
On Distributed Network Resource Allocation

Andréa Werneck Richa

CMU-CS-98-146

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

Bruce M. Maggs, Chair
Alan Frieze

R. Ravi
Greg C. Plaxton, Univ. of Texas at Austin

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c�, 1998 Andréa Werneck Richa

This research was sponsored in part by an NSF National Young Investigator Award, No. CCR-
94-57766, with matching funds provided by NEC Research Institute; an equipment grant from Sun
Microsystems; DIMACS; and NEC Research Institute.

The views and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
Carnegie Mellon University.

Keywords: Distributed network, resource allocation, approximation algorithm, ran-
domized algorithm, shared object, wide-area network, hierarchical model, expected cost,
packet routing, scheduling, Lovász Local Lemma, optimal schedule, network emulation,
embedding, congestion, dilation, ordering, linear arrangement, linear array, combinatorial
optimization, interval graph, storage–time product, spreading metric, planar graph.

Abstract

This thesis addresses several resource allocation problems that arise in the context of dis-
tributed networks. First, we present a scheme for accessing shared copies of objects in
a network that has asymptotically optimal expected cost per access for a class of cost
functions that captures the hierarchical structure of most wide-area networks. Second, we
present an off-line polynomial-time algorithm that finds an asymptotically optimal schedule
for the movement of packets whose paths through a network have already been determined.
This is an improvement on a previous result by Leighton, Maggs, and Rao, who proved the
existence of such schedules; their proof, however, was not constructive. Finally we present
a polynomial-time O�log n�-approximation algorithm for finding an embedding of a net-
work with n processors into an n-node linear array so as to minimize the weighted sum
of the edge dilations — i.e., for the minimum linear arrangement problem. This problem
is NP-hard, and the previous best approximation bound known was O�log n log log n�. In
the case of planar networks, we bring the approximation factor down to O�log log n�. We
also extend our approximation techniques to the minimum storage–time product and the
minimum containing interval graph problem.

iii

iv

To Aykut,

vi

Contents

1 Introduction 1

1.1 Notation . 4

2 Accessing Nearby Copies of Replicated Objects in a Distributed Environment 5

2.1 Introduction . 5

2.2 Model of computation . 11

2.3 The access scheme . 12

2.4 Performance bounds . 18

2.5 Analysis . 20

2.6 Future work . 50

3 Fast Algorithms for Finding O(Congestion+Dilation) Packet Routing Sched-

ules 51

3.1 Introduction . 51

3.2 Preliminaries . 57

3.3 An algorithm for constructing optimal schedules 61

3.4 Running time . 78

3.5 A parallel scheduling algorithm . 79

3.6 Concluding remarks . 80

vii

4 New Approximation Techniques for Some Ordering Problems 82

4.1 Introduction . 82

4.2 The problem . 88

4.3 Spreading metric . 88

4.4 The algorithm . 89

4.5 Graphs with excluded minors . 94

4.6 Minimum storage–time product . 98

4.7 Minimum containing interval graph . 101

4.8 Conclusion . 102

viii

List of Figures

2.1 Properties of the cost function. 12

2.2 The primary neighbor table of node x, for b � �. 14

2.3 A read request for object A is forwarded along the primary neighbor se-

quence for A with x � x�. 15

2.4 The tree T associated with object A and the primary neighbor sequence for

x � x�. 16

2.5 Action on receiving a message Read for object A. 18

2.6 Actions on receiving messages Insert and Delete for object A. 19

2.7 Illustrating the proof of Lemma 2.5.1. 21

2.8 A read request for object A is forwarded until a pointer to a copy of A is

found. 32

3.1 A graph model for packet routing. 52

3.2 A set of paths for the packets. 53

4.1 A graph G and a minimum linear arrangement � of G. 83

4.2 An assignment of lengths to the edges of G. 90

4.3 The algorithm and charging scheme. 91

4.4 A minimum storage–time product of G. 99

ix

x

Acknowledgments

First of all, I would like to thank Aykut, for his full and unconditional support during the

course towards my PhD degree, and who in spite of enduring me through this thesis work,

still married me. Second, I would like to thank Bruce, my great friend and advisor, who

helped me gain the independence in research essential for earning a doctorate. I would like

to thank my parents Thereza and José, and my brother Guilherme, whose support I could

always feel so close, in spite of their being thousands of miles away. I would like to thank

Greg Plaxton, Alan Frieze, and R. Ravi, whose feedback was so crucial for the conclusion

of this dissertation. I would also like to thank Satish Rao, Rajmohan Rajaraman, and Tom

Leighton, as well as Bruce and Greg, for their most valuable contribution to the work in this

thesis. I would like to thank Danny Sleator, for helping me out in particular at the beginning

of my PhD. I would like to thank Claudson Bornstein, for his “help-with-all” during the

course of our PhD. For standing all my ups-and-downs in our Wean Hall office, I would

like to thank Anja Feldmann, Chris Stone, Jeff Polakow, and Adrian Perrig. I would like

to thank all the people in the Algorithms, Combinatorics and Optimization PhD Program,

and all the people in the Computer Science Department at Carnegie Mellon University —

faculty, staff, and graduate students altogether (in particular I would like to thank Sharon

Burks, Dorothy Zabrowsky, Karen O’lack, Catherine Copetas, Gary Miller, Merrick Furst,

and Ravi Kannan). I would like to thank Pınar Keskinocak and Bertrand Guenin, for their

unconditional support, for being such very special friends and classmates from day one at

Carnegie Mellon University. I cannot forget to also thank Bülent Başaran, Jürgen Dingel,

and the Sinharoys, for their full support and unmatchable friendship. Last, but not least, I

would like to thank all of my friends — in particular all of the wonderful friends I made in

Pittsburgh, whose friendship is so closely related to my PhD course — and family, for their

most valuable support.

xi

xii

Chapter 1

Introduction

The advent of high-speed distributed networks has made it feasible for a large number

of geographically dispersed computers to cooperate and share information (e.g, messages,

files, control data). Indeed, the last few years have seen the emergence of large distributed

databases, such as the World Wide Web, and more generally, of a variety of distributed

network applications that rely on communication for performing their basic tasks. The dis-

tributed nature of the databases and the rapidly growing demands of the users have in turn

overloaded the underlying network resources (e.g., links, memory space at the processors,

buffer space at the links and processors).

In an attempt to minimize communication delays and to satisfy as many users as pos-

sible, strategies for making efficient use of network resources have been devised. As, for

example, in this thesis, where efficient resource allocation strategies are used to obtain

efficient solutions to three problems that arise in the context of distributed networks.

The first problem we consider in this thesis is the one of efficiently supporting requests

for shared objects (e.g., files, pages of memory) that have been distributed among the pro-

cessors (nodes) of a wide-area network. Multiple copies of each object may exist in the

network. In particular, we would like to devise a protocol that satisfies each request for an

object with a “nearby” copy of the object, since this ensures fast response times and mini-

mizes the cost incurred in accessing the object. Chapter 2 presents a protocol that achieves

asymptotically optimal expected cost for satisfying a request for an object while making

efficient use of the memory space at each node, for a class of cost functions that captures

1

2 CHAPTER 1. INTRODUCTION

the hierarchical structure of most wide-area networks.

Next, we study the movement of packets in a network: More specifically, we consider

the problem of scheduling the movement of packets whose edge-simpley paths through a

network have already been determined. This problem arises in a scenario where nodes of

the network exchange information via point-to-point communication paths. In Chapter 3

of this thesis, we present a polynomial-time algorithm that finds an asymptotically optimal

schedule for routing the packets along the given paths. This is an improvement on a previ-

ous result by Leighton, Maggs, and Rao [26], who proved the existence of such schedules;

their proof, however, was not constructive.

The problem of scheduling the movement of packets in the network relates to network

emulations that are performed via network embeddings, as we will see. Network emula-

tions and embeddings will also be addressed in Chapter 4, where we consider embeddings

of networks into the linear array. Thus we briefly discuss emulations and embeddings in

the paragraphs that follow. For a more complete discussion of emulations and embeddings,

see [24]; see also [32].

We can model the topology of a network as a graph G�V�E�, where each node in V

uniquely represents a processor of the network, and where each edge �x� y� in E uniquely

represents a communication link between the processors corresponding to nodes x and y

in the network. Throughout this thesis, we will implicitly use this model, interchangeably

referring to a network as a graph, and to processors and links of the network as nodes and

edges respectively.

A guest network G can be emulated by a host network H by embedding G into H . An

embedding maps nodes of G to nodes of H , and edges of G to paths in H — an edge �x� y�

of G is mapped to some path in H between the nodes of H that x and y were mapped to.

There are three important measures of an embedding: the load, congestion, and dilation.

The load of an embedding is the maximum number of nodes of G that are mapped to

any one node of H . The congestion of an embedding is the maximum number of paths

corresponding to edges of G that use any one edge of H . The dilation of an embedding

yAn edge-simple path uses no edge (i.e., link of the network) more than once.

3

is the length of the longest path of H in the embedding. Let l, c, and d denote the load,

congestion, and dilation of the embedding, respectively.

OnceG has been embedded inH , H can emulateG in a step-by-step fashion as follows.

Each node of H first emulates the local computations performed by the l (or fewer) nodes

mapped to it. This takes O�l� time. Then for each packet sent along an edge of G, H sends

a packet along the corresponding path in the embedding. Using the algorithm presented in

Chapter 3, H can emulate each step of G in O�l � c� d� steps.

We address a problem that relates to embeddings of networks into the linear array in

Chapter 4. Suppose a network G with n nodes is embedded one-to-one (with respect to the

mapping of its nodes) into a network H . The dilation of an edge of G in the embedding

is the length of the path of H that this edge is mapped to. We would like to be able to

minimize the average edge dilation of the embedding, since high average dilation may

incur high average cost of communication. Unfortunately, the problem of determining if

there exists an embedding with average edge dilation d�, for any d� � �, is NP-hard even

for the case when the host network is a linear array. A generalization of this problem is

to assign nonnegative weights to each edge of G, which may represent the amount (or the

cost) of communication through that edge; in this case, we would like to minimize the

average weighted edge dilation of the embedding.

In Chapter 4, we present a polynomial-timeO�log n�-approximation algorithm for find-

ing a one-to-one embedding of a graph with n nodes into the n-node linear array so as

to minimize the weighted sum of the edge dilations. An embedding that has minimum

weighted sum of edge dilations is called a minimum linear arrangement. If the network is

a planar graph, we obtain an improved approximation factor of O�log log n�.

We conclude Chapter 4 by extending the ideas used for approximating the minimum

linear arrangement problem to obtain O�log n�-approximation algorithms for two other

problems that involve finding a linear ordering of the nodes of a graph: the problems of

finding a minimum storage–time product, and of finding a minimum cost containing inter-

val graph of a given graph. For the latter problem, in case the input graph is planar, we also

obtain an improved approximation bound of O�log log n�.

Each of the following chapters is self-contained. Concluding remarks and suggestions

4 CHAPTER 1. INTRODUCTION

of future work regarding any of the problems considered will be presented at the end of the

relevant chapter.

1.1 Notation

In this section we introduce some basic notation that will be used in this thesis. Throughout

this thesis, for any positive integer x, we use �x� to denote the set f�� � � � � x � �g; and for

any integers a and b, we let �a� b� denote the set fk � Z 	 a � k � bg. Also, all logarithms

are to base 2, unless otherwise specified.

In the context of randomized algorithms (Chapters 2 and 3), we use “with high proba-

bility” to mean “with probability at least � � n�c, where n is the number of nodes in the

network and c is a constant that can be set arbitrarily large by appropriately adjusting other

constants defined within the relevant context.”

Chapter 2

Accessing Nearby Copies of Replicated
Objects in a Distributed Environment

2.1 Introduction

As one might expect, the task of designing efficient algorithms for supporting access to

shared objects (e.g., files, pages of memory) over wide-area networks is challenging, both

from a practical as well as a theoretical perspective. With respect to any interesting mea-

sure of performance (e.g., latency, throughput), the optimal bound achievable by a given

network is a complex function of many parameters, including edge delays, edge capaci-

ties, buffer space, communication overhead, and patterns of user communication. Ideally,

we would like to take all of these factors into account when optimizing performance with

respect to a given measure. However, such a task may not be feasible in general because

the many network parameters interact in a complex manner. For this reason, we adopt a

simplified cost model for a network, in which the combined effect of the detailed network

parameter values is assumed to be captured by a single function that specifies the cost of

communicating a fixed-length message between any given pair of nodes. We anticipate

that analyzing algorithms under this model will significantly aid in the design of practical

algorithms for modern distributed networks.

This is joint work with Greg Plaxton, University of Texas at Austin, and Rajmohan Rajaraman, DIMACS;
a preliminary version of this work appears in [41].

5

6 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Accessing shared objects. Consider a set A of m objects being shared by a network

G, where several copies of each object may exist. In this paper, we consider the basic

problem of reading objects inA. Motivated by the need for efficient network utilization, we

seek algorithms that minimize the cost of the read operation. We do not address the write

operation, which involves the additional consideration of maintaining consistency among

the various copies of each object. The problem of consistency, although an important one,

is separate from our main concern, namely, that of studying locality. Our results for the

read operation apply for the write operation in scenarios where consistency either is not

required or is enforced by an independent mechanism.

We differentiate between shared and unshared copies of objects. A copy is shared if

any node can read this copy; it is unshared if only the node that holds the copy may read it.

We say that a node u inserts (resp., deletes) a copy of object A (that u holds) if u declares

the copy shared (resp., unshared).

We refer to the set of algorithms for read, insert, and delete operations as an access

scheme. Any access scheme that efficiently supports these operations incurs an overhead

in memory. It is desirable that this overhead be small, not only because of space consid-

erations, but also because low overhead usually implies fast adaptability to changes in the

network topology or in the set of object copies.

The main source of difficulty in designing an access scheme that is efficient with respect

to both time and space is the competing considerations of these measures. For example,

consider an access scheme in which each node stores the location of the closest copy of each

object in the network. This allows very fast read operations since a node knows the location

of the closest copy of any desired object. However, such an access scheme is impractical

because it incurs a prohibitively large memory overhead (proportional to the number of

objects in the network), and every node of the network may have to be informed whenever

a copy of an object is inserted or deleted. At the other extreme, one might consider an

access scheme using no additional memory. In this case insert and delete operations are

fast, but read operations are costly since it may be necessary to search the entire network

in order to locate a copy of some desired object.

Our access scheme. We design a simple randomized access scheme that exploits lo-

2.1. INTRODUCTION 7

cality and distributes control information to achieve low overhead in memory. The central

part of our access scheme is a mechanism to maintain and locate the addresses of copies of

objects. For a single object, say A, we can provide such a mechanism by the following ap-

proach. We embed an n-node “virtual” height-balanced tree T one-to-one into the network.

Each node u of the network maintains information associated with the copies of A residing

in the set of nodes that form the subtree of T rooted at u. Given the embedding of T , the

read operation may be easily defined as follows. When a node u attempts to read A, u first

checks its local memory for a copy of A or information about copies of A in the subtree of

T rooted at u. If this local check is unsuccessful, u forwards the request for object A to its

parent.

Naive extensions of the above approach to account for all objects require significant

overhead in memory for control information at individual nodes. We overcome this prob-

lem by designing a novel method to embed the different trees associated with different

objects. Our embedding enables us to define simple algorithms for the read, insert, and

delete operations, and to prove their efficiency for a class of cost functions that is appropri-

ate for modeling wide-area networks.

One important property of our access scheme is that it does not require location de-

pendent naming of the copies of the objects, as we will see. Thus it avoids renaming a

copy of an object every time this copy migrates (i.e., moves to another location in the net-

work). Location dependent naming also poses a problem when keeping track of replicated

objects, since copies of the same object located at different addresses in the network will

have different names. A distributed shared object may be replicated in order to improve

fault-tolerance or performance, for example. Other important properties of our scheme for

the restricted class of cost functions considered are that (i) for its distribution of control

information and of shared data, our scheme is expected to avoid “hot-spots” in the network

(i.e., heavily accessed nodes); and (ii) for its distribution of data, combined with its sup-

port for object replication, and fast adaptability to changes in the network, our scheme is

expected to scale well. Scalability is one of the most important problems to be solved in

today’s large-scale networks — for example, the World Wide Web, in spite of using scal-

able components (e.g., clients, servers, TCP/IP connections, DNS), has serious problems

of scalability as a whole.

8 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

The cost model. As indicated above, we assume that a given function determines the

cost of communication between each pair of nodes in the network. Our analysis is geared

towards a restrictive class of cost functions which we believe to be of practical interest.

The precise set of assumptions that we make with respect to the cost function is stated in

Section 2.2. Our primary assumption is that for all nodes x and costs r, the ratio of the

number of nodes within cost
r of node x to the number of nodes within cost r of node x

is bounded from above and below by constants greater than 1 (unless the entire network is

within cost
r of node x, in which case the ratio may be as low as 1).

