network property metrics and excludes sensitive personal information; for
instance, our dataset does not include details about the content beingwatched. Our research
does not alter or interfere with users’ streaming experiences; we passively observe network
performance as it naturally occurs. Sessions are annotated with metadata upon collection,
retaining only the high-level information necessary for analysis. This approach respects
user privacy while providing valuable insights into network conditions.
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Figure 5.1: The CDF of Base RTTs seen by sessions from various device/home network combina-
tions. Wired sessions see lower RTTs than their Wi-fi counterparts, almost 30% lower at the 50th
percentile, while cellular sees the highest RTTs, more than three times those of wired sessions.

5.4 Base RTT
Base RTT is the minimum possible round-trip time over a given path when there is

no queuing or congestion, and is the sum of the forward and reverse propagation and
transmission delays on the path. Emulating a realistic Base RTT is critical for congestion
control testing, as it impacts fairness between CCAs [26], time to convergence [35],
CCA performance due to shorter or longer feedback loops [97], and buffer sizing [6]. It
is therefore one of the most commonly used parameters when designing emulated or
simulated testbeds for CCA evaluation.

Estimation Technique: We estimate the Base RTT of a session as the minimum of all
the RTT samples measured by Netflix TCP connections in that session. The TCP stack
generates these samples for every ACK received by taking the difference between the time
the ACK was received and the corresponding packet that is being acknowledged was sent.
When a cumulative ACK acknowledges more than one packet, the stack uses the latest
send time of the data being acknowledged. This is a common technique used in other
measurement datasets [86, 88, 89].

5.4.1 Base RTT by Client Network Type
The CDF of RTTs experienced by various network types is shown in Fig 5.1. As

expected, wired devices experience lower RTTs (median: 5ms) than those on Wi-Fi links
(median: 7ms), with cellular links having the highest base RTTs (median: 18ms). The 90th
percentile of Base RTTs is 30ms for wired and Wi-Fi links and just 50ms for cellular links.
A small fraction of cellular sessions experience sub-ms RTTs, which we believe are largely
due to TCP proxies, and discussed later in §5.4.4.

To put our results in perspective, we compare the Base RTTs obtained by Netflix
sessions with those from popular measurement studies. For example, Ookla’s Speedtest
Global Index reports median RTTs of 9ms for fixed broadband connections and 25ms for
cellular connections [140]. The Measuring Broadband America Report [44] finds that the
median Base RTTs of Cable ISPs is typically between 12ms and 22ms while that of Fiber
ISPs is between 7ms and 13ms. The median RTTs reported from both these sources are
similar to but higher than the median Base RTT of 7ms experienced by non-cellular Netflix
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sessions. This discrepancy is likely due to Netflix’s CDN deployment being closer to users
than the vantage points used by either of these measurement tools. We analyzed M-Lab
(NDT) data for the same time period as the Netflix sessions and found the median Base
RTT to be 23ms, higher than Netflix, Speedtest and Measuring Broadband America. We
were unable to distinguish between cellular and non-cellular sessions in the data, but this
is still high given that the median cellular RTT from both Ookla’s Speedtest and Netflix
sessions is 22ms and 18ms respectively. The 90th percentile of Base RTT in NDT tests
corresponds to 82ms, which is greater than the 90th percentile of Netflix’s non-cellular
sessions (<30ms) and even cellular sessions (approx. 50ms). This is likely because M-Lab’s
test servers do not have the wide CDN coverage that Netflix does, with its test servers
being located primarily at Tier-1 IXPs, and some virtual servers in cloud networks such
as Google Cloud [87]. On the other hand, Ookla and Measuring Broadband American
both make use of test servers that are sometimes embedded within the user’s ISP, similar
to Netflix. Overall, these results show that while external measurement sources such as
speed tests present a useful perspective into the RTT a user is likely to experience, the
nature of the vantage points employed can cause the observed RTT to differ from the RTT
a user experiences when they actually consume a service such as Netflix.

While Netflix sessions, Ookla Speedtest and the Measuring Broadband America report
show that sub 10-ms Base RTTs account for almost 50% or more of sessions/tests, existing
work evaluating CCAs in WAN settings [122, 121, 29, 162] use RTTs as high as 100ms to
200ms. The lowest Base RTT used in past work is typically 10ms, which is still greater
than the Base RTT reported by more than half of Netflix sessions or Ookla’s Broadband
Speedtest results. While the difference between 5ms and 10ms can seem low in absolute
terms, in relative terms it is a doubling in latency, which would halve the rate at which
RTT-based CCAs like NewReno grow their congestion window, and consequently, their
sending rate.

We now discuss specific examples of RTT ranges used by past evaluations: work
evaluating how well various CCAs perform in the presence of AQMs [45] used RTTs
between 10ms and 100ms. Pantheon [170] is a state-of-the-art CCA testbed which was
used by newer CCAs like Copa [11], Vivace [38], Aurora [71] and TCP-TACK [83] to
evaluate their performance. More than 80% of the emulated settings offered by Pantheon
use Base RTTs greater than 50ms. BBRv1 [29] was tested primarily in settings with a
base RTT of 40ms, with subsequent work that attempted to model BBR [162, 108] using
40ms or between 20ms and 60ms for most of their evaluations. Work that examined
congestion control behavior at scale [122] used RTT settings ranging from 20ms to 200ms.
The trend of not testing at sub-10ms RTTs continues in recent work—an analysis of the
fairness properties of BBRv3 [173] uses a Base RTT of 100ms in almost all their evaluations,
an Internet fairness watchdog that evaluates inter-service fairness outcomes [121] uses
an RTT of 50ms, and a recently proposed improvement to TCP Slow Start to better aid
short-lived flows tests only RTTs between 25ms and 200ms [8].



Base RTT 57

0 20 40 60 80 100 120 140 160 180 200

0

0.25

0.5

0.75

1

CDN Node Type

Overall

Transit

Peered

Embedded

Base RTT (ms)

C
D

F
Figure 5.2: Sessions served by CDN Nodes deployed within an ISP ("Embedded") or at an Internet
Exchange location ("Peered") experience significantly lower RTTs than those embedded in a Transit
ISP. Embedded and Peered CDN nodes account for more than 99% of Netflix’s sessions. This shows
that services that use edge-adjacent CDN nodes similar to Netflix can likely test in settings under
50ms, while those using Transit ISPs might need to test RTTs as high as 200ms.