There are several important observations we can make concerning this primary assump-

tion on the cost function. First, a number of commonly studied fixed-connection network

families lead naturally to cost functions satisfying this assumption. For example, fixed-

dimension meshes satisfy this assumption if the cost of communication between two nodes

is defined as the minimum number of hops between them; constant degree trees satisfy

this assumption if the cost of communication between two nodes is given by the distance

between these nodes in the physical layout (e.g., a wide-area layout, or a VLSI layout) of

the tree.

Following the latter example, fat-tree topologies [30] satisfy our assumption if the cost

of communication between two nodes is determined by the total cost of a shortest path

between them, where the cost assigned to individual edges grows at an appropriate geo-

metric rate as we move higher in the tree. Fat-trees are of particular interest here, because

of all the most commonly studied fixed-connection network families, the fat-tree captures

the hierarchical structure of most wide-area networks, and may provide the most plausible

approximation to the structure of current wide-area networks.

Even so, it is probably inappropriate to attempt to model the Internet, say, with any kind

of uniform topology, including the fat-tree. Note that our assumption on the cost function is

purely “local” in nature, and allows for the possibility of a network with a highly irregular

global structure. This may be the most important characteristic of our cost model.

Performance bounds. We show that our access scheme achieves optimality or near-

optimality in terms of several important complexity measures for the restricted class of cost

functions discussed above. In particular, our scheme achieves the following bounds:

2.1. INTRODUCTION 9

� The expected cost for any read request is asymptotically optimal.

� If the number of objects that can be stored at each node is q, then the additional memory

required is O�q log� n� words with high probability, where a word is an O�log n�-bit

string. Thus, if the objects are sufficiently large, i.e., ��log� n� words, the memory for

objects dominates the additional memory.

� The expected cost of an insert (resp., delete) operation at node u is O�C� (resp.,

O�C log n�), where C is the maximum cost of communicating a single word message

between any two nodes.

� The number of nodes that need to be updated upon the addition or removal of a node is

O�log n� expected and O�log� n� with high probability.

An obvious shortcoming of our analysis is that it only applies to the restricted class of

cost functions discussed above. While we do not expect that all existing networks fall

precisely within this restricted class, we stress that (i) our access scheme is well-defined,

and functions correctly, for arbitrary networks, and (ii) we expect that our access scheme

would have good practical performance on any existing network. (Although we have not

attempted to formalize any results along these lines, it seems likely that our performance

bounds would only degrade significantly in the presence of a large number of nontrivial

violations of our cost function assumptions.)

Related work. The basic problem of sharing memory in distributed systems has been

studied extensively in different forms. Most of the earlier work in this area — as in emula-

tions of PRAM on completely-connected distributed-memory machines (e.g., [21, 54]) or

bounded-degree networks (e.g., [45]), and algorithms for providing concurrent access to a

set of shared objects [40] — assume that each of the nodes of the network has knowledge

of a hash function that indicates the location of any copy of any object.

The basic problem of locating an object arises in every distributed system [37], and

was formalized by Mullender and Vitányi [38] as an instance of the distributed matchmak-

ing problem. Awerbuch and Peleg [5], and subsequently Bartal, Fiat, and Rabani [7] and

Awerbuch, Bartal, and Fiat [3], give near-optimal solutions in terms of cost to a related

problem by defining sparse-neighborhood covers of graphs. Their studies do not address

10 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

the overhead due to control information and hence, natural extensions of their results to our

problem may require an additional memory of m words at some node. However, we note

that their schemes are designed for arbitrary cost functions, whereas we have focused on

optimizing performance for a restricted class of cost functions.

In [6], Awerbuch and Peleg examine the problem of maintaining a distributed directory

server, that enables keeping track of mobile users in a distributed network. This problem

can be viewed as an object location problem, where objects migrate in the network.

In recent work, access schemes for certain Internet applications have been described

in [18, 20, 55]. Some of the ideas in our scheme are similar to those in [55]; however, the

two schemes differ considerably in the details. Moreover, the schemes of [18] and [55]

have not been analyzed. As in our study, the results of [20] concerning locality assume

a restricted cost model. However, their cost model, which is based on the ultrametric, is

different from ours. Also, their algorithms are primarily designed for problems associated

with “hot spots” (i.e., popular objects).

In [31], Maggs et al. investigate both the problem of determining the placement of

copies of the objects in the network, and the problem of devising an efficient access scheme,

with the main goal of keeping the edge congestion low. Their work considers cost mod-

els that arise in some restricted network topologies, such as trees, meshes, and clustered

networks.

A closely related problem is that of designing a dynamic routing scheme for net-

works [4, 11]. Such a scheme involves maintaining routing tables at different nodes of the

network in much the same way as our additional memory. However, in routing schemes the

size of additional memory is a function of network size, i.e., n, while in our problem the

overhead is primarily a function of m. Straightforward generalizations of routing schemes

result in access schemes that require an additional memory of m words at each node.

The remainder of this paper is organized as follows. Section 2.2 defines the model

of computation. Section 2.3 presents our access scheme. Section 2.4 contains a formal

statement of the main results. Section 2.5 analyzes the algorithm and establishes the main

results. Section 2.6 discusses directions for future research.

2.2. MODEL OF COMPUTATION 11

2.2 Model of computation

We consider a set V of n nodes, each with its own local memory, sharing a set A of

m � poly�n� objects. We define our model of computation by characterizing the follow-

ing aspects of the problem: (i) objects, (ii) communication, (iii) local memory, (iv) local

computation, and (v) complexity measures.

Objects. Each object A has a unique �logm�-bit identification. For i in �logm�, we

denote the ith bit of the identification of A by Ai. Each object A consists of ��A� words,

where a word is an O�log n�-bit string.

Communication. Nodes communicate with one another by means of messages; each

message consists of at least one word. We assume that the underlying network supports

reliable communication.

We define the cost of communication by a function c	V � �� R. For any two nodes u and

v in V , c�u� v� is the cost of transmitting a single-word message from u to v. We assume

that c is symmetric and satisfies the triangle inequality. We also assume for simplicity

that for u, v, and w in V , c�u� v� � c�u�w� if and only if v � w. (We make the latter

assumption for the sake of convenience only, and with essentially no loss in generality,

since an arbitrarily small perturbation in the cost function can be used to break ties.)

The cost of transmitting a message of length � from node u to node v is given by

f���c�u� v�, where f 	 N �� R� is any nondecreasing function such that f��� � �.

Given any u in V and any real r, let M�u� r� denote the set fv � V 	 c�u� v� � rg. We

refer to M�u� r� as the ball of radius r around u. We assume that there exist real constants

� � � and
 such that for any node u in V and any real r � �, we have

minf�jM�u� r�j� ng � jM�u�
r�j �
jM�u� r�j� (2.1)

as illustrated in Figure 2.1.

Local Memory. We partition the local memory of each node u into two parts. The first

part, the main memory, stores objects. The second part, the auxiliary memory, is for storing

possible control information.

12 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

. u

r

2r

M u r,()

M u 2r,()

� M u r,() M u 2r,() � M u r,()� �

Figure 2.1: Properties of the cost function.

Local Computation. There is no cost associated with local computation. (Although

the model allows an arbitrary amount of local computation at zero cost, our algorithm does

not perform any particularly complex local operations.)

Complexity measures. We evaluate any solution on the basis of four different com-

plexity measures. The first measure is the cost of reading an object. The second measure

is the size of the auxiliary memory at any node. The remaining two measures concern the

dynamic nature of the problem: We address the complexity of inserting or deleting a copy

of an object, and of adding or removing a network node. The third measure is the cost

of inserting or deleting a copy of an object. The fourth measure is adaptability, which is

defined as the number of nodes whose auxiliary memory is updated upon the addition or

removal of a node. (Our notion of adaptability is analogous to that of [11].)

2.3 The access scheme

In this section, we present our access scheme for shared objects. We assume that n is a

power of
b, where b is a fixed positive integer to be specified later (see the beginning of

Section 2.5). For each node x in V , we assign a label independently and uniformly at

2.3. THE ACCESS SCHEME 13

random from �n�. For i in �log n�, let xi denote the ith bit of the label of x. Note that the

label of a node x is independent of the unique �log n�-bit identification of the node. For all

x in V (resp., A in A), we define x�i� as the nonnegative integer with binary representation

x�i���b�� 	 	 	xib (resp., A�i� denotes A�i���b�� 	 	 	Aib), for i in ��log n��b�. We also assign a

total order to the nodes in V , given by the bijection 	 	 V � �n�.

We partition the auxiliary memory of each node in two parts, namely the neighbor table

and the pointer list of the node.

� Neighbor table. For each node x, the neighbor table of x consists of �log n��b levels.

The ith level of the table, i in ��log n��b�, consists of primary, secondary, and reverse

�i� j�-neighbors, for all j in �
b�. The primary �i� j�-neighbor y of x is such that

y�k� � x�k� for all k in �i�, and either (i) i
 �log n��b � � and y is the node of

minimum c�x� y� such that y�i� � j, if such a node exists, or (ii) y is the node

with largest 	�y� among all nodes z such that z�i� matches j in the largest number

of rightmost bits. Note that the primary �i� j�-neighbor of a node x is guaranteed

to exist, since x itself is a candidate node. Let d be a fixed positive integer, to be

specified later (see the beginning of Section 2.5). Let y be the primary �i� j�-neighbor

of x. If y�i� � j, then let Wi�j denote the set of nodes w in V n fyg such that

w�k� � x�k� for k in �i�, w�i� � j, and c�x�w� is at most O�c�x� y��. Otherwise,

let Wi�j be the empty set. The set of secondary �i� j�-neighbors of x is the subset U

of minfd� jWi�jjg nodes u with minimum c�x� u� in Wi�j — i.e., c�x� u� is at most

c�x�w�, for all w in Wi�j , and for all u in U , and jU j � d. A node w is a reverse

�i� j�-neighbor of x if and only if x is a primary �i� j�-neighbor of w.

In Figure 2.2, we illustrate the primary neighbors entries in the neighbor table of

node x for b � �; suppose the level i-neighbors of x in the table are given by (i)

above.

� Pointer list. Each node x also maintains a pointer list Ptr�x� with pointers to copies

of some objects in the network. Formally, Ptr�x� is a set of triples �A� y� k�, where A

is inA, y is a node that holds a copy of A, and k is an upper bound on the cost c�x� y�.

We maintain the invariant that there is at most one triple associated with any object

in Ptr�x�. The pointer list of x may only be updated as a result of insert and delete

14 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

0 1

level

level i

level 0

y z

node y with minimum c(x,y) such that
and

node z with minimum c(x,z) such that
and

y
i 1– …y

0() x
i 1– …x

0()=

z
i 1– …z

0() x
i 1– …x

0()=

nlog 1–()

z
i

1=

y
i

0=

Figure 2.2: The primary neighbor table of node x, for b � �.

operations. All the pointer lists can be initialized by inserting each shared copy in

the network at the start of the computation. We do not address the cost of initializing

the auxiliary memories of the nodes.

Let r be the node whose label matches (in terms of binary representation) the identifi-

cation of A in the largest number of rightmost bits. (In case of a tie between several nodes

r�� � � � � rk, let r be the unique node ri maximizing 	�ri�.) We call r the root node for object

A. The uniqueness of the root node for each A in A is crucial to guarantee the success of

every read operation.

In this section and throughout the paper, we use the notation h�ik to denote the sequence

��� � � � � �k (of length k��). When clear from the context, k will be omitted. In particular, a

primary neighbor sequence for A is a maximal sequence huik such that u� is in V , uk is the

root node for A, and ui�� is the primary �i� A�i��-neighbor of ui, for all i. It is worth noting

that the sequence huik is such that the label of node ui satisfies �ui�i � ��� � � � � ui���� �

�A�i� ��� � � � � A����, for all i.

We now give an overview of the read, insert, and delete operations.

2.3. THE ACCESS SCHEME 15

x3

x2

x1

secondary neighbors

x4

y

Figure 2.3: A read request for object A is forwarded along the primary neighbor sequence
for A with x � x�.

� Read. Consider a node x attempting to read an objectA. The read operation proceeds

by successively forwarding the read request for object A originating at node x along

the primary neighbor sequence hxi for A with x� � x. When forwarding the read

request, node xi�� informs xi of the current best upper bound k on the cost of sending

a copy of A to x. On receiving the read request with associated upper bound k, node

xi proceeds as follows. If xi is the root node for A, then xi requests that the copy

of A associated with the current best upper bound k be sent to x. Otherwise, xi

communicates with its primary and secondary �i� A�i��-neighbors to check whether

the pointer list of any of these neighbors has an entry �A� z� k�� such that k� is at

most k. Then, xi updates k to be the minimum of k and the smallest value of k� thus

obtained (if any). If k is within a constant factor of the cost of following hxi up to

xi, that is, k is O�
Pi��

j�� c�xj� xj����, then xi requests that the copy of A associated

with the upper bound k be sent to x. Otherwise, xi forwards the read request to xi��.

Figure 2.3 illustrates an example of a read request for object A generated by node

x � x�, which is forwarded along hxi until a pointer to a copy of A is found at node

y, one of the secondary neighbors of node x�.

Relating to the more general description of the read operation of our scheme de-

scribed in Section 2.1, the tree T associated with object A is given by the following

16 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Tx0

x3

x2

x1

the root of T is the root for A

Figure 2.4: The tree T associated with object A and the primary neighbor sequence for
x � x�.

rule: The parent of node x in T is the primary �i� A�i��-neighbor of x, where i is

the maximum index such that �x�i� ��� � � � x���� � �A�i� ��� � � � � A����; or in other

words, the parent of node x is the node xi in the primary neighbor sequence hxi for

A with x � x�. Figure 2.4 illustrates the tree T and the sequence hxi (without loss

of generality, suppose all the xi’s in this sequence are distinct).

� Insert. An insert request for object A generated by node y updates the pointer lists

of the nodes in some prefix of the primary neighbor sequence hyi for A with y� � y.

When such an update arrives at a node yi by means of an insert message, yi updates

its pointer list if the upper bound
Pi��

j�� c�yj� yj��� on the cost of getting object A

from y is smaller than the current upper bound associated with A in this list. In other

words, yi updates Ptr�yi� if �A� 	� 	� is not in this list, or if �A� 	� k� is in Ptr�yi� and

k is greater than
Pi��

j�� c�yj� yj���. Node yi forwards the insert request to node yi��

only if Ptr�yi� is updated.

� Delete. A delete request for object A generated by node y eventually removes all

triples of the form �A� y� 	� from the pointer lists Ptr�yi�, where hyi is the primary

neighbor sequence forA with y� � y, making the copy of A at y unavailable to other

nodes in the network. Upon receiving such a request by means of a delete message,

node yi checks whether the entry associated with A in its pointer list is of the form

2.3. THE ACCESS SCHEME 17

�A� y� 	�. If it is not, the delete procedure is completed and we need not proceed

further in updating the pointer lists in hyi. Otherwise, yi deletes this entry from its

pointer list, and checks for entries associated with A in the pointer lists of its reverse

�i � �� A�i � ���-neighbors. If an entry is found, yi updates Ptr�yi� by adding the

entry �A�w� k�c�w� yi��, where w is the reverse �i��� A�i����-neighbor of yi with

minimum upper bound k associated with A in its pointer list. A delete message is

then forwarded to yi��.

The read, insert, and delete operations are summarized in Figures 2.5 and 2.6. The

messages and requests in the figure are all with respect to object A. A read request is

generated by node x when x (� x�) sends a message Read�x�
� 	� to itself, if x does not

hold a copy of A. A read message Read�x� k� y� indicates that (i) a read request for object

A was generated at node x, (ii) the current best upper bound on the cost of reading a copy

of A is k, and (iii) such a copy resides at y. An insert (resp., delete) request is generated

when node y (� y�) sends a message Insert�y� �� (resp., Delete�y�) to itself. An insert

message Insert�y� k� indicates to its recipient node z that the best known upper bound on

the cost incurred by bringing the copy of A located at y to the node z is k. We assume that

y holds a copy of A and that this copy is unshared (resp., shared) when an insert (resp.,

delete) request for A is generated at y.

The correctness of our access scheme follows from the two points below:

1. The insert and delete procedures maintain the following invariants. For any A in A
and any y in V , there is at most one entry associated with A in the pointer list of y.

If y holds a shared copy of A and hyi is the primary neighbor sequence for A with

y� � y, then (i) there is an entry associated with A in the pointer list of every node

in hyi, and (ii) the nodes that have a pointer list entry associated with the copy of A

at y form a prefix subsequence of hyi. The preceding claims follow directly from the

insert and delete procedures as described.

2. Every read request for any object A by any node x is successful; that is, it locates

and brings to x a shared copy of A, if such a copy is currently available. The read

operation proceeds by following the primary neighbor sequence hxi for A with x� �

18 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

x, until either a copy of A is located or the root for A is reached. By point 1 above,

there exists a shared copy of A in the network if and only if the root for A has a

pointer to it.

Action of xi on receiving a message Read�x� k� y�:
If i � � and xi�i� �� �� A�i� ��, or i � �log n��b� � (that is, xi is the root for A) then

� Node xi sends a message Satisfy�x� to node v such that �A� v� 	� is in Ptr�xi�,
requesting it to send a copy of A to x. If Ptr�xi� has no such entry, then there
are no shared copies of A.

Otherwise

� Let U be the set of secondary �i� A�i��-neighbors of xi. Node xi requests a copy
of A with associated upper bound at most k from each node in U � fxi��g.

� Each node u in U � fxi��g responds to the request message received from xi as
follows: if there exists an entry �A� v� qv� in Ptr�u� and if q�v � qv � c�xi� u� �Pi��

j�� c�xj� xj��� is at most k, then u sends a success message Success�v� q�v� to
xi.

� Let U � be the set of nodes u from which xi receives a response message
Success�u� ku�. If U � is not empty, then xi updates �k� y� to be �kz� z�, where
z is a node with minimum ku over all u in U �.

� If k � O�
Pi��

j�� c�xj� xj���� then xi sends a message Satisfy�x� to node y,
requesting y to send a copy of A to x. Otherwise, xi forwards a message
Read�x� k� y� to xi��.

Figure 2.5: Action on receiving a message Read for object A.

2.4 Performance bounds

In this section, we state our main claims regarding the performance of our access scheme.

In Theorems 1 through 4 below, we state bounds on the cost of a read, the cost of an insert

or delete, the size of auxiliary memory, and the adaptability of our access scheme.

Theorem 1 Let x be any node in V and let A be any object in A. If y is the node with

minimum c�x� y� that holds a shared copy of A, then the expected cost of satisfying a read

request for A by x is O�f���A��c�x� y��.

2.4. PERFORMANCE BOUNDS 19

Let C denote maxfc�u� v�	u� v � V g. If a node x tries to read an object A for which

there is currently no shared copy in the network, then the expected cost of the read operation

is O�C�.

Theorem 2 The expected cost of an insert operation isO�C�, and that of a delete operation

is O�C log n�.

Theorem 3 Let q be the number of objects that can be stored in the main memory of each

node. The size of the auxiliary memory at each node is O�q log� n� words with high proba-

bility.

Theorem 4 The adaptability of our scheme is O�log n� expected and O�log� n� with high

probability.

Action of yi on receiving a message Insert�y� k�:
If �A� 	� 	� is not in Ptr�yi�, or �A� 	� k�� is in Ptr�yi� and k� � k, then

� Node yi accordingly creates or replaces the entry associated with A in Ptr�yi� by
inserting �A� y� k� into this list.

� If yi�i� �� � A�i� �� then yi sends a message Insert�y� k � c�yi� yi���� to yi��.

Action of yi on receiving a message Delete�y�:
If �A� y� 	� is in Ptr�yi� then

� Let U be the set of reverse �i � �� A�i � ���-neighbors of yi. Node yi removes
�A� y� 	� from Ptr�yi�, and requests a copy of A from each u in U .

� Each u in U responds to the request message from yi by sending a message
Success�v� qv � c�yi� u�� to yi if and only if �A� v� qv� is in Ptr�u�.

� Let U � be the set of nodes u such that yi receives a message Success�u� ku� in
response to the request message it sent. If jU �j � � then yi inserts �A�w� kw�
into Ptr�yi�, where w is the node in U � such that kw � ku, for all u in U �.

� If yi�i� �� � A�i� �� then yi sends a message Delete�y� to yi��.

Figure 2.6: Actions on receiving messages Insert and Delete for object A.

20 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

2.5 Analysis

In this section, we analyze the access scheme described in Section 2.3, and establish the

main results described in Section 2.4. Section 2.5.1 presents some useful properties of

balls. Section 2.5.2 presents properties of primary and secondary neighbors. Section 2.5.3

presents the proofs of Theorems 1 and 2. Sections 2.5.4 and 2.5.5 present the proofs of

Theorems 3 and 4, respectively.

Several constants appear in the model, the algorithms, and the analysis: � and
 appear

in the model, b and d appear in the algorithms, � and
 appear in the analysis. We choose

b, d, �, and
 such that the following inequalities hold.

b �
��	 (2.2)

d � �� (2.3)

� �
� (2.4)

 � maxf�
��� �e����
� ��d � ���
b� ��
e�
b�d��� ��e
���d�d��g (2.5)

 ��� 	
db log� �e��� (2.6)

An assignment of values to the constants �, b, d, and
 that satisfies the above inequalities

may be obtained as follows: Set � equal to
b�	�
��	, d equal to e
�b�	���
��	, and
 equal

to �e
��	�
b�	. The preceding assignment satisfies Equations 2.5 if b is set sufficiently

large. Equations 2.4 and 2.6 can be satisfied by setting b large enough so that
b �
� and

b�	�db log� �e � ��e
��	.

2.5.1 Properties of balls

In this section, we prove several properties of the “local neighborhoods” of the nodes in

V with respect to the cost function c. We view these “neighborhoods” as balls centered at

the nodes of V . In Section 2.2, we defined the ball of radius r around a node u, M�u� r�.

Now we define the ball of size k around node u, N�u� k�, for any u in V and any integer

k in ��� n�: Let N�u� k� denote the unique set of k nodes such that for any v in N�u� k�

and w not in N�u� k�, c�u� v� is less than c�u�w�. For convenience, if k is greater than n,

2.5. ANALYSIS 21

u

N u �
2
k1,()

v
w r0

r1

Figure 2.7: Illustrating the proof of Lemma 2.5.1.

we let N�u� k� be V . As for the balls M�u� r�, we define the radius of N�u� k� to be the

maximum value of c�u� v� over all v in N�u� k�.

In the proofs of the lemmas in this section, we extensively use Equation 2.1 as well as

the fact that the cost metric is symmetric and satisfies the triangle inequality.

Lemma 2.5.1 Let u, v, and w be in V and let k� and k� be positive integers. If v is in

N�u� k�� and w is in N�v� k��, then w is in N�u�
k� �
�k��.

Proof: Let r� and r� denote c�u� v� and c�v�w�, respectively. The node w is contained in

the ball M�u� c�u�w��. If r� � r�, then jM�u� c�u�w��j is at most jM�u� r� � r��j, which

is at most
k� by Equation 2.1. Otherwise, jM�u� r� � r��j is at most jM�v� �r��j, which

is at most
�k� by Equation 2.1. Therefore, w belongs to N�u�
k� �
�k��. Figure 2.7

illustrates the case r�
 r�. Q.E.D.

We now consider the smallest (resp., the largest) ball centered at a node v that contains

(resp., is contained in) some given subset of nodes. Given any subset S of V and some

node u in S, let n��u� S� (resp., n��u� S�) denote the largest (resp., smallest) integer k

such that N�u� k� is a subset (resp., superset) of S. Let N��u� S� and N��u� S� denote

N�u� n��u� S�� and N�u� n��u� S��, respectively.

Lemma 2.5.2 Let u be in V , let S be a subset of V , and let k be in ��� n�. Then N�u� k� is

a subset (resp., superset) of S if and only if N�u� k� is a subset of N��u� S� (resp., superset

of N��u� S�).

22 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Proof: If N�u� k� is a subset of S then n��u� S� is at least k; hence, N�u� k� is a subset

of N��u� S�. If N�u� k� is a subset of N��u� S� then N�u� k� is a subset of S because

N��u� S� is a subset of S. If N�u� k� is a superset of S then n��u� S� is at most k; hence,

N�u� k� is a superset of N��u� S�. If N�u� k� is a superset of N��u� S� then N�u� k� is a

superset of S because N��u� S� is a superset of S. Q.E.D.

Lemma 2.5.3 Let u belong to V , and let k� and k� denote positive integers such that

k� �
�k�. For any v in N�u� k��, n��v�N�u� k��� is at least k��
 and N��v�N�u� k���

is a subset of N�u�
k��.

Proof: We first obtain a lower bound on n��v�N�u� k���. Let r� and r� denote the radii of

N�u� k�� and N�u� k��, respectively. Since k� �
�k�, Equation 2.1 implies that r�� r� �
�r�� r���
. Let w be the node in N��v�N�u� k��� such that c�v�w� is maximum. A ball of

radius �r� � r�� around v is contained in N�u� k�� (since v is contained in N�u� k��). Thus

r��r� � c�v�w�. It follows that
c�v�w� is at least
�r��r�� � r��r� and M�v�
c�v�w��

is a superset of N�u� k��. We now obtain a lower bound on n��v�N�u� k��� as follows:

n��v�N�u� k��� � jM�v� c�v�w��j
� jM�v�
c�v�w��j�

� k��
�

We now place an upper bound on n��v�N�u� k���. Letw be the node inN��v�N�u� k���

such that c�v�w� is maximum. We have r� � r� � c�v�w� � r� � r�. (We showed that

r� � r� � c�v�w� in the preceding paragraph, and the other inequality follows from the

triangle inequality.) It follows that
�r� � r�� is at least c�v�w� and M�v� c�v�w�� is a

subset of M�u�
r��. Therefore,

n��v�N�u� k��� � jM�v� c�v�w��j
� jM�u�
r��j
�
k��

Q.E.D.

2.5. ANALYSIS 23

We use Lemmas 2.5.1 to 2.5.3 to prove Lemma 2.5.4 below. Lemma 2.5.4 and Corol-

lary 2.5.4.1 are used in Section 2.5.3. We refer to any predicate on V that depends only on

the label of v as a label predicate. Given any node u in V and a label predicate P on V , let

p�u�P� denote the node v such that (i) P�v� holds, and (ii) for any node w such that P�w�
holds, c�u� v� is at most c�u�w�. (We let p�u�P� be null if such a v is not defined.) Let

P �u�P� be M�u� c�u� p�u�P���, if p�u�P� is not null, and V otherwise.

Lemma 2.5.4 examines the effect of the relationship between the set P �u�P� and the

probability distribution of the labels of the nodes, for any given node u and label predicate

P . For u in V , and i in ��log n��b�, let ��i�u� denote the string of �log n� ib� bits given by

u��log n��b� �� 	 	 	u�i� ��u�i�. For convenience, we let ��i�u� denote ��i���u�. For all i

and all u in V , let Pi�u� hold if and only if u�i� � A�i�. For all i and all u in V , let P�i�u�

denote
j�
i�Pj�u�. Let P�i�u�, P�i�u�, and P�i�u� be defined similarly. We note that for

u and v in V , and nonnegative integers i and j, if �u �� v�� ��u � v�
 �i �� j��, then Pi�u�

and Pj�v� are independent random variables. Also, each of the predicates defined above is

a label predicate.

Lemma 2.5.4 Let S and S� be subsets of V , and let u belong to S. Let P be a label

predicate on V and for each v in S�, let ����v� be chosen independently and uniformly at

random.

1. Given that P �u�P� � S, we have that (i) the variables ����v�, for all v in S� n
P �u�P�, are independent and uniformly random, and (ii) for each node v inP �u�P�n
fp�u�P�g, P�v� is false.

2. Given that P �u�P� �� S, we have that (i) the variables ����v� for all v in S� n
N��u� S� are independent and uniformly random, and (ii) for each node v inN��u� S�,

P�v� is false.

3. Given that P �u�P� � S, we have that (i) the variables ����v� for all v in S� n
N��u� S� are independent and uniformly random, and (ii) for each node v inN��u� S�n
fp�u�P�g, P�v� is false.

24 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Proof: We first consider Part 1 of the lemma. Part 1(i) follows from the independence of

P�v� and P�w�, for any two distinct nodes v and w. By the definition of P , P�p�u�P��
holds and for each node v in P �u�P�, P�v� is false. This proves Part 1(ii). Parts 2 and 3

follow similarly. For Part 2, we note that the event P �u�P� �� S is equivalent to the

event that for each node v in N��u� S�, P�v� is false. For Part 3, we note that the event

P �u�P� � S is equivalent to the event that for each node in N��u� S� n fn��u� S�g, P�v�
is false. Q.E.D.

The following claim follows from repeated application of Part 1 of Lemma 2.5.4.

Corollary 2.5.4.1 Let S be an arbitrary subset of V , let i be in ��log n��b� ��, and let S�

be a subset of V such that ����u� is independently and uniformly random for each u in

S�. Given a sequence of nodes u�� � � � � ui such that for all j in �i�, uj�� � p�uj�P�j� and

P �uj�P�j� � S, we have

1. The variables ����u� for all u in S� n�j�
i�P �u�P�j� are independent and uniformly

random.

2. The variable ��i�ui� is uniformly random and for each node u in �j�
i�P �uj�P�j� n
fuig, P�i�u� is false. Q.E.D.

2.5.2 Properties of neighbors

In this section, we establish certain claims concerning the different types of neighbors

that are defined in Section 2.3. We differentiate between root and nonroot primary �i� j�-

neighbors. A root primary �i� j�-neighbor w of v is a primary �i� j�-neighbor w of v such

that w�i� �� j or i � �log n��b� �. A primary neighbor that is not a root primary neighbor

is a nonroot primary neighbor. Note that, for i
 �log n��b � �, if u is a root primary

�i� j�-neighbor of v, then u��� equals v���, for each � in �i�, and there is no node w in V such

that w�i� equals j and w��� equals v���, for each � in �i�.

Lemma 2.5.5 Let u and v be in V , and let k denote jM�u� c�u� v��j. For any j in �
b�, we

have that (i) for any i in ��logn��b � ��, the probability that u is a primary �i� j�-neighbor

2.5. ANALYSIS 25

of v is at most e���k�
�������i���b, and (ii) for any i in ��log n��b�, the probability that u is a

root primary �i� j�-neighbor of v is at most e�n��
�i���b

.

Proof: Consider the ball M�v� c�v� u��. By Equation 2.1, jM�v� c�v� u��j �
jM�v�
c�v� u��j�
. Since M�v�
c�v� u�� is a superset of M�u� c�u� v��, we have

jM�v� c�v� u��j � k�
. The probability that a node w in M�v� c�u� v�� n fu� vg does

not match the label of v in its �i���b rightmost bits is at most �� ��
�i���b. Since i is less

than �log n��b� �, the probability that u is a primary �i� j�-neighbor of v is at most

��� ��
�i���b��k�
���

� e���k�
�������i���b�

If u is a root primary �i� j�-neighbor of v, then u��� equals v��� for each � in �i� and there is

no node w in V such that w�i� equals j and w��� equals v��� for each � in �i�. Therefore, the

probability that u is a root primary �i� j�-neighbor of v is at most

���
ib��� � ��
�i���b�n����� ��
b�

� ���
ib��� � ��
�i���b�n

� ���
ib�e�n��
�i���b

�

Q.E.D.

Corollary 2.5.5.1 Let u and v be in V , let i be in ��log n��b�, and let j be in �
b�. If u is a

primary �i� j�-neighbor of v, then v is in N�u�O�
ib log n�� with high probability.

Q.E.D.

Lemma 2.5.6 and Corollary 2.5.6.1 below establish bounds on the number of nodes v

such that u is a primary or secondary neighbor of v, and on the number of nodes v such that

v is a reverse neighbor of u, respectively. For any u in V , let au denote the total number of

triples �i� j� v� such that i belongs to ��log n��b�, j belongs to �
b�, v belongs to V , and u is a

primary or secondary �i� j�-neighbor of v. Lemma 2.5.6 is used in the proof of Theorem 4,

while Corollary 2.5.6.1 is used in the proofs of Theorems 2 and 3.

26 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Lemma 2.5.6 Let u be in V and let i be in ��log n��b�. Then the number of nodes for which

u is an ith level primary neighbor isO�log n�with high probability. Also, E�au� � O�log n�

and au is O�log� n� with high probability.

Proof: Given a node v in V , i in ��log n��b���, and j in �
b�, it follows from Lemma 2.5.5

that the probability that u is a root primary �i� j�-neighbor of v is at most ���
ib�e�n��
�i���b

.

Given a node v in V and j in �
b�, the probability that u is a root ��log n��b� j�-primary

neighbor of v is at most ��n.

Fix j in �
b�. Let � equal �log n � log log n��b � ����, where the constant in the ����

term is chosen sufficiently large. We consider two cases: i
 � and i � �. If i
 �, then

the probability that there exists v in V such that u is a root primary �i� j�-neighbor of v is

at most

n���
ib�e�n��
�i���b

� ne���logn�

� O���poly�n���

If i � �, then given v in V , the probability that u is a root primary �i� j�-neighbor of v

is at most ��
�b � O��log n��n�. It follows from Chernoff bounds [10] that the number of

nodes for which u is a root primary �i� j�-neighbor is O�log n� with high probability.

We now consider secondary and nonroot primary neighbors. For any i in ��logn��b�, u

is a secondary or nonroot primary �i� j�-neighbor of v only if j is u�i� and u is one of the

d� � nodes w in V with minimum c�v�w� whose lowest ib bits match those of v. We now

fix u and i, set j to u�i�, and obtain an upper bound on the probability that u is one of the at

most d � � nodes w with minimum c�v�w� and whose first ib bits match those of v.