We find that Netflix should be testing its service in much lower RTTs than used in most
CCA and Internet service evaluations: testing RTTs less than 50ms would cover more than
99% of wired and Wi-Fi sessions, and 90% of cellular sessions. Specifically, Netflix requires
increased testing in sub-10ms Base RTT ranges, as that is what is experienced more than
50% of Netflix sessions. This is not without consequence—NewReno, the CCA used by
Netflix, is typically dismissed as a CCA to be used in WANs due to its congestion window
(CWND) growth rate, and consequently its throughput, being inversely proportional to
the RTT of the link [97]. This can cause it to under-utilize high bandwidth, high latency
links, which is one of the reasons it was replaced by Cubic [57] as the default CCA on
Linux. However, the lower RTTs that Netflix experiences in practice make NewReno
more than capable of serving its traffic, a conclusion one would not arrive at if it were
tested in the 100-200ms ranges that many modern CCA evaluations use. As a concrete
example, consider a path with a capacity of 100 Mbps. A NewReno flow in congestion
avoidance would take around 80 seconds to grow its CWND from 1 MSS to the 1 BDP
(Bandwidth-Delay Product) required to fully utilize the link if the Base RTT was 100ms,
but just 0.8 seconds if the Base RTT were 10ms.2 This highlights how testing a CCA in
conditions it is more likely to encounter can lead to drastically different and more realistic
conclusions about the performance of the CCA in practice.

It is possible that other services with similarly extensive CDNs and largely static
content, including video streaming services which account for more than 60% of Internet
traffic [124], should also be testing in such low RTTs. On the other hand, services that serve
more real-time content might still need to test wider RTT ranges—for example, a video
conferencing service that often connects users across continents will likely experience
RTTs greater than 200ms.

2The 100x increase from 0.8s to 80s when the Base RTT increases by 10x is due to a combnation of: 1.
The CWND to fully utilize the link (1 BDP) grows by 10x, 2. NewReno increases it CWND by 1 MSS per
RTT, and as a result the rate at which NewReno increases its CWND decreases by 10x.
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Figure 5.3: The CDF of countries with median session Base RTT less than various values. Almost
80% of the 108 countries shown here have their median Base RTT less than 10ms, showing that the
low RTTs observed by Netflix are not limited to a specific few countries where Netflix’s CDN is
especially expansive.

5.4.2 Base RTT by CDN Node Type
We further quantify the impact a more edge-adjacent CDN can have on the RTTs

experienced by Netflix sessions by comparing RTTs for node types with varying degrees
of edge-adjacency. Not all Netflix CDN nodes are built equal—some are “embedded" within
user-facing ISP networks, others hosted at peering locations such as Internet Exchange
(IX) points, and others rely on Transit ISPs [67] for Internet access. We refer to these
different types as embedded, peered and transit nodes respectively, with embedded
nodes typically being closest to users and transit nodes being the furthest. Many large
service operators have similar hierarchies in their CDN infrastructure [53, 63, 112]. We
hope that by separating the RTTs experienced by Netflix sessions by various CDN node
types, we can increase the generalizability of these results to service operators with varying
levels of edge-adjacency in their CDNs.

We show the RTTs experienced by each of these types in Fig 5.2. As one might expect,
embedded nodes show lower RTTs in general compared to peered or transit nodes. For
a service with embedded nodes similar to Netflix, testing between 0-20ms would cover
more than 90% of wired and Wi-Fi connected sessions. If the service uses predominantly
peered CDNs, on the other hand, it would be necessary to test a larger range of 0-50ms for
the same amount of coverage.

CDN nodes connected by a transit ISP, on the other hand, experience a wide range
of RTTs, with almost a quarter of connections exceeding 100ms RTT, and going as high
as 200ms. As a result, services that rely on transit ISP-connected CDNs will likely have
to test in larger RTT ranges. This puts into perspective the latency benefits of using
more edge-adjacent peered or embedded CDN nodes. Netflix’s CDN nodes are primarily
embedded or peered, with transit nodes accounting for a minuscule fraction of sessions (<
0.5%).

5.4.3 Base RTT by Country
We investigate the possibility that the low Base RTTs Netflix experiences is due to a

majority of sessions arising from a small set of countries where it might have exceptionally
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edge-adjacent CDN infrastructure. In Fig 5.3, we show that for almost 80% of the 108
countries that have at least 500 Netflix sessions in our dataset,3 the median RTT is less
than 10ms. Clearly, while specific countries might experience higher RTTs, more than half
the users in 80% of the countries that Netflix serves experience sub-10ms Base RTTs. This
shows that the nature of Netflix’s CDN infrastructure is not limited to a few countries and
is more generalizable.

5.4.4 Low RTT Cellular Sessions: TCP Proxies
As seen in Fig 5.1, a number of cellular sessions have very low (<5ms) RTTs. We

confirmed that these low RTT values are not the result of one-off measurement anomalies
within a session as they appear even when using the 1st-percentile of RTTs as opposed
to the minimum. This was surprising, since cellular connections are typically expected
to have higher RTTs, as evidenced by the higher percentiles of the cellular RTT CDF.
While it is possible that there exist extremely good cellular connections that offer such
low latencies, another possibility is that they are the product of Connection-Terminating
TCP proxies deployed in cellular networks [50]. Such TCP proxies are known to improve
TCP performance for users [43, 68, 128], and actively deployed by cellular carriers [50].
In such a case, the server measures the RTT from the server to the TCP proxy, which we
assume goes over fully wired links, instead of the RTT to the client device, and therefore
does not observe the higher RTTs that are commonly expected to accompany cellular
networks [140, 81]. This theory is supported by the jump in RTTs in the CDF: the 10th
percentile corresponds to 3ms RTT, but the 15th percentile immediately jumps to 15ms,
suggesting a drastic difference in network conditions between the sub-5ms and higher
RTT sessions.

We further strengthen this hypothesis with a TCP receive window (RWND) based TCP
proxy detection technique inspired by past work [50], which identifies the majority of low
RTT cellular sessions as using TCP proxies. The technique is based on the insight that, in
the absence of a TCP proxy, devices typically advertise a consistent, device-specific initial
RWND when they open a connection [150, 50]. However, a proxy will this change this
RWND to that of the proxy’s before the packet reaches the server. Therefore, a discrepancy
between the initial RWND seen by the server for a session on a given device and the
“typical" RWND expected for that device can indicate the presence of a TCP proxy. We
provide a detailed description and evaluation of the technique in Appendix 5.8, but it can
be briefly summarized as follows: sessions which both show an RWND discrepancy and
whose origin (client-side) Autonomous System (AS) has at least 10% of sessions with an
RWND discrepancy are tagged as proxied.