Consider a node v in N�u� �k��
�i���b� nN�u� �k
�i���b�, where � is a real constant to

be specified later. If k equals zero, then the probability that u is a primary or secondary

�i� j�-neighbor of v is at most ��
ib. Otherwise, consider the ball M�v� c�v� u��. By the

low-expansion condition (i.e., the right inequality of Equation 2.1), jM�v� c�v� u��j is at

least jM�v�
c�v� u��j�
. We are given that M�u� c�u� v�� is a superset of N�u� �k
�i���b�.

Since M�v�
c�v� u�� is a superset of M�u� c�u� v��, we obtain that jM�v� c�v� u��j is at

2.5. ANALYSIS 27

least �k
�i���b�
. The probability that u is a primary or secondary �i� j�-neighbor of v is

at most

d

�
�k
�i���b�

d

�
��� ��
�i���b���

k��i���b�
��d��
ib
�i���bd�

� d�e�k
�i���b��
d��de��
k�
��� ��
�i���b��d��
ib
�i���bd�

� �d�e�k��
d��d�e��
k�
�
ib�

� ����
��k
ib��

(The second step holds since d �
b �
ib and �� � ��
ib���
ib

is at most �. The third

step follows by choosing � large enough with respect to
 and d such that e�
k�
 �

�
k
k�dd�����k�
�d�� for all k � �.)

Thus, the expected number of nodes for which u is a secondary or nonroot primary

neighbor is at most

X
i�
�logn��b��j�u
i�

X
k��

X
v�N�u��k����i���b�nN�u��k��i���b�

����
��k
ib�

� X
i�
�logn��b��j�u
i�

b�

� O�log n��

To obtain a high probability bound on the number of nodes for which u is a secondary or

nonroot primary neighbor, we proceed as follows. For any v not in N�u���
�i���b log n��,

it follows from Lemma 2.5.5 that the probability that u is a secondary or nonroot primary

�i� j�-neighbor of v is O���poly�n��. For any v in N�u���
�i���b log n��, the probability

that u is a secondary or nonroot primary �i� j�-neighbor of v is at most ��
�i���b. Therefore,

the number of nodes for which u is a secondary or nonroot primary neighbor is O�log� n�

with high probability.

The bounds on expectation and the high probability bounds together establish thatE�au�

is O�log n� and au is O�log� n� with high probability. Q.E.D.

Corollary 2.5.6.1 For any u in V , the total number of reverse neighbors of u is O�log� n�

with high probability, and O�log n� expected.

28 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Proof: The desired claim follows directly from Lemma 2.5.6, since v is a reverse �i� j�-

neighbor of u only if u is a primary �i� j�-neighbor of v. Q.E.D.

Lemma 2.5.7 is used in the proof of Theorem 3. For a given a node u, it provides a

bound on the number of primary neighbor sequences that have u in the ith position. For

any u and v in V and i in ��log n��b�, v is said to be an i-leaf of u if there exists a sequence

v � v�� v�� � � � � vi��� vi � u, such that for all j in �i�, vj�� is a primary �j� vj���j��-neighbor

of vj .

Lemma 2.5.7 Let u belong to V , and let i be in ��log n��b�. Then the number of i-leaves

of u is O�
ib log n� with high probability.

Proof: We establish the lemma by showing that if v is an i-leaf of u, then v is in

N�u� c�

ib log n� with high probability, where c� is a real constant to be specified shortly

(see the next paragraph). By Corollary 2.5.5.1, we have that for all j in �i�, vj is in

N�vj��� c�
�j���b log n� with high probability for some sufficiently large real constant c�.

We will prove by induction on j in �i � �� that v � v� is in N�vj� c�
jb log n� with high

probability.

The induction base follows trivially. For the induction step, assume that v is in

N�vj� c�
jb log n�. By Corollary 2.5.5.1, vj belongs to N�vj��� c�
jb log n� with high prob-

ability. Applying Lemma 2.5.1 with the substitution �vj��� vj� v� for �u� v� w�, we obtain

that v is in N�vj��� �
c� �
�c��
jb log n�, with high probability. Since
�

b (by

Equation 2.2), we can choose c� large enough so that c��
b �
�� is at least
c�. It thus

follows that v is in N�vj��� c�
�j���b�.

Applying the above inductive claim with j � i, we obtain that v is inN�u�O�
ib log n��

with high probability, completing the proof. Q.E.D.

2.5.3 Cost of Operations

In this section, we place upper bounds on the cost of the read, insert, and delete oper-

ations by establishing Theorems 1 and 2. We first introduce some notation and prove a

few elementary lemmas in Section 2.5.3.1. The bulk of the analysis is in Sections 2.5.3.2

2.5. ANALYSIS 29

and 2.5.3.3. Using the tools developed in these two sections, we finally prove Theorems 1

and 2 in Section 2.5.3.4. Before beginning the analysis, we remark that most of the notation

and tools developed in Sections 2.5.3.1, 2.5.3.2, and 2.5.3.3 are only used in the analysis

of the read operation.

2.5.3.1 Preliminaries

Consider a read request originating at node x for an object A. Let y denote a node that

has a copy of A. In the following, we show that the expected cost of a read operation

is O�f���A��c�x� y��. Letting y denote the node with minimum c�x� y� among the set of

nodes that have a copy of A, this bound implies that the expected cost is asymptotically

optimal.

Let hxi and hyi be the primary neighbor sequences for A with x� � x and y� � y,

respectively. For any nonnegative integer i, let Ai (resp., Di) denote the ball of smallest

radius around xi (resp., yi) that contains xi�� (resp., yi��). Let Bi (resp., Ei) denote the

set ���j�iAj (resp., ���j�iDj). Let Ci denote the ball of smallest radius around xi that

contains all of the secondary �i� A�i��-neighbors of xi. For convenience, we define B�� �

E�� � �.

It is useful to consider an alternative view of xi, yi, Ai, and Di. For any nonnegative i,

if xi�� (resp., yi��) is not the root node for A, then xi�� (resp., yi��) is p�xi�P�i� (resp.,

p�yi�P�i�) and Ai (resp., Di) is P �xi�P�i� (resp., P �yi�P�i�).

Let � be an integer constant satisfying Equations 2.2 through 2.6. For any nonneg-

ative integer i and any integer j, let Xj
i (resp., Y j

i) denote the ball N�x� �j
�i���b� (resp.,

N�y� �j
�i���b�). Let i	 denote the least integer such that the radius ofX�
i� is at least c�x� y�.

Let ai (resp., bi) denote the radius of X�
i (resp., Y �

i).

Lemma 2.5.8 For all i such that i � i	, X�
i is a superset of Y �

i .

Proof: By the definition of i	, ai is at least c�x� y�. Therefore, M�y�
ai� is a superset of

X�
i . Hence, M�y�
ai� contains at least �
�i���b nodes and is a superset of Y �

i .

30 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

By Equation 2.1, jM�x� �ai�j is at most
�jM�x� ai�j �
�jX�
i j. By Equation 2.4,

�jX�
i j �
��
�i���b � ��
�i���b. Thus, M�x� �ai� is a subset of X�

i . Since M�x� �ai� is

a superset of M�y�
ai�, which is a superset of Y �
i , the claim holds. Q.E.D.

Lemma 2.5.9 For all i in ��log n��b �
� we have
bb log� �cai � ai�� �
db log� �eai and

bb log� �cbi � bi�� �
db log� �ebi. For i � �log n��b �
, we have ai�� �
db log� �eai and

bi�� �
db log� �ebi. Also, ai� and bi� are both O�c�x� y��.

Proof: We prove the bounds for ai�� and ai�. The bounds for bi�� and bi� follow the same

lines. Since � �
b by Equation 2.4, for all i in ��log n��b �
�, we have jX�
i��j �
bjX�

i j.
Therefore, for all i in ��log n��b�
�, it follows from Equation 2.1 that
bb log� �cai � ai�� �

db log� �eai. For i � �log n��b�
, jX�

i��j �
bjX�
i j, and hence, ai�� �
db log� �eai.

If i	 � �, then ai� (resp., bi�) is at most
db log� �ec�x� y� � O�c�x� y��. Otherwise, ai� is

O�
dlog� �e� � O�c�x� y��, since � and � are constants. Q.E.D.

We define two sequences hsii and htii of nonnegative integers as follows:

si �

�����
����

� if Bi � X�
i , Ai � X��

i , Ci � X�
i ,

� if Bi � X�
i , Ai � X��

i , Ci �� X�
i ,

 if Bi � X�
i , Ai �� X��

i , and
� � j if � � j � i, Bi�j �� X�

i , Bi�j�� � X�
i .

ti �

�
� if Ei � Y �

i , and
� � j if � � j � i, Ei�j �� Y �

i , Ei�j�� � Y �
i .

The following intuition underlies the above definitions of si and ti. For any j, the

expected sizes of the balls Ai and Di are both
�i���b. Thus, the expected sizes of the balls

Bi and Ei are both at most
�i���b��. Moreover, the expected size of Ci is at least c�
�i���b,

where c� is a constant that depends on d. The constant � is chosen sufficiently large and d

is chosen sufficiently larger than � such that the “expected behavior” of the balls Ai, Bi,

Ci, and Ei is as follows: Bi � X�
i , Ai � X��

i , Ci � X�
i , and Ei � Y �

i . The value of si

(resp., ti) indicates the degree to which the sizes of the balls Ai, Bi, and Ci (resp., Di and

Ei) deviate from this expected behavior. The larger the value of si, the greater the deviation

from the expected behavior.

2.5. ANALYSIS 31

Lemma 2.5.10 If si is in f�� ��
g, then c�xi� xi��� is O�ai�. If ti is �, then c�yi� yi��� is

O�bi�.

Proof: The proof of the first claim follows from the observation that if si is in f�� ��
g
then Ai � Bi � X�

i . The proof of the second claim follows from the observation that if ti

is � then Di � Ei � Y �
i . Q.E.D.

2.5.3.2 Properties of hsii and htii

Our plan for determining an upper bound on the cost of the given read operation for object

A is as follows. Let � be the smallest integer i � i	 such that �si� ti� � ��� ��. By the

definitions of s	 and t	 , C	 � X�
	 and Y �

	 � E	 � D	 . By Lemma 2.5.8, X�
	 � Y �

	 , thus

implying that C	 is a superset of D	 . Thus, a copy of A is located within � forwarding steps

along hxi. By the definition of the primary and secondary neighbors, the cost of any request

(resp., forward) message sent by node xi is at mostO�c�xi� xi���� (resp., c�xi� xi���). Since

a copy of A is located within � forwarding steps, the cost of all messages needed in locating

the particular copy of A that is read is at most O�
P

��j�	 �dc�xj� xj��� � c�yj� yj�����.

Figure 2.8 illustrates a read request for object A generated by node x � x�, which is

forwarded along hxi until a pointer to the copy of A residing at node y is found at node y	

(a secondary neighbor of x�). The cost of reading the copy is at most f���A�� times the

preceding cost. Since d is a constant, the cost of reading A is at most

X
��j�	

O�f���A���c�xj� xj��� � c�yj� yj����� (2.7)

The remainder of the proof concerns the task of showing that E�
P

��j�	 �c�xj� xj��� �

c�yj� yj����� is O�c�x� y��. A key idea is to establish that the sequence hsi� tii corresponds

to a two-dimensional random walk that is biased towards ��� ��. Lemmas 2.5.11 and 2.5.12

below provide a first step towards formalizing this notion.

Lemma 2.5.11 Let i be in ��logn��b � ��. Given sj and tj for all j in �i� such that si�� is

at least �, the probability that si is less than si�� is at least � �
�. Given sj and tj for all

j in �i� such that ti�� is at least �, the probability that ti is less than ti�� is at least � �
�.

32 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

x0

x3
x2

x1

y2

y1

y0

secondary neighbors

x4

y3

Figure 2.8: A read request for object A is forwarded until a pointer to a copy of A is found.

Lemma 2.5.12 Let i be in ��logn��b � ��. Given sj and tj for all j in �i� such that si�� is

at most �, the probability that si is � is at least � �
. Given sj and tj for all j in �i� such

that ti�� is at most �, the probability that ti is � is at least ��
.

In order to establish the above lemmas, we first introduce some additional notation. For

each i � ��, we define Si and Ti as follows. Let S�� � T�� � � and for i � � let

Si �

���
��

Si�� � Bi � �Ci �N��xi�X�
i �� if si � f�� �g,

Si�� � Bi if si �
,
Si�� � Bi�si�� �N��xi�si�	�X

�
i � otherwise.

Ti �

�
Ti�� � Ei if ti � �,
Ti�� � Ei�ti � N��yi�ti��� Y

�
i � otherwise.

The set Si (resp., Ti) contains all of the nodes whose labels need to be examined to

determine the values of s� through si (resp., t� through ti). Moreover, as we show in

Lemma 2.5.13, the particular values of s� through si and t� through ti bias the distribution

of only a suffix of the labels of the nodes in Si � Ti.

Lemma 2.5.13 Let i be in ��logn��b � ��. Given sj and tj for all j in �i�, we have

1. The variables ����u�, for all u not in Si�Ti, are independent and uniformly random.

2.5. ANALYSIS 33

2. There exists a subset S�i of Si of size at most d� � such that (i) the variables ��i�u�,

for all u in S�i, are independent and uniformly random, and (ii) for each node u in

Si n S�i, P�i�u� is false.

3. There exists at most one node v in Ti such that (i) the variable ��i�v� is uniformly

random, and (ii) for each node u in Ti n fvg, P�i�u� is false.

Proof: We prove Parts 1, 2, and 3 for all i � ��. The proof is by induction. For the

induction base we set i � ��. Part 1 follows directly from the random assignment of

labels. For Part 2, we set S��� to �, and the desired claim holds since S�� is �. The claim of

Part 3 holds vacuously since T�� is �.

For the induction hypothesis, we assume that Parts 1, 2, and 3 of the lemma hold for

i� �. We first consider different cases depending on the value of si.

(a) si � � � j, j � �i�: The event si � � � j is equivalent to the event �Bi�j�� �
X�

i �
 �Ai�j �� X�
i �. We first condition on the event Bi�j�� � X�

i by invoking

Corollary 2.5.4.1 with the substitution �X�
i � V n �Si���Ti���� i� j� for �S� S �� i�. We

next condition on the event Ai�j �� X�
i by invoking Part 2 of Lemma 2.5.4 with the

substitution �xi�j�X�
i � V n�Si���Ti���Bi�j����P�i� for �u� S� S ��P�. By combining

Part (i) of both invocations, we have (a.i) the variables ����v�, for all v not in Si�� �
Ti���Bi�j���N��xi�j�X�

i �, are independent and uniformly random. By combining

Part (ii) of both invocations, we have (a.ii) for each node v in Bi�j�� �N��xi�j �X�
i �,

P�i�v� is false.

We set S�i to S�i�� n �Bi�j�� �N��xi�j�X�
i ��.

(b) si �
: The event si �
 is equivalent to the event �Bi � X�
i �
 �Ai �� X��

i �. We first

condition on the event Bi � X�
i by invoking Corollary 2.5.4.1 with the substitution

�X�
i � V n �Si�� � Ti���� i� for �S� S �� i�. It follows from the preceding invocation and

the definition of Bi that (b.i) the variables ����v�, for all v not in Si���Ti���Bi, are

independent and uniformly random, and (b.ii) for each node v in Bi n fxi��g, P�i�v�

is false.

We set S�i to S�i�� n �Bi n fxi��g�.

34 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

(c) si � f�� �g: The event si � f�� �g is equivalent to the event �Bi � X�
i �
�Ai � X��

i �.

We condition on the event Bi � X�
i by invoking Corollary 2.5.4 with the substitution

�X�
i � V n �Si�� � Ti���� i� for �S� S �� i�. It follows from the preceding invocation and

the definition of Bi that (i) the variables ����v�, for all v not in Si�� � Ti�� �Bi, are

independent and uniformly random, and (ii) for each node v in Bi n fxi��g, P�i�v� is

false.

Let S�i equal the set fv � Ci �N��xi�X�
i �	P�i�v�g. By the definition of Ci, jS�ij is at

most d � �. If Ci �� X�
i , then Ci � N��xi�X�

i � and it follows from the definition of

Ci that (c.i) the variables ����v�, for all v not in Si���Ti���Bi�Ci, are independent

and uniformly random, and (c.ii) the variables ��i�v�, for all v in S�i, are independent

and uniformly random, and for each node v in �Bi � Ci� n S�i, P�i�v� is false. If

Ci � X�
i then Ci � N��xi�X�

i � and it follows from Part 3 of Lemma 2.5.4 that (c.i)

the variables ����v�, for all v not in Si�� � Ti�� �Bi �N��xi�X�
i �, are independent

and uniformly random, and (c.ii) the variables ��i�v�, for all v in S�i, are independent

and uniformly random, and for each node v in �Bi�N��xi�X�
i ��nS�i, P�i�v� is false.

We thus obtain from (a.i), (b.i), and (c.i) and the definition of Si that (i) the variables

����u�, for all u not in Si�Ti��, are independent and uniformly random. By the definitions

of si and ti, the particular values of si and ti are independent of the suffix ��i�u� of any

node u. In particular, the variables ��i�u�, for all u in S�i, are independent and uniformly

random. It follows from the preceding observation and claims (a.ii), (b.ii), and (c.ii) that

(ii) the bits of ��i�u�, for all u in S �i, are independent and uniformly random, and for each

node in Si n S�i, P�i�u� is false. We next consider two cases depending on the value of ti.

(d) ti � � � j, j � �i�: This case is similar to Case (a). The event ti � � � j is

equivalent to the event �Ei�j�� � Y �
i �
 �Di�j �� Y �

i �. We first condition on the

event Ei�j�� � Y �
i by invoking Corollary 2.5.4.1 with the substitution �Y �

i � V n �Si �
Ti���� i � j� for �S� S �� i�. We next condition on the event Di�j �� Y �

i by invoking

Part 2 of Lemma 2.5.4 with the substitution �yi�j � Y �
i � V n �Si � Ti�� �Ei�j����P�i�

for �u� S� S ��P�.
By combining Part (i) of both invocations, we have (d.i) the variables ����v�, for all

v not in Si � Ti�� � Ei�j�� �N��yi�j � Y �
i �, are independent and uniformly random.

2.5. ANALYSIS 35

By combining Part (ii) of both invocations, we have (d.ii) for each node v in Ei�j�� �
N��yi�j� Y �

i �, P�i�v� is false.

(e) ti � �: This case is similar to Case (b). The event ti �
 is equivalent to the event

Ei � Y �
i . We invoke Corollary 2.5.4.1 with the substitution �Y �

i � V n �Si � Ti���� i�

for �S� S �� i� to obtain that (e.i) the variables ����v�, for all v not in Si�Ti���Ei, are

independent and uniformly random, and (e.ii) for each node v in Ei n fyi��g, P�i�v�

is false.

To complete the induction step, we consider each part of the statement of the lemma sepa-

rately:

1. By (i), (d.i), (e.i), and the definition of Ti, it follows that given sj and tj , j � �i�, the

variables ����u�, for all u not in Si � Ti, are independent and uniformly random.

2. This part follows directly from (ii) above.

3. By (d.ii) and (e.ii), it follows that given arbitrary values for sj and tj , j � �i� (i) the

variable ��i�yi��� is uniformly random, and (ii) for each node u in Tinfyi��g, P�i�u�

is false.

Q.E.D.

Lemma 2.5.14 places upper bounds on the sizes of Si and Ti.

Lemma 2.5.14 Let i be a nonnegative integer. If si is in f�� �g, Si is a subset of X	
i ;

otherwise, Si is a subset of X�
i . The set Ti is a subset of Y �

i .

Proof: The proof is by induction on i. For convenience, we set i � �� for the induction

base. Since S�� � T�� � �, the claims follow trivially. Let the claims of the lemma hold

for Si�� and Ti��. We will show that Si � X�
i . The proof for Ti is along the same lines.

By the induction hypothesis, Si�� � X	
i��. Since �� �
b by Equation 2.2, X	

i�� � X�
i ,

hence implying that Si�� � X�
i . We now consider three cases depending on the value of

si.

36 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

If si is in f�� �g, then Bi � X�
i . Moreover, by Lemma 2.5.3, N��xi�X�

i � �
N�x�
��
�i���b�. Since
 � � by Equation 2.4, N�x�
��
�i���b� � X	

i . It thus fol-

lows that Si��, Bi, and N��xi�X�
i � are all subsets of X	

i . Thus, Si is a subset of X	
i .

If si is
, then Bi � X�
i . It thus follows that Si�� and Bi are both subsets of X	

i . Thus,

Si is a subset of X	
i .

If si is greater than
, then Bi�si�� � X�
i . Moreover, N��xi�si�	�X

�
i � is a subset of

X�
i . Thus, Si is a subset of X�

i . Q.E.D.

The following lemma is used in the proof of Lemma 2.5.11.

Lemma 2.5.15 Let i be in ��logn�b� � ��. Given sk and tk for all k in �i� such that si�� is

��j for some j in �i���, the probability thatBi�j�� is a subset of X�
i�� is at least ��
��
.

Given sk and tk for all k in �i� such that ti�� is � � j for some j in �i� ��, the probability

that Ei�j�� is a subset of Y �
i�� is at least ��
��
.

Proof: Let E denote the event that the
i random variables sk and tk, k � �i�, take the

given values. Let us assume that E holds. We begin with the proof of the first claim. Since

si�� is � � j, Bi�j�� is not a subset of X�
i��, and Bi�j�� is a subset of X�

i��.

By Part 1 of Lemma 2.5.13, it follows that given E , the variables ����u�, for all u not

in Si�� � Ti��, are independent and uniformly random. By Lemma 2.5.14, jSi�� � Ti��j
is at most �
ib��. By Lemma 2.5.3, since � �
� by Equation 2.4, n��xi�j���X�

i��� is at

least ��
ib�
. Therefore, the probability that Ai�j�� is not a subset of N��xi�j���X�
i���

is at most

�� � ��
�i�j�b���
��
�����ib � e���

��
�����jb

�
��
�

(The second step makes use of the following inequalities: (i) � � �
, which is obtained

from Equation 2.4, and (ii) e���
 � ��e����
���
 �
��
, which is obtained from Equa-

tion 2.5.) Since N��xi�j���X�
i��� is a subset of X�

i��, the probability that Ai�j�� is not

a subset of X�
i�� is at least � �
��
. Since Bi�j�� is a subset of X�

i�� � X�
i�� and

2.5. ANALYSIS 37

Bi�j�� � Bi�j�� � Ai�j��, we obtain that Bi�j�� is a subset of X�
i�� with probability at

least ��
��
.

The proof of the second claim is analogous to the above proof and is obtained by sub-

stituting �t�D�E� y� Y � for �s�A�B� x�X�. Q.E.D.

We are now ready to prove Lemmas 2.5.11 and 2.5.12.

Proof of Lemma 2.5.11: Let E denote the event that the
i random variables sj and tj ,

j � �i�, take the given values. Let us assume that E holds. We begin with the proof of the

first claim. Let si�� be � � j for some j in �i�. Thus, Bi�j�� is not a subset of X�
i��, and

Bi�j�� is a subset of X�
i��.

We show that Bi�j is a subset of X�
i with probability at least � �
�. We first invoke

Lemma 2.5.15 to obtain that (a)Bi�j�� is a subset of X�
i�� with probability at least ��
��
.

Let us now assume that E and the event that Bi�j�� is a subset of X�
i�� hold.

We now show (b) the probability that Bi�j is a subset of X�
i is at least � �
��
. It

follows from Part 1 of Lemma 2.5.13 that given E the variables ����u�, for all u not in

Si���Ti��, are independent and uniformly random. Thus, given E and the event thatBi�j��

is a subset of X�
i��, the variables ����u�, for all u not in Si���Ti���X�

i��, are independent

and uniformly random. By Lemma 2.5.14, Si�� � X�
i�� and Ti�� � Y �

i��. Therefore, the

size of the set Si�� � Ti�� �X�
i�� is at most ��� � ��
ib. By Lemma 2.5.3, since � �
�

by Equation 2.4, n��xi�j �X�
i � is at least �
�i���b�
. Therefore, the probability that Ai�j

is not a subset of N��xi�j�X�
i � is at most

��� ��
�i�j���b����
��
���b����b���i���b � e����
��

���b����b��jb

�
��
�

(The second step makes use of the following inequalities: (i)

�� � �� �
��	 �
b,

which is obtained from Equation 2.2, and (ii) e����
 � ��e����
���
 �
��
, which is

obtained from Equation 2.5.) Thus, the probability that Bi�j is not a subset of X�
i is at

most
��
.

It follows from (a) and (b) above that with probability at least �� �
��, si is less than

si��, thus establishing the first claim of the lemma. The proof of the second claim is anal-

38 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

ogous to the above proof and is obtained by substituting �t�D�E� y� Y � for �s�A�B� x�X�.

Q.E.D.

Proof of Lemma 2.5.12: Let E denote the event that the random variables sj , tj , j � �i�,

take the given values. Let us assume that E holds. We begin with the proof of the first

claim. If si�� is in f�� ��
g, Bi�� is a subset of X�
i��. If si�� is �, then by Lemma 2.5.15,

Bi�� is a subset of X�
i�� with probability at least � �
��
. We now assume that Bi�� is a

subset of X�
i��.

We first show that (a) the probability that Bi is a subset of X�
i is at least ��
���
��
.

By Part 1 of Lemma 2.5.13, it follows that given E the variables ����u�, for all nodes u not

in Si�� � Ti��, are independent and uniformly random. By Lemma 2.5.14, jSi�� � Ti��j
is at most �	
ib��. By Lemma 2.5.3, since xi is in X�

i�� and
b �
�� (by Equation 2.2),

n��xi�X�
i � is at least �
�i���b�
. Therefore, the probability that Ai is not a subset of

N��xi�X�
i � is at most

��� ��
�i���b��
�i���b���
������b� � e����
���

���b�

� e����

�
���
��
�

(The second inequality follows from the inequality ���
 �
b, which is obtained from

Equation 2.2. The last inequality follows from the inequalities (i) e����
 �
��, which is

obtained from Equation 2.5, and (ii)
�� �
�� �
��
, which holds since
 � ���� by

Equation 2.6.) This implies that the probability that Ai is not a subset of X�
i is at most

�� �
��
.

We next show that (b) the probability that Ai is a superset of X��
i is at least � �
��.

Since
��	 �
b by Equation 2.2, Lemma 2.5.3 implies that n��xi�X
��
i � �

�i���b��.

By Lemma 2.5.13, we have (i) the variables ����u�, for all u not inSi���Ti��, are indepen-

dent and uniformly random, and (ii) there are at most d� � nodes in Si�� � Ti�� for which

the predicate P�i holds. Therefore, the probability that Ai is a subset of N��xi�X
��
i � is at

most �d� ���
b �
��, which is at most
��. It follows that the probability that Ai is not

a superset of X��
i is at most
��.

2.5. ANALYSIS 39

We finally show that (c) given that Bi is a subset of X�
i and Ai is a superset of X��

i , the

probability that Ci is a superset of X�
i is at least ��
��. We note that given E , and the two

events Bi is a subset of X�
i and Ai is a superset of X��

i , (i) the variables ����u�, for all u

not in Si�� �Ti�� �X�
i , are independent and uniformly random, and (ii) there exist at most

d� � nodes in Si�� � Ti�� for which the predicate P�i holds.

We will place an upper bound on the probability that Ci is not a superset of X�
i by

placing a lower bound on the probability that Ci is not a superset of N��xi�X
�
i �, which is

a superset of X�
i . Let r� (resp., r�) denote n��xi�X

��
i � (resp., n��xi�X

�
i �). By definition,

n��xi�X
��
i � is at least
�i���b��. By Lemma 2.5.3, n��xi�X�

i � is at most
��
�i���b.

We first show that the nodes in N��xi�X�
i � are within a cost of d 	 c�xi� xi���. We note

that c�xi� xi��� is at least the difference of the radii of X��
i and X�

i��. Moreover, since

N��xi�X�
i � is a subset of X	

i , n��xi�X�
i � is at most the sum of the radii of X	

i and X�
i��.

Since �����log� � � �� � d by Equation 2.3, all of the nodes in N��xi�X�
i � are within a

cost of d 	 c�xi� xi��� from xi.

It now follows that the probability that Ci is not a superset of X�
i is at most the proba-

bility that there exist d nodes in N��xi�X�
i � whose �i� ��b rightmost bits match a certain

bit-sequence. This probability is at most

�
d � �

d�

�
���
b�d�� �

�

��
�i���b

d�

�
���
�i���b�d�� � �
e�
b�d�� � �e
���d�d��

�
���

(The second step follows from the inequalities �
e�
b�d�� �
�� and �e
���d�d �
��,

both of which are derived from Equation 2.5.)

It follows from (a), (b), and (c) above that with probability at least � �
, si is �, thus

establishing the first claim of the lemma. The proof of the second claim is analogous to the

proof of (a) and is obtained by substituting �t�D�E� y� Y � for �s�A�B� x�X�.

Q.E.D.

By the definitions of si and ti, it follows that � � si�� � � if si �
, and � � si�� �
si � � otherwise. In addition, � � ti�� � ti � �, for all i. Let s�i equal � if si � �, � if

si � f��
� �g, and si �
 otherwise. Hence � � maxfs�i��� ti��g � maxfs�i� tig � �, for

40 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

all i. In Section 2.5.3.3 below, we analyze the random walk corresponding to the sequence

hmaxfs�� tgi.

2.5.3.3 Random walks

We begin the analysis of the random walk corresponding to the sequence hmaxfs�� tgi
by proving several useful properties of certain random walks on a line. These properties

are stated in Lemmas 2.5.16 through 2.5.21. The main technical claim of this section is

Lemma 2.5.23.

Let W �U�F � be a directed graph in which U is the set of nodes and F is the set of

edges. For all u in U , let Du be a probability distribution over the set f�u� v� � Fg. We

define PrDu ��u� v� 	 �u� v� �� F � � �, for convenience. A random walk on W starting at

v� and according to fDu 	 u � Ug is a random sequence hvi such that (i) vi is in U and

�vi� vi��� is in F , for all i, and (ii) given any fixed (not necessarily simple) path u�� � � � � ui

in W and any fixed ui�� in U , Pr�vi�� � ui�� j �v�� � � � � vi� � �u�� � � � � ui�� � Pr�vi�� �

ui�� j vi � ui� � PrDui
��ui� ui����.

Let H be the directed graph with node set N (the set of nonnegative integers) and edge

set f�i� j� 	 i � N� � � j � i � �g. Let H � be the subgraph of H induced by the edges

f�i� �� i�� �i� i� �� 	 i � Ng � f��� ��� ��� ��g.

Let p and q be reals in ��� �� such that p � q. We now define two random walks, �p�q

and ��p�q, on graphs H and H �, respectively. The walk �p�q � hwi is characterized by (i)

Pr�wi�� � j � � j wi � j� � p, for any integer j � �, (ii) Pr�wi�� � � j wi � j� � q, for j

equal � or �, and (iii) Pr�wi�� �
 j wi � �� � ��p. The walk ��p�q � hw�i is characterized

by (i) Pr�w�
i�� � j � � j w�

i � j� � p, for all integer j � �, (ii) Pr�w�
i�� � � j w�

i � j� � q,

for j equal 0 or 1, and (iii) Pr�w�
i�� �
 j w�

i � �� � � � p. We note that Lemmas 2.5.11

and 2.5.12 imply that the sequence hmaxfs�� tgi can be represented by the random walk

�p�q with p � ��

� and q � ��

.

We analyze random walk �p�q by first showing that �p�q is more “favorable” than ��p�q

with respect to the properties of interest. The random walk ��p�q is easier to analyze as it

is exactly characterized by p and q. Lemmas 2.5.16 and 2.5.18 show that the bias of �p�q

2.5. ANALYSIS 41

towards � is more than that of ��p�q. Since the values of p and q are fixed throughout the

following discussion, we omit the subscript p� q in the terms �p�q and ��p�q for convenience.

Lemma 2.5.16 For all i and k in N, for random walks � and ��, we have Pr�wi � k� �
Pr�w�

i � k�.

Proof: We prove the claim by induction on i. The base case i � � is trivial. Assume the

claim holds for i and any k. If k � �, then we have

Pr�w�
i�� � k� � Pr�w�

i � k � �� � pPr�k � w�
i � k � ��

� ��� p� Pr�w�
i � k � �� � pPr�w�

i � k � ��� and

Pr�wi�� � k� � Pr�wi � k � �� � pPr�k � wi � k � ��

� ��� p� Pr�wi � k � �� � pPr�wi � k � ���

If k � �, then we have

Pr�w�
i�� � �� � q Pr�w�

i � �� � qPr�w�
i � ��

� q Pr�w�
i � ��� and

Pr�wi�� � �� � q Pr�wi � �� � qPr�wi � ��

� q Pr�wi � ���

The lemma now follows by induction. Q.E.D.

We now establish a probabilistic relationship between the number of steps it takes for

the random walks � and �� to reach node � starting from a given node i. Let zi��� be the

random variable denoting the number of steps taken to reach node 0 starting from node i,

for a random walk �.

Lemma 2.5.17 For all � and all i � �, we have Pr�zi���� � �� � Pr�zi������ � ��,

Proof: We use induction on �. The base case � � � is trivial. Let � � �. If i �
 then

Pr�zi����
�� � �� � pPr�zi����

�� � � � �� � �� � p� Pr�zi��
�� � � � ��

� pPr�zi����
�� � � � �� � �� � p� Pr�zi����

�� � � � ��

� Pr�zi��
�� � ���

42 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

where the second step follows from the induction hypothesis. If i �
, then we have

Pr�z���
�� � �� � q � ��� q � �� � p�� Pr�z���

�� � �� �� � ��� p� Pr�z���
�� � � � ��

� pPr�z���
�� � � � �� � ��� p� Pr�z���

�� � �� ��

� pPr�z���
�� � � � �� � ��� p� Pr�z	��

�� � �� ��

� Pr�z���
�� � ���

where the second step follows from the induction hypothesis. If i � � then we have

Pr�z���
�� � �� � q � ��� q� Pr�z���

�� � � � ��

� q Pr�z���
�� � � � �� � �p� q� Pr�z���

�� � �� �� �

��� � p� Pr�z���
�� � �� ��

� Pr�z���
�� � ���

where the second step follows from the induction hypothesis. Q.E.D.