As seen in Fig 5.4, the proxy detection technique is effective in separating low-RTT

3We placed a session count threshold to avoid drawing conclusion from countries with insufficient data
points.
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Figure 5.4: The fraction of cellular sessions with various Base RTTs that are categorized as using
TCP proxies or not. More than 75% of sessions with less than 5ms Base RTT are classified as using
TCP proxies, lending credence to both the TCP proxy detection technique, and the hypothesis the
low RTT cellular session we observe are due to TCP proxies.

sessions from higher RTT sessions, strengthening the hypothesis that the low RTT sessions
are due to TCP proxies. Suspected proxy sessions also experience significantly lower peak
queuing delays in most cases, which we discuss in the queuing delay section (§5.5, Fig 5.9).
A TCP proxy would explain both the low RTTs and low peak queuing delay (which we
measure using RTT variation), as the proxy would insulate the server’s TCP stack from
the effects of the cellular link layer, and consequently, the higher RTTs and RTT variation
associated with it [81].

We find that roughly 20% of Netflix’s cellular sessions were tagged as using TCP proxies.
As one might expect, this behavior is often AS-specific, with just 10% of ASs accounting
for almost 90% of proxied sessions. However, it is not necessary that an AS that has a
proxy have all its sessions proxied—at least 10% of the ASs that cellular sessions originated
from had just 20-60% of their sessions marked as proxied, as seen in Fig 5.5.

The presence of TCP proxies on cellular networks presents an interesting dilemma for
service operators. While it is ostensibly deployed with the intention of improving cellular
performance [50, 43, 68, 128], it further limits a service operator’s ability to implement
optimizations of their own for their users. It can be especially challenging for server-side
applications that rely on accurate feedback loops from the network, as the Base RTT and
the RTT variation experienced by the user due to the cellular link is hidden from the
server. Given the potential impact TCP proxies can have on such applications, and their
prevalence in cellular networks noted both in this and past work [50, 164], we recommend
that these proxies and any AQMs they deploy be further characterized, so that they can be
included in future CCA evaluations and testbeds.
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Figure 5.5: A CDF showing the fraction of cellular-serving ASs that had at least a given % of
sessions within it proxied. Clearly, it is not necessary for an AS to serve exclusively proxied traffic,
with 10% of cellular ASs having only 20-60% of their sessions being served by proxies.
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Figure 5.6: The CDF of peak queuing delay relative to Base RTT, measured at session-level
granularity, showing that the peak delay can be several times the Base RTT of the link. Almost
half of Netflix’s Wi-Fi and cellular sessions experience peak delay that is more than 8 times the
base RTT, while many CCA evaluations configure their testbeds to have peak delay that is only 1-4
times the Base RTT.

5.5 Peak Observed Queuing Delay
Queuing delay occurs when packets arrive at a router faster than they can be sent over

the bottleneck link, causing the router to queue them. This delay introduces RTT variation,
which serves as a congestion signal for many delay-aware CCAs like BBR and COPA [11].
In testing environments, the buffer size at the bottleneck link typically determines the
maximum possible queuing delay, significantly influencing fairness outcomes. This has
been shown to be true when loss-based CCAs like NewReno and Cubic compete [57], and
even more so when loss-based and delay-based CCAs compete [29]. For instance, BBRv3
tends to be particularly unfair to Cubic in shallow buffers [173]. Conversely, large buffers
can lead to bufferbloat [48], adversely affecting latency and QoE for real-time services like
video conferencing and cloud gaming. To accurately test the effects and interactions that a
CCA or service can experience, it is crucial that the queuing delay emulated in the testbed
mirrors the queuing delay it is likely to encounter in deployment.

In this section, we report the peak observed queuing delay on paths traversed by Netflix.
This observed delay effectively serves as a lower bound on the maximum possible queuing
delay, as the on-off nature of video traffic [138] can prevent queues from being fully filled,
as supported by comparisons to past studies in § 5.5.1. Surprisingly, even this lower bound
exceeds the queuing delay values used in many CCA and Internet service evaluations.
Most CCA evaluations configure the maximum possible queuing delay in relation to the
Base RTT of the path, and the most commonly used value across is evaluations is 1-2 times
the Base RTT. However, 50% of Netflix sessions experience peak queuing delay that is at
least 10 times, and 25% experience peak queuing delay that is at least 25 times the Base
RTT. We discuss these findings in detail in § 5.5.1.

EstimationTechnique: Wemeasure the peak observed queuing delay as the difference
between the 99th percentile of RTT samples measured by the server’s TCP stack and the
Base RTT (the minimum of these RTT samples). The 99th percentile is used to avoid
outliers, as maximum RTTs can be inflated due to Delayed Acknowledgments.
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Figure 5.7: The CDF of peak observed queuing delay for Netflix sessions, which serves as a lower
bound on the maximum queuing delay on these paths. Wired connections experience significantly
lower queuing delay than Wi-Fi connections, while cellular connections experience the most.

5.5.1 Queuing Delay by Client Network Type
Most CCA evaluations configure the maximum amount of queuing delay possible in

the testbed as a function of the Base RTT of the path. This is typically set implicitly by
defining the maximum queue size of the bottleneck link on the path as a multiple of the
Bandwidth-Delay-Product (BDP). For example, if a queue is sized to be 2 times the BDP,
the maximum queuing delay 𝑄𝐷𝑚𝑎𝑥 = 𝑄_𝑆𝐼𝑍𝐸/𝐵𝑊 = 2 × 𝐵𝑊 × 𝑅𝑇𝑇 /𝐵𝑊 = 2 × 𝑅𝑇𝑇 .
While the range of maximum queuing delays in testbeds varies greatly across evaluations,
almost every evaluation supports maximum queuing delays that are 1-2 times the Base
RTT. However, in Fig 5.6, the median session-level peak queuing delay is 10 times the Base
RTT of the path, and the 75th percentile is 25 times the Base RTT.