We now use Lemma 2.5.17 to argue that the random variable zi��� is stochastically

dominated by the random variable zi����.

Lemma 2.5.18 For all i and � in N, we have Pr�zi��� � �� � Pr�zi��
�� � ��.

Proof: The proof is by induction on �. The base case � � � is trivial. Let pj � Pr�wi�� �
j � � j wi � j�, for j � �, and qj � Pr�wi�� � j j wi � j�, for all j in N. Note that the

following inequalities hold: (i) p � pj , for all j � �, (ii) q � minfp�� q�g, and (iii) p � q.

If i �
, then we have

Pr�zi��
�� � �� � pPr�zi����

�� � �� �� � ��� p� Pr�zi����
�� � �� ��

� pi Pr�zi����
�� � �� �� � ��� pi� Pr�zi����

�� � �� ��

� pi Pr�zi����
�� � �� �� � qi Pr�zi��

�� � �� �� �

���� pi � qi� Pr�zi����
�� � � � ��

� pi Pr�zi����� � �� �� � qi Pr�zi��� � � � �� �

���� pi � qi� Pr�zi����� � �� ��

� Pr�zi��� � ���

2.5. ANALYSIS 43

(The second step holds because (i) p � pi, and (ii) Pr�zi������ � � � �� � Pr�zi������ �
� � ��, which follows from Lemma 2.5.17. The third step holds since Pr�zi���� � � �
�� � Pr�zi������ � � � �� by Lemma 2.5.17. The fourth step follows from the induction

hypothesis.) For i � �, we have

Pr�z���
�� � �� � q � �p � q� Pr�z���

�� � �� �� � ��� p� Pr�z���
�� � � � ��

� p� � q� Pr�z���
�� � � � �� � �� � p� � q�� Pr�z���

�� � �� ��

� p� � q� Pr�z���� � � � �� � ��� p� � q�� Pr�z���� � � � ��

� Pr�z���� � ���

(The second step holds because (i) q � p�, (ii) � � p � � � p� � q�, and (iii) Pr�z����� �
� � �� � Pr�z���

�� � � � ��, which follows from Lemma 2.5.17. The third step follows

from the induction hypothesis.)

For i � �, we have

Pr�z���
�� � �� � q � ��� q� Pr�z���

�� � � � ��

� q� � ��� q�� Pr�z���
�� � �� ��

� q� � ��� q�� Pr�z���� � � � ��

� Pr�z���� � ���

(The second step holds because q � q�. The third step follows from the induction hypoth-

esis.) We have thus established the desired claim. Q.E.D.

We now show that, in a probabilistic sense, the time to return to � is smaller for �

than for ��. For any i, let �i (resp., � �i) denote the smallest j � � such that wi�j � �

(resp., w�
i�j � �). We note that by letting hwi represent hmaxfs�� tgi, the terminating

step � is given by i	 � �i� . Lemma 2.5.20 shows that, for any i, the random variable �i is

stochastically dominated by the random variable � �i . We first prove the following technical

lemma:

Lemma 2.5.19 Letm be a nonnegative integer and let hni be a sequence ofm nonincreas-

ing reals. Let hpi and hqi be two sequences of m reals each such that (i) for all j in �m�,

44 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

P
��i�j pi �

P
��i�j qi and (ii)

P
��i�m pi �

P
��i�m qi. Then, we have:

X
��i�m

pini �
X

��i�m

qini�

Proof: The proof is by induction on m. The induction basis is trivial. For the induction

hypothesis, we assume that the statement of the lemma holds for m. We now establish the

claim for m� �.

X
��i�m��

pini � q�n� � �p� � q��n� �
X

��i�m��

pini

� q�n� � �p� � q� � p��n� �
X

��i�m��

pini

� q�n� �
X

��i�m��

qini

�
X

��i�m

qini�

(The third step follows from the induction hypothesis and the inequalities n� � n� and

p� � q�. We note that the induction hypothesis can be invoked since p� � q� � p� �P
��i�j pi � P

��i�j qi and p� � q� � p� �
P

��i�m�� �
P

��i�m�� qi.) Q.E.D.

Lemma 2.5.20 For any i and j � i, we have Pr��i � j� � Pr�� �i � j�.

Proof: The desired claim follows from the following argument:

Pr��i � j� �
X

��k�i

Pr�wi � k� Pr�zk��� � j�

� X
��k�i

Pr�wi � k� Pr�zk��
�� � j�

� X
��k�i

Pr�w�
i � k� Pr�zk��

�� � j�

� Pr�� �i � j��

(The first step follows from the definitions of �i and zi���. For the second step, we

use Lemma 2.5.18. For the third step we first invoke Lemma 2.5.16 and then invoke

Lemma 2.5.19 with the substitution �i� k�Pr�wi � k��Pr�w�
i � k��Pr�zk���� � j�� for

�m� i� pi� qi� ni�. We note that one of the conditions for the latter invocation, namely,

Pr�zk���� � j� is nonincreasing with k, follows from Lemma 2.5.17. The fourth step

follows from the definitions of � �i and zi����.) Q.E.D.

2.5. ANALYSIS 45

Lemma 2.5.20 indicates that we can obtain an upper bound on the time taken for the

random walk � to return to � by deriving a corresponding bound for the random walk

��. Indeed, we will use Lemma 2.5.20 to obtain an upper bound on the length of any

“excursion” in �. An excursion of length � in a graph W with node set N is a walk that

starts at node 0 and first returns to the start node at time �, for all � in N. For all i such that

wi � �, let �i��� be the random variable that gives the length of the excursion in � starting

at time i. We note that for all i, �i��� equals z����.

The following lemma, which describes a probabilistic recurrence relation for the length

of an excursion in ��, is proved using a classical combinatorial result known as Raney’s

lemma [17, 46].

Lemma 2.5.21 Let p and q satisfy the inequality �� p � �p� q��. For all i and � in N, we

have Pr��i���� � � � � j w�
i � �� � maxf�� q� ��p� q�gPr��i���� � � j w�

i � ��.

Proof: Since �� is a random walk,

Pr��i��
�� � � j �w�

�� � � � � w
�
i��� w

�
i� � �u�� � � � � ui��� ��� � Pr�����

�� � � jw�
� � ��

for any u�� � � � � ui�� in N. For the remainder of the proof, we assume without loss of

generality that i is �.

For � � �, the desired claim holds since Pr������� �
��Pr������� � �� � ��� q�. We

now consider � �
. Let Ej denote the event that the random walk does not reach node � in

the first j steps. That is, Ej is the event that w�
k is nonzero for all k in ��� j�. For all j, let �j

denote the probability that w�
j�� is � and Ej�� holds, given that w�

� is �. For convenience,

we assume that ��� equals ���p � q�. We obtain that:

Pr�����
�� � �� � �� � q� 	 ���� 	 q� (2.8)

It thus follows that the ratio of Pr������� � ���� and Pr������� � �� equals ���������.

The remainder of the proof is devoted to obtaining an upper bound on�j����j for all j � �.

Let 	m denote the probability that the following conditions hold given that w�
� � �: (i)

E�m�� holds, (ii) w�
�m�� � �, and (iii) the edge ��� �� is not traversed in any of the first

46 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

m� � steps. Using Raney’s lemma [17, 46], we have 	m � �
�m��

	
�m��
m

�p��� p��m. By

the definitions of �j and 	m, it follows that:

�j �
X

��m�bj��c

	m 	 �p � q� 	 �j��m��

�
X

��m�bj��c

�

m� �

�

m� �

m

�
�p�� � p��m 	 �p � q� 	 �j��m���

We now prove by induction on j �
 that �j����j is at most ��p � q�. The induction

base holds since �� is � and �� is ��p � q�. For the induction hypothesis, we assume that

�j����j is at most ��p � q� for all j � k � �. If k is even, then we have:

�k����k � max
��m�k��

�k��m��k��m��

� ��p � q��

where the last step follows from the induction hypothesis. If k is odd, then �k����k is at

most

max

��
�

k

�
k

�k � ���

�
�p� q�� �

�

k �

�
k �

�k � ���

�
p

�
�

�
�

k

�
k

�k � ���

�
�p� q�

�
�

max
��m��k�	���c

�k��m��k��m��

�
� maxf��p � q�� ��p� q�g � ��p � q��

where the second step follows from the induction hypothesis along with the inequalities

�� p � �p � q�� and �
k �

�k � ���

�
� �

�
k

�k � ���

�
�

The claim of the lemma follows from the upper bound on �k����k and Equation 2.8.

Q.E.D.

We are now ready to use the properties of the random walks � and �� that are stated in

Lemmas 2.5.20 and 2.5.21 to analyze the random walk obtained by the sequence hmaxfs�� tgi.
We set p � � �

� and q � � �

. Lemmas 2.5.11 and 2.5.12 imply that � characterizes

the random walk corresponding to the sequence hmaxfs�� tgi. Consider the random walk

��. We define a sequence hvi associated with hw�i as follows: If w�
j � � then vj � G;

otherwise, vj � B.

2.5. ANALYSIS 47

Lemma 2.5.22 Let i be in ��log n�b����. Given any fixed sequence hvii�� of B�G values,

the probability that w�
i is � is at least � � ��
. Q.E.D.

Proof: Assume that vj � G. What is the probability that vi � G, i � j, if we know that

vk � B, for all integers k in the interval �j��� i�? From Lemma 2.5.21, it follows that this

probability is at least ����
. This is because Lemma 2.5.21 states that ��maxf

� ���
�

��g is a lower bound on the probability that there is an excursion of length i � j starting

at j in H �, given that there is an excursion of length at least i� j starting at j in H �. (Note

that � � p � �p � q�� since

 ���� by Equation 2.6.)

Given any fixed B�G sequence huij��, we have that Pr�vi � G j �v�� � � � � vi��� �

� �u�� � � � � uj��� G�B� � � � � B�� is equal to Pr�vi � G j �vj� � � � � vi��� � �G�B� � � � � B��.

Since this holds for any j � � and since w�
i � � if and only if vi � G, we have

Pr�w�
i j �v�� � � � � vi��� � �u�� � � � � ui���� � � � ��
. Q.E.D.

Our main technical claim concerning the random walk � now follows from Lem-

mas 2.5.20 and 2.5.22.

Lemma 2.5.23 For any i in ��log n��b � �� and any nonnegative integer j, the probability

that �i � j is at most ���
�j .

Proof: By Lemma 2.5.22, the probability that � �i is at least j is at most ���
�j . The desired

claim then follows from Lemma 2.5.20. Q.E.D.

2.5.3.4 Proofs of Theorems 1 and 2

We first derive upper bounds on E�c�xi� xi���� and E�c�yi� yi����, for all i, using Lemma

2.5.23. Recall that ai and bi denote the radii of X�
i and Y �

i , respectively, and i	 is the

smallest integer i such that ai is at least c�x� y�.

Lemma 2.5.24 For any i in ��log n��b � ��, E�c�xi� xi���� � O�ai� and E�c�yi� yi���� �

O�bi�.

48 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

Proof: We first observe that c�xi� xi��� (resp., c�yi� yi���) is at most ak (resp., bk), where

k is the least j � i such that sj (resp., tj) belongs to f�� ��
g (resp., f�g); if such a j does

not exist, then k is �log n��b � �. Thus, k is at most i � �i. By Lemma 2.5.23, it follows

that for any j � i, the probability that k � j is at most ���
�j�i. By Lemma 2.5.9, we thus

have

E�c�xi� xi���� � X
j�i

ai���
�
j�i
db log� �e�j�i� � O�ai�

and

E�c�yi�yi���� � X
j�i

bi���
�
j�i
db log� �e�j�i� � O�bi��

since ��

db log� �e
 � by Equation 2.6. Q.E.D.

We now use Lemmas 2.5.9, 2.5.23, and 2.5.24 to establish Theorem 1.

Proof of Theorem 1: By Equation 2.7, the expected cost of the read operation is bounded

by the expected value of f���A��
P

��i�	 O�c�xi� xi��� � c�yi� yi����. (Recall that � is

the smallest integer i � i	 such that �si� ti� � ��� ��.) We upper bound the two terms

E�
P

��i�i��c�xi� xi��� � c�yi� yi����� and E�
P

i��i�	 �c�xi� xi��� � c�yi� yi����� separately.

By Lemmas 2.5.9 and 2.5.24, the first term is O�ai� � bi��. We upper bound the second

term as follows. Since � is i	 � �i� , we obtain from Lemma 2.5.23 that for any j � �, the

probability that � � i	 � j is at most ���
�j . Therefore,

E�
X

i��i�	

�c�xi� xi��� � c�yi� yi����� �
X
j��

j���
�j�ai��j � bi��j�

�X
j��

j���
�j
jdb log� �e�ai� � bi��

� O�ai� � bi��

� O�c�x� y���

(The second step follows from Lemma 2.5.9. The third step holds since ��

db log� �e
 �

by Equation 2.6. The fourth step follows from Lemma 2.5.9.) Q.E.D.

Theorem 2 follows from Lemmas 2.5.6, 2.5.9, and 2.5.24.

2.5. ANALYSIS 49

Proof of Theorem 2: Consider an insert operation performed by x for any object. The

expected cost of the operation is bounded by E�
P

��i�logn�b c�xi� xi����, which by Lem-

mas 2.5.9 and 2.5.24 is O�a�logn��b��� � O�C�.

We now consider the cost of the delete operation. By Lemma 2.5.6, for each i, the

number of reverse �i� j�-neighbors of xi for any j is O�log n� with high probability, where

xi is the ith node in the primary neighbor sequence of x. Therefore, the expected cost of

the delete operation executed by x is bounded by the product of E�
P

��i�logn�b c�xi� xi����

and O�log n�. By Lemma 2.5.24, it follows that the expected cost of a delete operation is

O�C log n�. Q.E.D.

2.5.4 Auxiliary memory

Proof of Theorem 3: We first place an upper bound on the size of the neighbor table

of any u in V . By definition, the number of primary and secondary neighbors of u is at

most �d � ��
b�log n��b, which is O�log n�. By Corollary 2.5.6.1, the number of reverse

neighbors of u is O�log� n� with high probability.

We next place an upper bound on the size of the pointer list of any u in V . The size of

Ptr�u� is at most the number of triples of the form �A� v� 	�, where A is in A and v is in V

such that (i) there exists i in ��logn��b� such that v is an i-leaf of u, (ii) A�j� � u�j� for all

j in �i�, and (iii) A is in the main memory of v.

By Lemma 2.5.7, the number of i-leaves of u is O�
ib log n� with high probability. The

probability that A�j� � u�j�, for all j in �i�, is at most ��
ib . Since the number of objects in

the main memory of any node is at most �, it follows that with high probability, jPtr�u�j is

at most
P

i�
logn�b�O�� log n� which is O�� log� n�.

Combining the bounds on the sizes of the neighbor table and pointer list, we obtain that

the size of the auxiliary memory of u is O�� log� n� with high probability. Q.E.D.

2.5.5 Adaptability

Proof of Theorem 4: By Lemma 2.5.6, for any node u, the number of nodes for which

u is a primary or secondary neighbor is O�log n� expected and O�log� n� with high prob-

50 CHAPTER 2. ACCESSING NEARBY COPIES OF OBJECTS

ability. Moreover, u is a reverse neighbor of O�log n� nodes since u has O�log n� primary

neighbors. Therefore, the adaptability of our scheme is O�log n� expected and O�log� n�

with high probability. Q.E.D.

2.6 Future work

We would like to extend our study to more general classes of cost functions and determine

tradeoffs among the various complexity measures. It would also be interesting to consider

models that allow faults in the network. We believe that our access scheme can be extended

to perform well in the presence of faults, as the distribution of control information in our

scheme is balanced among the nodes of the network.

Chapter 3

Fast Algorithms for Finding
O(Congestion+Dilation) Packet Routing
Schedules

3.1 Introduction

In this chapter, we consider the problem of scheduling the movements of packets whose

paths through a network have already been determined. The problem is formalized as

follows. We are given a network with n nodes (switches) and m edges (communication

channels). Each node can serve as the source or destination of an arbitrary number of

packets (or cells or flits, as they are sometimes referred to). Let N denote the total number

of packets to be routed. The goal is to route the N packets from their origins to their

destinations via a series of synchronized time steps, where at each step at most one packet

can traverse each edge, and each packet can traverse at most one edge at each step. Without

loss of generality, we assume that all edges in the network are used in the path of some

packet, and thus that m gives the number of such edges (all the other edges are irrelevant

to our problem).

Figure 3.1 shows a 5-node network in which one packet is to be routed to each node.

The shaded nodes in the figure represent switches, and the edges between the nodes repre-

sent channels. A packet is depicted as a square box containing the label of its destination.

This is joint work with Tom Leighton, MIT, and Bruce Maggs, CMU. This work appears in [28].

51

52 CHAPTER 3. PACKET ROUTING SCHEDULES

1

2

1

3

45

5 4

2

3

Figure 3.1: A graph model for packet routing.

During the routing, packets wait in three different kinds of queues. Before the routing

begins, packets are stored at their origins in special initial queues. When a packet traverses

an edge, it enters the edge queue at the end of that edge. A packet can traverse an edge

only if at the beginning of the step, the edge queue at the end of that edge is not full. Upon

traversing the last edge on its path, a packet is removed from the edge queue and placed in a

special final queue at its destination. In Figure 3.1, all of the packets reside in initial queues.

For example, packets 4 and 5 are stored in the initial queue at node 1. In this example, each

edge queue is empty, but has the capacity to hold two packets. Final queues are not shown

in the figure. Independent of the routing algorithm used, the sizes of the initial and final

queues are determined by the particular packet routing problem to be solved. Thus, any

bound on the maximum queue size required by a routing algorithm refers only to the edge

queues.

We focus on the problem of timing the movements of the packets along their paths. A

schedule for a set of packets specifies which move and which wait at each time step. The

length of a schedule is the number of time steps required to route all the packets to their

destinations according to the schedule. Given any underlying network, and any selection

of paths for the packets, our goal is to produce a schedule for the packets that minimizes

the length of the schedule and the maximum queue size needed to route all of the packets

to their destinations.

3.1. INTRODUCTION 53

1

2

1

3

45

5 4

2

3

Figure 3.2: A set of paths for the packets with dilation d � � and congestion c � �.

Of course, there is a strong correlation between the time required to route the packets

and the selection of the paths. In particular, the maximum distance, d, traveled by any

packet is always a lower bound on the time. We call this distance the dilation of the paths.

Similarly, the largest number of packets that must traverse a single edge during the entire

course of the routing is a lower bound. We call this number the congestion, c, of the paths.

Figure 3.2 shows a set of paths for the packets of Figure 3.1 with dilation 3 (since the path

followed by the packet going from node 5 to node 3 has length 3) and congestion 3 (since

three paths use the edge between nodes 1 and 2).

3.1.1 Related work

Given any set of paths with congestion c and dilation d, in any network, it is straightforward

to route all of the packets to their destinations in cd steps using queues of size c at each

edge. In this case the queues are big enough that a packet can never be delayed by a full

queue in front, so each packet can be delayed at most c� � steps at each of at most d edges

on the way to its destination.

In [27], Leighton, Maggs, and Rao showed that there are much better schedules. In

particular, they established the existence of a schedule using O�c � d� steps and constant-

54 CHAPTER 3. PACKET ROUTING SCHEDULES

size queues at every edge, thereby achieving the naive lower bounds (up to constant factors)

for any routing problem. The result is highly robust in the sense that it works for any set

of edge-simple paths and any underlying network. (Ā priori, it would be easy to imagine

that there might be some set of paths on some network that requires more than ��c � d�

steps or larger than constant-size queues to route all the packets.) The method that they use

to show the existence of optimal schedules, however, is not constructive. In other words,

prior to this work, the fastest known algorithms for producing schedules of length O�c�d�

with constant-size edge queues required time that is exponential in the number of packets.

Scheideler recently presented in [49] an alternative simpler proof for the existence of

O�c�d�-step schedules that only require edge queues of size 2. The main idea in his proof

is to decompose the problem in a different way by using so-called “secure edges”.

In [35], Meyer auf der Heide and Scheideler showed the existence of an off-line protocol

that only requires edge queues of size 1. However, the schedule produced by this protocol

has length O��d � c�log�c � d���log log�c � d��� log log log���
��c � d��, for any constant

� � �.

For the class of leveled networks, Leighton, Maggs, Ranade, and Rao [25] showed that

there is a simple on-line randomized algorithm for routing the packets to their destinations

withinO�c�L�logN� steps, with high probability, whereL is the number of levels in the

network, and N is the total number of packets. (In a leveled network with L levels, each

node is labeled with a level number between � and L � �, and every edge that has its tail

on level i has its head on level i� �, for � � i
 L� �.)

Mansour and Patt-Shamir [33] showed that if packets are routed greedily on shortest

paths, then all of the packets reach their destinations within d �N steps. These schedules

may be much longer than optimal, however, because N may be much larger than c. Meyer

auf der Heide and Vöcking [36] devised a simple on-line randomized algorithm that routes

all packets to their destinations in O�c� d� logN� steps, with high probability, provided

that the paths taken by the packets are short-cut free (e.g., shortest paths).

Recently, Rabani and Tardos [42], and Ostrovsky and Rabani [39] extended the main

ideas used in [27], and in the centralized algorithm presented in this chapter, to obtain

3.1. INTRODUCTION 55

on-line local control algorithms for the general packet routing problem that produce near-

optimal schedules. More specifically, Tardos and Rabani [42] show a randomized on-line

algorithm that with high probability delivers all packets in O�c � d��log	N�O�log�N�� �

log�N� steps; Ostrovsky and Rabani [39] improved on this result by presenting a ran-

domized on-line algorithm that delivers all the packets to their destinations in O�c � d �

log���
�N� steps with high probability, for arbitrary � � �.

It was also in recent work that Srinivasan and Teo [53] answered a long-standing ques-

tion: Given source and destination nodes for each packet, can we select the routing paths

for the N packets, with congestion c and dilation d, in order to approximate the minimum

value of c� d (over all possible choices of paths) to within a constant factor ? (Finding the

minimum value of c � d is NP-hard.) They provided an algorithm that selects such paths

in polynomial time; by applying our algorithm on the selected paths, Srinivasan and Teo

described the first off-line constant factor approximation algorithm for routing N packets

(if we are only given the source and destination nodes of each packet) using constant-size

queues. It is interesting to note that there is still no polynomial-time algorithm known for

which the congestion c alone is asymptotically optimal: It was clever (and crucial) that

Srinivasan and Teo minimized the sum c � d rather than just c.

The problem of scheduling packets through given paths strongly relates to network

emulations via embeddings, as we will see. Koch et al. in [24], and Maggs and Schwabe

in [32] address the problem of performing network emulations via embeddings.

Shmoys, Stein, and Wein [51] give randomized and deterministic algorithms that pro-

duce schedules of length within a polylogarithmic factor of that of an optimal schedule,

for job-shop scheduling when jobs are not assumed to have unit length and a machine may

have to work on the same job more than once. Our results can be used to find schedules

of length within a constant factor of the optimal schedule for the less general job-shop

problem when jobs have unit length and a machine can work at most once on any job, as

discussed below.

56 CHAPTER 3. PACKET ROUTING SCHEDULES

3.1.2 Our results

In this chapter, we show how to produce schedules of length O�c � d� in O�m�c �

d��logP���log logP�� time steps, with probability at least � � ��P�, for any constant

� � �, where m is the number of distinct edges traversed by some packet in the net-

work. The schedules can also be found in polylogarithmic time on a parallel computer

using O�m�c � d��logP���log logP�� work, with probability at least � � ��P�.

The algorithm for producing the schedules is based on an algorithmic form of the

Lovász Local Lemma (see [12] or [52, pp. 57–58]) discovered by Beck [8]. Showing how

to modify Beck’s arguments so that they can be applied to scheduling problems is the main

contribution of our work. Once this is done, the construction of asymptotically optimal

routing schedules is accomplished using the methods of [27].

The result has several applications. For example, if a particular routing problem is

to be performed many times over, then it may be feasible to compute an asymptotically

optimal schedule once using global control. This situation arises in network emulation

problems (see Chapter 1). Suppose a network G is being emulated by a host networkH by

embedding G into H . The algorithm described in this chapter can be used to produce a

schedule in which the packets are routed to their destinations in O�c � d� steps. Thus, H

can emulate each step of G in O�l � c � d� steps, where l is the load of this embedding

(i.e., the maximum number of nodes of G that are mapped to a node of H).

The result also has applications to job-shop scheduling. In particular, consider a schedul-

ing problem with jobs j�� � � � � jr, and machines m�� � � � �ms, for which each job must be

performed on a specified sequence of machines. In this application, we assume that each

job occupies each machine that works on it for a unit of time, and that no machine has

to work on any job more than once. Of course, the jobs correspond to packets, and the

machines correspond to edges in the packet routing problem. Hence, we can define the

dilation of the scheduling problem to be the maximum number of machines that must work

on any job, and the congestion to be the maximum number of jobs that have to be run on

any machine. As a consequence of the packet routing result, we know that any scheduling

problem can be solved in O�c � d� steps. In addition, we know that there is a schedule for

which each job waits at most O�c�d� steps before it starts running, and that each job waits

3.2. PRELIMINARIES 57

at most a constant number of steps in between consecutive machines. The queue of jobs

waiting for any machine will also always be at most a constant.

3.1.3 Outline

The remainder of the chapter is divided into sections as follows. In Section 3.2, we give

a very brief overview of the non-constructive proof in [27]. We also introduce some defi-

nitions, and present two important propositions and a new lemma that will be of later use.

In Section 3.3, we describe how to make the non-constructive method in [27] constructive.

In Section 3.4, we analyze the running time of the algorithm. The propositions presented

in Sections 3.2 and 3.3 are meant to replace (and are numbered according to) some of the

lemmas in [27].

In Section 3.5, we show how to parallelize the scheduling algorithm. We conclude with

some remarks in Section 3.6.

3.2 Preliminaries

In [27], Leighton, Maggs, and Rao proved that for any set of packets whose paths are edge-

simple and have congestion c and dilation d, there is a schedule of lengthO�c�d� in which

at most one packet traverses each edge of the network at each step, and at most a constant

number of packets wait in each queue at each step. (An edge-simple path uses no edge

more than once.) Note that there are no restrictions on the size, topology, or degree of the

network or on the number of packets.

The strategy for constructing an efficient schedule is to make a succession of refine-

ments to the “greedy” schedule, S�, in which each packet moves at every step until it

reaches its final destination. This initial schedule is as short as possible: Its length is only

d. Unfortunately, as many as c packets may traverse an edge at a single time step in S�,

whereas in the final schedule at most one packet is allowed to traverse an edge at each step.

Each refinement will bring us closer to meeting this requirement.

The proof uses the Lovász Local Lemma ([12] or [52, pp. 57–58]) at each refinement

step. Given a set of “bad” events in a probability space, the lemma provides a simple

58 CHAPTER 3. PACKET ROUTING SCHEDULES

inequality that, when satisfied, guarantees that with probability greater than zero, no bad

event occurs. The inequality relates the probability that each bad event occurs with the

dependence among them. A set of events A�� A�� � � � � Aq in a probability space has depen-

dence at most b if every event is mutually independent of some set of q�b�� other events.

The lemma is non-constructive; for a discrete probability space, it shows only that there

exists some elementary outcome that is not in any bad event.

Lemma [Lovász] Let A�� A�� � � � � Aq be a set of “bad” events, each occurring with proba-

bility p, and with dependence at most b. If �pb
 �, then with probability greater than zero,

no bad event occurs. Q.E.D.

Before proceeding, we need to introduce some notation. A T -frame — or a frame of

size T — is a sequence of T consecutive time steps. The congestion of an edge g in a

T -frame is the number of packets that traverse g in this frame; the relative congestion of

edge g in a T -frame is given by the congestion of g in the frame divided by the frame size

T . The frame congestion in a T -frame is the largest congestion of an edge in the frame; the

relative congestion in a T -frame is the largest relative congestion of an edge in the frame.

3.2.1 A pair of tools for later use

In this section we re-state Lemma 3.5 of [27] and we prove Proposition 3.6, which replaces

Lemma 3.6 of [27]. Both will be used in the proofs in Section 3.3.

Lemma 3.5 [27] In any schedule, if the number of packets that traverse a particular edge

g in any y-frame is at most Ry, for all y between T and
T � �, then the number of packets

that traverse g in any y-frame is at most Ry, for all y � T .

Proof: Consider a frame � of size T �, where T � �
T � �. The first �bT ��T c � ��T

steps of the frame can be broken into T -frames. In each of these T -frames, at most RT

packets traverse g. The remainder of the T �-frame � consists of a single y-frame, where

T � y �
T � �, in which at most Ry packets traverse g. Q.E.D.

3.2. PRELIMINARIES 59

The following proposition is basically a re-statement of Lemma 3.6 of [27] and will

be used here in place of this lemma. Proposition 3.6 applies when the number of distinct

edges traversed by the packets in the schedule considered, m�, is at most a polynomial in I

(I as defined below).

Proposition 3.6 Suppose that (i) there are positive constants ��� ��� �	, where �� � ��,

�� �
�	, and �	 � ��; (ii) I is larger than some sufficiently large constant; and (iii)

for all edge g, in a schedule of length I�� (or smaller) the relative congestion of edge g in

frames of size I�� or larger is at most �g, where �g is a constant. Let m� be the number

of distinct edges traversed by the packets in this schedule. Furthermore, suppose that each

packet is assigned a delay chosen randomly, independently, and uniformly from the range

��� I���, and that if a packet is assigned a delay of x, then x delays are inserted in the first

I�� steps and I�� � x delays are inserted in the last I�� steps of the schedule.

1. Then for any constant � � �, there exists a constant k� � � such that with probability

at least ��m��I
 the relative congestion of any edge g in any frame of size log� I or

larger, in between the first and last I�� steps of the new schedule is at most �g�����,

for � � k��
p
log I.

2. We can find such a schedule and verify whether it satisfies the conditions in 1. in

O�m�I���log� I�� time.

Proof: To bound the relative congestions of each edge in frames of size log� I or larger,

we need to consider all m� edges and, by Lemma 3.5, all frames of size between log� I and

 log� I � �.

As we shall see, the number of packets that traverse an edge g during a particular T -

frame � has a binomial distribution. In the new schedule, a packet can traverse g during �

only if in the original schedule it traversed g during � or during one of the I�� steps before

the start of � . Since the relative congestion of edge g in any frame of size I�� or greater

in the original schedule is at most �g, there are at most �g�I�� � T � such packets. The

probability that an individual packet that could traverse g during � actually does so is at

60 CHAPTER 3. PACKET ROUTING SCHEDULES

most T�I��. Thus, the probability p that ��g or more packets traverse an edge g during a

particular T -frame � is at most

p �
�g�I���T �X

k���g

�
�g�I�� � T �

k

��
T

I��

k �
� � T

I��

�g�I���T ��k
�

To estimate the area under the tails of this binomial distribution, we use the following

Chernoff-type bound [10]. Suppose that there are x independent Bernoulli trials, each of

which is successful with probability p�. Let S denote the number of successes in the x

trials, and let � � E�S� � xp�. Following Angluin and Valiant [2], we have

Pr�S � �� � ���� � e��
���	

for � � � � �. (Note that e denotes the base of the natural logarithm.)

In our application, x � �g�I�� � T �, p� � T�I�� , and � � �g�I�� � T �T�I��. For � �q
�k�� log I (where k� is a positive constant to be specified later), �g � �, and T � log� I ,

we have Pr�S � �� � ���� � e�k��g�I
���T �T��I�� log I� � e�k� log I � e�k� ln I � ��Ik� .

Set ��gT to be �� � ��� � �� �
q
�k�� log I��g�I�� � T �T�I��. For I large enough,

 log� I�I�� � ��
p
log I , and thus ��g � �g�� � k��

p
log I�, for some constant k� �

�k� �
p
�k� � �. Let � � k��

p
log I . Then ��g � �g�� � ��. Thus p � Pr�S � ��gT � �

Pr�S � �� � ���� � ��Ik� .

Since there are at most �I�� � I��� �
I�� starting points for a frame, and log� I

different size frames starting at each point, and there are at most m� distinct edges per

frame, the probability that the relative congestion of any edge g is more than ��g in any

frame is at most m�I�� log� I�Ik� � m��Ik������ (since log� I � I�). For any � � �, we

set k� � � � �� �
, which in turn sets k� and �, completes the proof of part 1.

We assign a random delay to each packet, and verify whether the conditions in 1. apply

as follows. We construct the schedule by routing all the packets one step at a time. At time

t, for � � t � �I���I���, we compute the congestion of edge g in a T -frame ending at t, for

all edges g that are traversed by some packet in the schedule, for all T � �log� I�
 log� I���

using the following rules: (i) if T � log� I then the congestion of g in a T -frame ending

at time t can be computed by taking the congestion of g in the T -frame ending at t � �,

subtracting the number of packets that traverse edge g at time t�T and adding the number

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 61

of packets that traverse g at time t; otherwise (ii) if t � T , then the congestion of edge g

in a T -frame that ends at t is given by the congestion of g in a �T � ��-frame that ends at

t � � plus the number of packets that traverse edge g at time t. The relative congestion of

an edge in a frame is given by the congestion of the edge in the frame divided by the size of

the frame. This can be done in time O�m��I�� � I��� log� I� � O�m�I�� log� I�, m� being

the number of distinct edges traversed in this schedule. Q.E.D.