Since the ratio of queuing delay to Base RTT is high partially due to the low Base RTTs
experienced by Netflix sessions, we also present the peak queuing delay in absolute terms
in Fig 5.7. Surprisingly, a small number of cellular sessions show lower peak queuing delay
than wired or Wi-Fi sessions. Similar to what we see with low Base RTTs in §5.4.4, we
suspect that these are due to TCP proxies. We elaborate on this in §5.5.3.

We show the absolute peak observed queuing delay experienced by Netflix sessions
in Fig 5.7. A comparison to other measurement studies reinforces the hypothesis that
the peak observed queuing delay from Netflix sessions is likely a lower bound on the
maximum possible queuing delay on these paths. Netflix sessions report a median and
75th-percentile queuing delay of 80ms and 200ms respectively, while NDT speed tests [62]
report median and 75th-percentile queuing delays of 200ms and 500ms respectively—
NDT tests experience more than twice as much peak queuing delay as Netflix sessions.
Measuring Broadband America [44], however, reports lower queuing delays, between
50-400ms, but still several times the Base RTT. The lower absolute queuing delays could
be due to the nature of the specific ISP links it measures, such as certain ISPs deploying
AQMs like L4S [152], and the fact that it uses completely wired client networks, avoiding
the increased delays associated with Wi-Fi links (Fig 5.7). A weighted average (by number
of tests) of the country-level queuing delay from Cloudflare Radar corresponded to 135ms,
lower than other measurement datasets. This could be due to Cloudflare speed tests not
saturating the path as aggressively as Ookla’s tests, for example.



64 Network Conditions Experienced by Users of a Large Internet Service

Internet performance evaluations use a wide range of parameters when it comes to
setting themaximumpossible queuing delay. While evidence from bothNetflix sessions and
past studies [62, 44] suggest we should be using larger queuing delay values, numerous
CCA and Internet evaluations use significantly smaller queuing delays. A number of
popular QUIC evaluations use queuing delays between 0.5 to 2 times the Base RTT [32, 73,
109], with some studies going as high as 5 times the Base RTT [104]. A study measuring
congestion control performance at core Internet links uses queuing delay that is equal to
the Base RTT of the link for all its evaluations, and some of the early empirical evaluations
of BBRv1 tested it with maximum queuing delays of 0.8 and 8 BDP [61]. Examining
Internet service measurement studies paints a similar picture—an evaluation of Cloud
Gaming services [168] uses maximum queuing delays between 0.5 and 7 times the Base
RTT. Pantheon [170] offers two kinds of emulators: ‘artificial" emulators, intended to test
specific network conditions, and calibrated emulators, designed to mimic real world links.
The artificial emulators use buffer sizes between 0.1 to 1 BDP, and even the calibrated
emulators use queue sizes between 0.1 to 6 BDP.4

That said, many Internet evaluations avoid this pitfall, either by using high absolute
queuing delay values instead of relative to the Base RTT, or testing in a wide range of
queue sizes. The original BBRv1 evaluation [29] used queues with as much as 200-500ms
of queuing delay, and an Internet fairness watchdog [121] used a queuing delay of 200ms,
greater than the median queuing delay reported by both Netflix sessions and NDT [62]. On
the other hand, work modeling BBRv1 tends to evaluate a wide range of maximum possible
queuing delays ranging from 0.25 to 128 times the Base RTT [162, 108], and a study about
BBRv3 performance used queuing delays ranging from 1 to 32 times the Base RTT. However,
in many evaluations that sweep a large range of buffer sizes, there is wide variance in the
performance of the evaluated CCA or Internet service based on the maximum possible
queuing delay [162, 27]. For example, when a single BBRv1 flow competes with a single
Cubic flow, a testbed with a maximum queuing delay that is 0.25 times the Base RTT
causes a single BBR flow to take up more than 90% of the bandwidth, while if it is 64
times the Base RTT, it is Cubic that takes up more than 90% of the bandwidth [162], the
exact opposite fairness result. When there is such wide variance in the outcome based on
the maximum possible queuing delay, we recommend attaching more importance to the
results in buffer sizes that more accurately reflect the queuing delay measured in settings
where the CCA or service in question is intended to be deployed.

In some evaluations that set the queuing delay as a function of the Base RTT, the use
of high Base RTT values can result in the absolute queuing delay being high enough to fall
within ranges reported by measurement studies. However, the pitfall we must eliminate

4While we do not know for sure why Pantheon’s calibrated emulator parameters differ from the typical
queuing delays reported by measurement studies, it’s possible that it is due to the specific characteristics of
the small number of links that Pantheon chose to replicate.
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Figure 5.8: The CDF of peak observed queuing delay by sessions in various countries, identified by
their country ISO codes. Clearly, there can be wide variance in the peak queuing delay by country,
with more than a quarter of sessions in Nigeria experiencing greater than 1 second of peak delay.

is the pervasive assumption in many evaluations that queue sizes, a key contributor to
queuing delay, is inherently tied the Base RTT of the path. This likely originates from
the old rule of thumb which states that a single NewReno flow requires at least 1 BDP
(Bandwidth× RTT) sized queues at a given link to be able to fully utilize it [158, 6]. However,
as CDNs grow closer to users’ homes, reducing RTTs, it is not necessary that ISP hardware
configurations or user’s home router queue size changes at the same rate. Additionally,
past work has shown that due to a combination of ISP service-level agreements (SLAs)
penalizing packet loss, and switch/router manufacturer advertising focusing on being
able to provide larger queue sizes, queues on the Internet have only become larger [98].
Therefore it is not just important to configure testbeds for larger queuing delays—we also
need to disconnect it from the Base RTT of the path, and instead rely on sizing buffers
using the absolute queuing delay values reported from measurements such as speedtests.

5.5.2 Queuing Delay By Country
We find that peak observed queuing delay can indeed vary with country. We show

this in detail for specific countries selected to provide a representative but diverse view
of sessions in various continents (Fig 5.8). Nigeria, along with some other South African
countries (not shown), showed particularly high queuing delay. There are a number of
possible explanations for this. It is possible that the network paths in these countries
are typically congested, and as a result queues are more full on average, causing Netflix
traffic to also experience increased queuing delay. Paths to users in these countries could
be longer, causing traffic to pass through multiple queues, each of which could also be
experiencing high queuing delays. It could be due to lower capacity paths being present
in these countries, due to which Netflix traffic tends to be able to saturate the queue
to greater extents in spite of its on-off traffic pattern and comparatively lighter (to a
large bulk download) video streaming workload. This is supported by internal studies
at Netflix which showed that many countries with higher median peak queuing delays
also experienced lower median client-reported throughput. Lastly, it could also be due to
network equipment with larger queue sizes being present in these countries.
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Figure 5.9: The fraction of cellular sessions with various peak queuing delays that are categorized
as using TCP proxies. Almost 90% of sessions experiencing less than 10ms of peak delay are tagged
as using TCP proxies, further strengthening the hypothesis that some cellular Netflix sessions
traverse TCP proxies which are responsible for surprisingly low delays.

5.5.3 Low Queuing Delay: TCP Proxies
Similar to what we saw with Base RTTs in § 5.4.4, around 10% of cellular Netflix

sessions display very low peak queuing delay that is less than 10ms, lower than wired or
Wi-Fi connected sessions at the same percentiles. This is surprising, since it contradicts
the general belief that cellular links have high RTT variation [81]. We believe that these
occur due to the same root cause as the low Base RTT cellular sessions: the presence of
TCP proxies. Classifying the sessions using the same proxy detection technique described
in §5.4.4, we find that almost 90% of low peak queuing delay cellular sessions (Fig 5.9)
were tagged as traversing a TCP proxy. The fact that this TCP proxy detection technique
was able to isolate a significant majority of both low Base RTT (Fig 5.4) and low peak
queuing delay sessions lends further credence to the premise these low Base RTTs and
peak queuing delays are likely due to TCP proxies.

5.5.4 Time of Day Effects
Many past studies have found that latency on the Internet varies with time of day [37, 5,

118], likely due to greater usage during certain hours of the day resulting in more queuing.
We therefore examine the differences in peak observed queuing delay during “busy" vs
“non-busy" hours. We find that only specific client network types in a few countries show
a statistically significant increase in peak observed queuing delay of at least 10ms, and
that just one country+client network combination shows a statistically significant increase
of 50ms, during busy hours as compared to non-busy hours.

Methodology: We divide each day into 3-hour segments, and for a given country
identify the 3-hour segment with the most sessions as the busy period for that country,
and the segment with the least as the non-busy period. For most countries, we find that
the non-busy periods tend to be between 1 AM and 6 AM, while the busy periods tend to
be between 6 PM and 12 AM in the local timezone. We then apply the Mann–Whitney
U test [166] with a significance level of p < 0.05 to determine if there is a statistically
significant increase in peak queuing delay between sessions that started during busy
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Figure 5.10: The ratio of the peak queuing delay in busy vs non-busy sessions at corresponding
percentiles for various country+client network combinations. The SA (Saudi Arabia), ZA (South
Africa) and IN (India) sessions show a statistically significant increase in queuing delay of at least
20ms (50ms for IN) during busy hours, while the US link does not.

periods vs non-busy periods for a given client network type and country. 5. We test for
increases in peak queuing delay in busy periods compared to non-busy periods of at least
10ms, 20ms etc. up to 100ms. To ensure robust conclusions, we limit our analysis to the
31 country+client network pairs that have at least 500 sessions during non-busy hours.
The 31 pairs are spread across 25 countries, and consist of 25 Wi-Fi, 4 wired and 2 cellular
links.

5.5.5 Results
We find that out of the 31 pairs that met our 500 non-busy session requirement, onlyWi-

Fi links in Saudia Arabia and South Africa, and cellular links in India, showed a statistically
significant (p < 0.05) increase in queuing delay of at least 10ms. Of these, only the cellular
links in India showed statistically significant increases up to 50ms, while the Wi-Fi links
in Saudi Arabia and South Africa only showed statistically significant increases of 20ms.
We take a closer look at the ratio of busy to non-busy peak queuing delays at various
percentiles in Fig 5.10, and contrast it against Wi-Fi links in the US which don’t show
statistically significant evidence of contention. As expected, we can see the queuing delay
ratio is much higher for those links that showed a statistically significant increase in
queuing delay. The IN|cellular link shows an interesting trend—at lower percentiles the
increase in queuing delay is substantial, but at higher percentiles the difference is less
pronounced. This could potentially be due to the higher percentiles consisting of poor
cellular connections that show high queuing delay regardless of time of day.

There are a number of potential explanations for why these country+client network
pairs show increased peak queuing delay. It is possible that during busy periods more low
throughput or oversubscribed links are active, such as public Wi-Fi access points at coffee
shops, increasing the likelihood that Netflix traffic exceeds the available path capacity
and causes more queuing. We verified this hypothesis by comparing the client-reported

5We perform our analysis at a client network-country level instead of just country level to normalize for
the variation in peak queuing delay across client network type
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Figure 5.11: The ratio of average throughput reported by sessions from busy periods to those from
non-busy periods at corresponding percentiles for the country+client network pairs that showed
statistically significant increased in queuing delay (Fig 5.10). The US serves as a comparison point
showing very little variation between busy and non-busy periods.

average throughput 6 reported by Netflix sessions during busy and non-busy periods for
the 31 country+client network pairs. We found that pairs do indeed report lower average
throughput, as shown in Fig 5.11. It is also possible that the paths used during busy periods
have larger queues and therefore a higher ceiling on the peak observed queuing delay, but
it is unfortunately difficult to verify this hypothesis without data from the bottlenecks
themselves.

The finding of no statistically-significant increase in peak queuing delay of at least
10ms on most country+client network pairs analyzed should also be interpreted in the
context of Netflix’s CDN and the lightweight nature of video streaming traffic. Netflix CDN
nodes are located relatively close to users, minimizing the number of potential bottlenecks.
A service with a CDN further away from users might be more likely to face contention as
it traverses more links on its path to the user. Past work that studied time-of-day effects
from throughput measurements from Ookla’s SpeedTest, which we believe uses similarly
edge-adjacent test servers due to its low RTT measurements (§5.4), also reported only
slightly decreased throughput with time of day [118]. In addition, video streaming path
capacity requirements of around 15 Mbps for the highest 4K quality video can often be low
compared to the available path capacity, preventing it from saturating the link for long
durations. Further, Netflix’s Adaptive-Bitrate algorithm (ABR) can prevent link saturation,
as it automatically reduces video quality and consequently capacity requirements in
response to persistent insufficient throughput. For these reasons, a bulk download service
capable of fully utilizing a given link for long stretches of time, for example, would be
more likely to experience contention than Netflix.

6This is the average of the time taken to transfer individual video chunks to the client
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Figure 5.12: The CDF of the median ACK size witin a session on various ISP link types in the US.
Cable links show significantly more ACK aggregation than fiber or cellular links.
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Figure 5.13: The CDF of median ACK sizes by device manufacturer, for two Mobile (M1 and M2)
and two FED (TV1 and TV2) manufacturers. To normalize/limit the ACK aggregation due to the
network path, these results are from sessions that were connected by Wi-Fi to non-cable ISPs. The
extent of ACK aggregation clearly varies by device manufacturer, with devices from M2 and TV2
experiencing significantly more ACK aggregation than those from M1 and TV1. This could be
caused by a variety of device specific configurations, such as Large Receive Offload (LRO) on the
client device, long polling intervals to the device NIC/selective interrupt coalescing resulting in
larger bursts of packets being received, or a change to the typical 2 MSS delayed ACK threshold on
the device’s TCP stack.
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Figure 5.14: The CDF of the median ACK size on wired vs Wi-Fi client networks for devices from
two distinct FED manufacturers on non-Cable connections. Using a Wi-Fi network does not change
the low ACK aggregation levels experienced by devices from TV1, but increases ACK aggregation
drastically for TV2.

5.6 ACK Aggregation Levels
ACK aggregation is the phenomenon due to which a sender might receive a single TCP

Acknowledgement from the receiver that acknowledges the sequence space of multiple
transmitted TCP segments. This can occur due to optimizations such as delayed ACKs
on receivers [13], and techniques that “decimate" or coalesce multiple ACKs into a single
ACK [30] in equipment like cable modems [134], wireless networks [77], and satellite links
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[9]. ACK compression, when multiple distinct ACKs arrive at the sender in a short period
of time due to queuing on the ACK path, is a related but distinct phenomenon that is out
of scope for this analysis.

ACK aggregation is known to interfere with CCAs like BBR which perform ACK-
rate based path capacity estimation [30], where large ACKs can lead to over(or under)-
estimating the delivery rate, and unless such samples are discarded, they can lead to send
rates that exceed (or fall short of) the path capacity. It contributes to jitter in RTT estimates,
and past work on theoretically verifying CCA properties has shown that jitter from high
levels of ACK aggregation would make it fundamentally impossible to prevent starvation
in end-to-end congestion control [10]. This is a serious enough issue for the latest version
of BBR to attempt to measure and account for the ACK aggregation seen on its path [30].
Further, for window-based CCAs, large ACKs can lead to sending large bursts of data,
which is more likely to fill queues and cause latency spikes for real-time services such as
video conferencing or cloud gaming sharing the bottleneck link.

However, despite its significance, ACK aggregation is almost always absent in state-
of-the-art CCA testbeds and evaluations [29, 57, 122, 121], and Internet measurement
studies [116, 44, 118, 62]. Pantheon [170] serves as an exception, and tests a few “patho-
logical" paths with high levels of ACK aggregation—where a single ACK is received once
every 100ms or 200ms [163].

By quantifying the extent and frequency of ACK aggregation at scale, and examining
how ISP types, device types and client networks affect it, we aim to provide valuable
guidelines for future CCA evaluations and testbeds that seek to include ACK aggregation
as part of their emulated or simulated testbeds.

Estimation technique: We quantify ACK aggregation as the median ACK size, where
the ACK size is defined as the number of bytes that is newly acknowledged by a given ACK,
divided by the Maximum Segment Size (MSS). As the MSS represents a common amount
of data payload in packets containing TCP segments, dividing the median ACK size by the
MSS approximates how many packets are acknowledged by each ACK. Specifically, we use
cumulative ACK sizes, as ACK decimation relies on the fact that TCP ACKs are cumulative
[14]. We exclude ACKs that contain a Selective Acknowledgment (SACK) because ACK
aggregation mechanisms may avoid decimating such ACKs, distorting our measurements.
In addition, we exclude ACKs that are received immediately after an ACK with a SACK,
which may be large due to the end of a recovery episode but unrelated to on-path ack
aggregation. By isolating ACKs that reflect data transfer without evidence of loss, we gain
a more accurate understanding of typical aggregation behavior. Note that our estimates
include the total aggregation behavior, including on-path ACK aggregation, as well as well
as due to potential device effects, such as client TCP stacks sending larger ACKs than the
standard 2 MSS [41]. ACKs being lost, rather than explictly decimated, on the path from
the receiver is also perceived as ACK aggregation by senders.
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5.6.1 Results
We find extensive ACK aggregation on the paths traversed by Netflix, with the median

ACK size for some sessions as high as 40MSS on Cable links (Fig 5.12).7 Fiber and Cellular
links show lower ACK aggregation levels that are similar (Fig 5.12).

Much to our surprise, we discovered that the device itself plays a key role in determining
the extent of ACK aggregation it should expect. Specifically, we found that devices from
the same manufacturer, in the case of both FEDs and Mobile devices, showed similar
ACK aggregation behaviors. As shown in Fig 5.13, devices from certain manufacturers
experience more ACK aggregation than others. Changing the client network from wired
to Wi-Fi can increase the ACK aggregation on devices from certain manufacturers, but not
on others, as shown in Fig 5.14. While we lack the instrumentation to verify the cause of
this behavior, we hypothesize that it likely has to do with TCP or OS optimizations such
as Large Receive Offload (LRO), long polling intervals to the NIC/interrupt coalescing, all
of which serve to reduce overheads associated with networking and improve performance
and power consumption.

These findings suggest the need to consider the expected range of ISP types, client
devices, and client networks when configuring a CCA testbed, so that various expected
ACK aggregation levels can be accounted for. In the case of physical testbeds, it also urges
caution in extrapolating the behavior from a single test client device to other devices with
different ACK aggregation properties—testbeds that use actual client devices should test a
variety of devices with different ACK aggregation properties.

Lastly, while still biased by Netflix’s user demographic, ACK aggregation is likely less
influenced by the nature of Netflix’s edge-adjacent CDN (compared to Base RTT and peak
queuing delay), and therefore even more generalizable to most CCA and Internet testbeds.
This is based on our results which show that ACK aggregation depends primarily on the
last mile—the user’s ISP network type, client network, and client device—which should be
shared across most paths to the user.

7The ceiling of 40MSS is due to server-side configuration and not an inherent property of the network.
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Figure 5.15: The CDF of client-reported throughput experienced by sessions from various de-
vice/home network combinations. Wired FEDs achieve the highest throughput, while cellular
connections achieve the least.

5.7 Throughput
In this section, we analyze the client-reported throughput, which is the rate at which

the client received data. While speed tests are designed to saturate the link and accurately
measure the network’s path capacity, our results reflect the data rate that Netflix users
actually experience, which can be often limited by Netflix’s sending rate (due to its CCA
NewReno, and Netflix’s video streaming workload) rather than the network itself. For
example, Netflix requires just 15 Mbps of throughput to stream the highest quality 4K
video, and 5 Mbps for HD video. Consequently, users are often able to enjoy the highest
quality video that their device supports, even when the throughput obtained does not fully
utilize the network’s path capacity as reported by most speed tests.

The client-reported average throughput for a session is calculated by dividing the total
size of all chunks received from Netflix CDN servers by the active download time for those
chunks. This calculation excludes the “off” periods when the client video buffer is full
and no data is fetched, a typical pattern in streaming video traffic [138]. It provides a
lower-bound estimate of the path capacity of the link, as we have found that Netflix may
not consistently saturate the link during all chunk downloads.

5.7.1 Results by Device & Network Type
Figure 5.15 describes the throughput observed in sessions from various device types

and home network combinations. Consistent with past studies measuring the effect of the
client network on throughput [118], wired FEDs achieve higher throughput than wireless
FEDs or mobile devices, while cellular links show the lowest throughput. This lower
throughput on cellular links can be partially attributed to Netflix’s data-saving measures,
which limit the maximum available video bitrate to 750 Kbps. For comparison, 4K video
streaming typically requires at least 15 Mbps, and HD requires 5 Mbps.

Ookla’s Speed Index [140] reports the median fixed broadband download speed as
101 Mbps, and the median cellular download speed as 92 Mbps. A weighted average, by
number of tests, of the per-country download speeds reported by Cloudflare Radar’s speed
test is 168 Mbps. Clearly, Netflix’s client-reported throughput is lower than those values.
One reason for this is that speed tests are designed to saturate paths to reliably measure
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path capacity, using strategies such as multiple flows [140]. On the other hand, Netflix
uses a single NewReno flow to download video data on all sessions originating from its
native TV, Android or iOS apps (which account for the bulk of Netflix sessions). Internal
evaluations have also shown that Netflix’s throughput can also be limited by the bitrate
selected by its ABR algorithm, which is typically less than 20 Mbps. Past studies have
shown that M-Lab speed test results, which also use a single TCP flow, suffer from similar
limitations, showing a 20-50% reduction in measured download speed compared to Ookla’s
speed tests for the same bandwidth subscription tier [118].

5.8 TCP Proxy Detection Details
This section contains specific implementation details about the proxy detection tech-

nique for interested readers.
Manufacturer RWND: 20th, 80th-ptile
Apple 131 KB, 131 KB
Google 67 KB, 88 KB
Honor 67 KB, 74 KB
Huawei 82 KB, 90 KB
Oppo 67 KB, 88 KB
Oneplus 67 KB, 77 KB
Tecno 67 KB, 74 KB
Xiaomi 67 KB, 89 KB
Motorola 67 KB, 127 KB
Realme 67 KB, 88 KB
Samsung 68 KB, 89 KB
Vivo 67 KB, 88 KB

Table 5.1: The initial RWNDs reported by devices using Netflix via cellular connections, aggregated
by manufacturer. We leverage the consistency of their reported RWNDs between the 20th and
80th percentile, and the fact that TCP proxies likely advertise a different initial RWND, to build an
RWND-based TCP Proxy detection technique.

To detect potential TCP proxies on sessions, we leverage insights from past work on
TCP proxy detection [50] which noted that TCP proxy-reported initial RWNDs can vary
from device-reported initial RWNDs. We find that devices from a given manufacturer
often show a consistent initial RWND between the 20th and 80th percentile, as shown in
Table 5.1. We categorize sessions that deviate from this initial RWND by more than 10KB
as using a suspected proxy. We tag Autonomous Systems (ASs) with more than 10% of their
sessions using a suspected proxy as an AS with a suspected proxy. We then tag sessions
which are both using a suspected proxy and originating from an AS with a suspected proxy
as sessions using TCP proxies.
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We also find that while non-proxied sessions advertise RWNDs between 50KB to 150KB,
almost half of proxied-sessions advertise initial RWNDs greater than 1000KBs. This is
likely because the middleboxes that run TCP proxies are configured to dedicate more
memory to TCP connections, and consequently advertise a larger RWND than commodity
mobile devices. This combined evidence makes us believe that our RWND-based proxy
detection technique correctly identifies TCP proxies in most of the cellular sessions in our
dataset, and consequently, that the low RTT cellular sessions are likely caused by TCP
proxies.

5.9 Chapter Summary
In this work, we presented a number of passive path property estimates from a global

video streaming service, Netflix, with an expansive CDN presence. We found that for
accurate testing of Netflix’s performance in the real world, the Base RTTs, queuing delays,
the presence of TCP proxies, and ACK aggregation levels used by Netflix sessions, would
have to differ significantly from those used by a large fraction of CCA and Internet
evaluations. We hope that this perspective from a hyperscaler helps enrich the next
generation of CCA and Internet service evaluations to emulate even more representative
paths for testing, further bridging the gap between emulated and simulated testbeds and
A/B tests. We expect this work to lay the foundations for more large service owners to
contribute their own views of the Internet so we can build a much better understanding of
network conditions needed to realistically test an Internet that is diverse in its users, their
networks, and the services they consume.



Chapter 6

Conclusion

6.1 Charted Territory
“All right, Doc. What’s going on? Where are we?
. . . When are we?”

— Marty McFly, Back to the Future Part II (1989)

In §3 and §4, we demonstrated the necessity of expanding typical experimental setups
for CCA evaluations to include both congestion scenarios at scale, and the evaluation of
CCAs to include the services they are to be deployed in. We saw how BBRv1, which was
touted as a fair, low delay, high throughput solution for CCA on the Internet if uniformly
deployed, results in catastrophic fairness outcomes when there is congestion at the core
of the Internet, which past work has shown occurs with surprising frequency on certain
inter-domain links. Through Prudentia, we saw that YouTube, which uses the much
maligned BBR, was actually one of the most fair services in practice due to its bitrate
ladder and application-limited nature. It also showed us how the prevalence of multi-flow
services turned decades of per-flow fairness research on its head, suggesting the need
for potential browser or OS-level control. But more than anything, it showed us the
unknown-unknowns we would have never discovered otherwise, underscoring the need
for service-level evaluations when testing CCAs.

In §5, we addressed the question of how closely typical evaluation environments align
with the emerging trend of CDNs using user-adjacent infrastructure, by a case study of the
network conditions experienced by a real Internet service, Netflix. We found that Netflix
experiences lower RTTs, higher queuing delays, and more ACK aggregation than evaluated
in many experimental testbeds. This suggested the need for more service owners to take
a closer look at the network conditions their users experience, and share them with the
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community at large, so we can all be sure that we are testing in network conditions that
are actually relevant.

In summary, this thesis shows that keeping Internet performance evaluation in emu-
lated environments up-to-date requires testing full-stack services, not just CCAs, across
both residential and core Internet link settings. Moreover, the specific network conditions
we choose to perform these evaluations in must mirror those real services face, lest the
victories we proclaim be illusory, and the failures we dread exist only in theory.

6.2 Future Expeditions
“There’s always money in the banana stand.”

— George Bluth Sr., Arrested Development

This thesis lays the groundwork for a number of directions of continued investigation
to further improve the sphere of Internet performance evaluations. This section is intended
come by the way of a budding, starry-eyed PhD student or researcher eager to take up the
mantle of realistic, dependable CCA and Internet service evaluations.

Expanding the parameter space: While we explored different ranges of common
path properties like RTT, buffer sizes, and path capacity, we also discovered the neccessity
for future evaluations to include less commonly considered path properties like ACK
aggregation. There are a number of other potential path properties that need to be
studied, such as path capacity variation, jitter, packet re-ordering and random packet loss
(the necessity of some of which Pantheon [170] has established, but their use in other
testbeds has not been widespread). These extent and prevalence of these properties as
experienced by users must be measured, and given their limited presence in network
evaluations, new experiments conducted to understand their impact on CCAs and services.
Additionally, while Netflix is a major provider of video streaming on-demand content,
other providers can experience different network conditions due to differing infrastructure
and user demographics. The service type plays an important role too—a video conferencing
call across the globe will experiences hundreds of milliseconds of RTT irrespective of the
infrastructure of the the service operator. Therefore the network conditions experienced
by the users of these other services must be studied and accounted for too.

Constraining the parameter space: A large portion of these thesis has encouraged
the expansion of the testbed parameter space—testing in larger ranges of RTTs, path
capacities, buffer sizes and with services in addition to CCAs. However, while it might
be tempting to test all possible values of all potentially relevant path properties, keeping
such evaluations feasible inevitably require constraining the parameter space to the most
relevant values. Path profiles—the idea that certain values of path properties are likely to
co-occur with specific values of other path properties, such as low bandwidth links being
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correlated high jitter and RTT—would be an ideal line of investigation towards further
constraining this space.

Searching the parameter space: Once we have expanded and constrained the pa-
rameter space as necessary, there is still the question of what granularity of values to test
within this space. For example, should we test with RTT values in intervals of 10ms or
1ms? The answer likely depends on the service or CCA—we would not want to a test a
CCA with a number of network conditions that all yield the same performance outcome,
but rather the ones most likely to show a change in behavior. For example, NewReno’s
throughput has a multiplicative relationship with RTT [97], with a change of 1m->2ms
representing the same decrease in its window growth rate as 20ms->40ms. An interesting
empirical approach to this could involve a gradient-descent-esque exploration, where some
initial tests with different values in the parameter space determine the next parameter
values most likely to cause the greatest difference in the CCA or service’s performance.
These parameter values could then be tested in the next iteration. This will likely also
depend on what performance metric is being evaluated: while BBR’s throughput and delay
might not be affected significantly by an increase in RTT, it exhibits intra-CCA unfairness
at higher RTTs.

6.3 Distant Horizons
“You’ve got the makings of greatness in you, but
you’ve gotta take the helm and chart your own
course!”

— John Silver, Treasure Planet (2002)

An important parallel to empirical evaluations has been recent developments in prov-
ably verifying congestion control performance [10]. While validating existing applications
or CCA implementation comes with the overhead and associated errors of translating real-
world implementations into models compatible with the verification framework, the same
framework can be used to synthesize provably performant implementations of CCAs [2]
and applications. The aspect in question then is the realism of the network settings used
in the verification model: synthesizing a CCA that performs well in all network conditions
likely comes at the cost of a better CCA that performs well only in common network con-
ditions, and synthesizing a CCA that does not cover the network conditions experienced
by users in practice can potentially result in poor performance in practice. As a result,
measurement studies from actual user traffic to services they consume will be critical going
forward; this will not just accurately parameterize empirical testbeds, but also inform CCA
designers about the network conditions they should be designing for—both human and
machine.
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6.4 Parting Words
“And that’s why you always leave a note.” 1

— J.Walter Weatherman
Arrested Development (2004)

There was a time when there were simple, elegant ways to reason about CCA behavior.
An entire class of CCAs that used the Additive/Multiplicative Increase/Decrease paradigm
could have their performance and fairness properties predicted analytically [35]. A simple
model for NewReno [97, 117] held up for decades, and with the focus on certain caveats,
even at the scale of the core of the Internet. On the other hand, CCAs like BBR have had
multiple analytical models derived [162, 108], all of which fail to predict its unfairness
to other BBR flows, even when all the flows are at the same RTT. This is no fault of the
modelers—these new CCAs are so complex that by the time anyone truly understands
them the next version of the same CCA is already released. As a result, the future of CCA
testing and design both likely lie in the hands of machines—empirical evaluations to verify
service performance in deployment, and synthesis by automated reasoning techniques to
generate CCAs and application-control loops with verifiable performance guarantees [2].
These approaches are most likely to keep up with the constantly changing landscape of
the Internet, ensuring the performance of our services does not let us down when we most
need them.

1https://aphilip.cc/always-leave-a-note

https://aphilip.cc/always-leave-a-note
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