In the remainder of this chapter, for a schedule of size polynomial in I , we assume

we check for the congestions of all T -frames, log� I � T

 log� I , of the schedule as

described in the proof of Proposition 3.6.

3.3 An algorithm for constructing optimal schedules

In this section, we describe the key ideas required to make the non-constructive proof

of [27] constructive. There are many details in that proof, but changes are required only

where the Lovász Local Lemma is used, in Lemmas 3.2, 3.7, and 3.9 of [27]. The non-

constructive proof showed that a schedule can be modified by assigning delays to the pack-

ets in such a way that in the new schedule the relative congestion can be bounded in much

smaller frames than in the old schedule. In this chapter, we show how to find the assign-

ment of delays quickly. We will not regurgitate the entire proof of [27], but only reprove

those lemmas, trying to state the replacement propositions in a way as close as possible to

the original lemmas.

In Section 3.3.1, we provide a proposition, Proposition 3.2, that is a constructive version

of Lemma 3.2 of [27]. In Sections 3.3.2 and 3.3.3, we provide three propositions that are

meant to replace Lemma 3.7 of [27]. Lemma 3.7 is applied O�log	�c � d�� times in [27].

We will use Propositions 3.7.1 and 3.7.2 to replace the first two applications of Lemma 3.7.

The remaining applications will be replaced by Proposition 3.7.3. In Section 3.3.4, we

present the three replacement propositions for Lemma 3.9 of [27]. Our belief is that a reader

who understands the structure of the proof in [27] and the propositions in this chapter can

easily see how to make the original proof constructive. We analyze the running time of our

algorithm in Section 3.4.

62 CHAPTER 3. PACKET ROUTING SCHEDULES

3.3.1 The first reduction in frame size

For a given set of N packets, let c and d denote the congestion and dilation of the paths

taken by these packets, and let P denote the sum of the lengths of these paths. Note that

m � P � mc, and that c� d
 P , where m is the number of edges traversed by some

packet in the network. The following proposition is meant to replace Lemma 3.2 of [27].

It is used just once in the proof, to reduce the frame size from d to logP .

Proposition 3.2 For any constant 	 � �, there is a constant � � �, such that there exists an

algorithm that constructs a schedule of length d � �c in which packets never wait in edge

queues and in which the relative congestion in any frame of size logP or larger is at most

1. The algorithm runs in O�m�c � d��logP�� time steps, and succeeds with probability at

least �� ��P� .

Proof: The algorithm is simple: Assign each packet an initial delay that is chosen ran-

domly, independently, and uniformly from the range ��� �c�, where � is a constant that will

be specified later; the packet will wait out its initial delay and then travel to its destination

without stopping. The length of the new schedule is at most �c� d.

To bound the relative congestion in frames of size logP or larger, we need to consider

all m edges and, by Lemma 3.5, all frames of size between logP and
 logP � �. We

assume without loss of generality that c �
 logP , since any frame of length c or larger

has relative congestion at most 1. For any particular edge g, and T -frame � , where logP �
T �
 logP � �, the probability p that more than T packets use g in � is at most

p �
cX

i�T��

�
c

i

��
T

�c

i �
�� T

�c

c�i

�
�

c

T � �

��
T

�c

�T���

�
�
e

�

�T���

since each of the at most c packets that pass through g has probability at most T��c of

using g in � , and since
	
a
b

� �ae�b�b, for any �
 b � a. The total number of frames to

consider is at most ��c�d� logP , since there are at most �c�d places for a frame to start,

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 63

and logP frame sizes. Thus the probability that the relative congestion of any edge is too

large in any frame of size logP or larger is at most

m�logP���c� d�
�
e

�

logP
�

We bound the probability above by summing the probabilities that the relative congestion

is too large for all m logP edge-frame pairs. Using the inequalities P � c, P � m, and

P � d, we have that for any constant 	 � �, there exists a constant � � �, such that this

probability is at most ��P� .

Assigning the delays to the packets takes O�N� time steps. Verifying whether the

relative congestion is at most 1 in any T -frame of size logP � T �
 logP�� can be done

in O�m�c� d��logP�� time steps (see the last paragraph of the proof of Proposition 3.6).

Q.E.D.

Before applying Proposition 3.7.1, we first apply Proposition 3.2 to produce a schedule

S� of lengthO�c�d� in which the relative congestion in any frame of size logP or larger is

at most �. For any positive constant 	, this step succeeds with probability at least ����P� .

If it fails, we simply try again.

3.3.2 A randomized algorithm to reduce the frame size

In this section, we prove two very similar propositions, Propositions 3.7.1 and 3.7.2, that are

meant to replace the first two applications of Lemma 3.7 of [27], which we state below. In

proving all these propositions, we use a constructive version of the Lovász Local Lemma

that applies to scheduling problems. Let I � �. We break a schedule S into blocks of

I	 �
I� � I consecutive time steps. The size of a block is the number of time steps it

spans.

Lemma 3.7 [27] In a block of size
I	 �
I� � I , let the relative congestion in any frame

of size I or greater be at most r, where � � r � I . Then there is a way of assigning delays

to the packets so that in between the first and the last I� steps of this block, the relative

congestion in any frame of size I� � log� I or greater is at most r� � r�� � ���, where

�� � O����
p
log I .

64 CHAPTER 3. PACKET ROUTING SCHEDULES

After applying Proposition 3.2 to reduce the frame size from d to logP, Proposi-

tions 3.7.1 and 3.7.2 are used once on each block (for I � logP and I � �log logP��
respectively) to further reduce the frame size. Unlike Lemma 3.7 of [27], Propositions 3.7.1

and 3.7.2 may increase the relative congestion by a constant factor. In general, we cannot

afford to pay a constant factor at each of the O�log	�c� d�� applications of Lemma 3.7 of

[27], but we can afford to pay it twice.

These two propositions avoid the use of exhaustive search, since they relate to problem

sizes that are still large: In these propositions we designed separate algorithms that use the

fact that the problem sizes are sufficiently large that we can guarantee a “good” solution

with high probability. In the remainder of this chapter, we assume without loss of generality

that P is not a constant. If P � O���, then we can find an optimal schedule in a constant

number time steps by using exhaustive search. For the application of Proposition 3.7.1,

I � logP and r � �. With probability at least � � ��P� , for any constant 	 � �, we

succeed in producing a schedule S� in which the relative congestion is O��� in frames of

size log� I � �log logP�� or greater (if we should fail, we simply try again). In the appli-

cation of Proposition 3.7.2, I � �log logP��, and r � O���. In the resulting schedule, S	,

the relative congestion is O��� in frames of size log���log logP��� � �log log logP�O���

or greater, with probability at least � � ��P�, for any constant 	 � �. At this point, the

problem sizes are small enough for using exhaustive search, and we start using Proposi-

tion 3.7.3.

Proposition 3.7.1 Let the relative congestion in any frame of size I or greater be at most r

in a block of size
I	 �
I� � I , where � � r � I and I � logP . Let Q be the sum of the

lengths of the paths taken by the packets in this block. Then, for any constant 	 � �

1. there is an algorithm for assigning initial delays in the range ��� I� to the packets

so that in between the first and last I� steps of the block, the relative congestion in

any frame of size log� I or greater is at most r�, where r� �
r�� � �� and � �

O����
p
log I;

2. this algorithm runs in O�Q�logP���log logP�� time steps, with probability at least

�� ��P�.

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 65

Proof: We define the bad event for each edge g in the network and each T -frame � , for

log� I � T �
 log� I � �, as the event that more than r�T packets use g in � . A particular

bad event may or may not occur — i.e., may or may not be true — in a given schedule.

If no bad event occurs, then by Lemma 3.5, the relative congestion in all frames of size

log� I or greater will be at most r�. Since there are log� I different frame sizes and there

are at most �
I	 �
I� � I� � I �
I	 �
I� different frames of any particular size, the

total number of bad events involving any one edge is at most �
I	 �
I�� log� I
 I�, for I

greater than some large enough constant.

We now describe the algorithm for finding the assignment. In a first pass of assigning

delays to the packets, we process the packets one at a time. To each packet, we assign a

delay chosen randomly, independently, and uniformly from � to I . We then examine every

event in which the packet participates.

A packet can use an edge g in a T -frame � only if it traversed edge g in � or in one of

the I steps preceding � in the original schedule. At most r�T � I� packets use edge g in a

frame of size �I �T �, since the relative congestion in this frame is at most r in the original

schedule. Thus at most r�T � I� packets can traverse edge g in the new schedule (after

delays are assigned to the packets). We call these r�I � T � packets the candidate packets

to use edge g in � . Let Cg be the number of candidate packets to use g in � that have been

assigned delays so far. We say that the event for an edge g and a T -frame � is critical if

more than CgT�I�kr�I�T �T��I
p
log I� packets actually traverse edge g in � , where k is

a positive constant to be specified later. Intuitively, an event becomes critical if the number

of packets assigned delays so far that traverse edge g in � exceeds the expected number of

such packets (CgT�I) by an excess term kr�I�T �T��I
p
log I�. Since Cg � r�T � I�, we

allow an excess of at most k�
p
log I times the expected number of packets that would use

edge g in the frame if all of the packets were assigned delays. Hence, the maximum final

excess allowed does not depend on Cg. If a packet causes an event to become critical, then

we set aside all of the other packets that could also use g during � , but whose delays have

not yet been assigned.

The main difference between our algorithm and Beck’s [8] constructive version of the

Lovász Local Lemma is that we never allow the number of packets passing through an edge

66 CHAPTER 3. PACKET ROUTING SCHEDULES

in a T -frame to deviate from the expectation by more than a low order term. In particular,

we do not allow this number to deviate by a constant factor times the expectation. In Beck’s

algorithm, the random variable associated with a bad event (in our case, the number of

packets that traverse an edge in a T -frame) may deviate from the expectation by a constant

factor times the expectation.

We will deal with the packets that have been set aside later. Let P denote the set

of packets that have been assigned delays. As we shall see, after one pass of assigning

random delays to the packets, the problem of scheduling the packets that have been set

aside is broken into a collection of much smaller subproblems, with probability at least

� � ��P��

, for any constant 	� � �. Once the size of a subproblem (given by the number

of edges involved in the subproblem) gets small compared to the frame length, we can try

assigning random delays to the packets that were set aside.

In this initial pass, we assign a random delay to each packet, and check whether the

event for an edge g traversed by the packet in this block and T -frame � becomes crit-

ical, for all edges g traversed by the packet in this block and for all frames of size T

in �log� I�
 log� I � ��, by following the same procedure as described in the last para-

graph of the proof of Proposition 3.6. Here the schedule length after we insert the delays

is
�I	 � I�� � O�log	P� (and so there are O�log	P� starting points for a T -frame

�) and there are log� I � �log logP�� different frame sizes to consider. The sum of

the lengths of the paths traversed by the packets in this block is Q. Thus, a pass takes

O�Q�logP�	�log logP��� time steps. If a pass fails to reduce the component size, we try

again.

In order to proceed, we must introduce some notation. The dependence graph, G, is the

graph in which there is a node for each bad event, and an edge between two nodes if the

corresponding events share a packet. Let q denote the number of distinct edges traversed

by the packets in this block. Let b denote the degree of G. Whether or not a bad event

for an edge g and a time frame � occurs depends solely on the assignment of delays to the

packets that pass through g. Thus, the bad event for an edge g and a time frame � , and the

bad event for an edge g� and a time frame � � are dependent only if g and g� share a packet.

Since at most r�
I	 �
I� � I� � rI� (for I large enough) packets pass through g, each of

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 67

these packets passes through at most
I	 �
I� � I � I� other edges g�, and there are at

most �
I	 �
I���log� I� � I� time frames � � the dependence b is at most rI��. For r � I ,

we have b � I�	. Since the packets use at most q different edges in the network, and for

each edge there are at most I� bad events, the total number of nodes in G is at most qI�.

We say that a node in G is critical if the corresponding event is critical. We say that a node

is endangered if its event shares a packet with an event that is critical. After each packet

has been either assigned a delay or set aside, let G� denote the subgraph of G consisting of

the critical and endangered nodes and the edges between them. If a node is not in G�, then

all of the packets that use the corresponding edge have already been assigned a delay, and

the bad event represented by that node cannot occur, no matter how we assign delays to the

packets not in P . Hence, from here on we need only consider the nodes in G�.

Since different components are not connected by edges inG�, no two components share

a packet. Also, any two events that involve edges traversed by the same packet share an

edge in G�, and so are in the same connected component. Thus there exists a one-to-one

correspondence between components of G� and disjoint sets in a partition of the packets

not in P . Hence, we can assign the delays to the packets in each component separately.

In the following claim, we show that, with high probability, the size of the largest

connected component U of G� is at most I�� logP , with high probability. Hence we have

reduced the maximum possible size of a component from qI� in G to I�� logP in G�.

Recall that the constant k is used to determine whether and event becomes critical.

Claim 1 For any constant 	� � �, there exists a constant k � � such that the size of the

largest connected component of G� is at most I�� logP with probability at least ����P��

.

Proof: The trick to bounding the size of a largest connected component U is to observe

that the subgraph of critical nodes in U is connected in the cube, G	
�, of the graph G�, i.e.,

the graph in which there is an edge between two distinct nodes u and v if in G� there is a

path of length at most � between u and v. In G	
�, the critical nodes of U form a connected

subgraph because any path u� e�� e�� e	� v in G� that connects two critical or endangered

nodes u and v by passing through three consecutive endangered nodes e�, e�, e	 can be

replaced by two paths u� e�� e�� w and w� e�� e	� v of length 3 that each pass through e�’s

68 CHAPTER 3. PACKET ROUTING SCHEDULES

critical neighbor w. Let G� denote the subgraph of G	
� consisting only of the critical nodes

and the edges between them. Note that the degree of G� is at most b	, and if two critical

nodes lie in the same connected component in G�, then they also lie in the same connected

component in G	
�, and hence in G�.

By a similar argument, any maximal independent set of nodes in a connected compo-

nent of G� is connected in G	
�. Note that if a set of nodes is independent in G�, then it

is also independent in G	
� and in G�. The nodes in an independent set in G� do not share

any packets, therefore the probabilities that each of these nodes becomes critical are inde-

pendent. Let G	 be the subgraph of G	
� induced by the nodes in a maximal independent

set in G� (any such maximal independent set in G� will do). The nodes in G	 form an

independent set of critical nodes in G�. The degree of G	 is at most b�.

Our goal now is to show that, for any constant 	� � �, there exists a constant k � �

such that the number of nodes in any connected component W of G	 is at most logP ,

with probability � � ��P��

. To begin, with every connected component W of G	, we

associate a spanning tree of W (any such tree will do). Note that, if W and W � are two

distinct connected components of G	, then the spanning trees associated with W and W �

are disjoint.

Now let us enumerate the different trees of size � in G	. To begin, a node is chosen

as the root. Since there are at most qI� nodes in G	, there are at most qI� possible roots.

Next, we construct the tree as we perform a depth-first traversal of it. Nodes of the tree are

visited one at a time. At each node u in the tree, either a previously unvisited neighbor of

u is chosen as the next node to be visited, or the parent of u is chosen to be visited (at the

root, the only option is to visit a previously unvisited neighbor). Thus, at each node there

are at most b� ways to choose the next node. Since each edge in the tree is traversed once

in each direction, and there are �� � edges, the total number of different trees with any one

root is at most �b��������
 b���.

Any tree of size � in G	 corresponds to an independent set of size � in G�; moreover, it

corresponds to an independent set of � critical nodes in G�. We can bound the probability

that all of the nodes in any particular independent subset U of size � in G� are critical as

follows. Let pC be the probability that more than M � CT�I � kr�I � T �T��I
p
log I�

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 69

packets use edge g in � after C candidate packets to use g in � have been assigned delays.

Then

pC �
CX

j�M��

�
C

j

��
T

I

j �
� � T

I

C�j
�

For a fixed deviation, kr�I � T �T��I
p
log I�, that does not depend on C , the probability

pC of exceeding this deviation is maximized when C is maximized — i.e., when C �

r�I � T �, implying M � r�T � I�T �� � k�
p
log I��I . Thus, pC � pr�I�T �. Using

the Chernoff-type bound as in the proof of Proposition 3.6, with � � r�I � T �T�I and

� � k�
p
log I, and k� � k���, we have pC � pr�I�T � � Pr�S � �� � ���� � e��

���	 �

e��k
�r�I�T �T ���	I log I� � e��k� log I� � e��k� ln I� � ��Ik� , since T � log� I and r � �. Thus

the probability that the event for g and � becomes critical after C candidate packets to use

g in � have been assigned delays is at most ��Ik� . Since the nodes in U are independent

in G�, the corresponding events are also independent. Hence the probability that all of the

nodes in the independent set are critical after all packets are assigned delays or put aside

is at most ��Ik��. Thus the probability that there exists a tree of size � in G	 is at most

qI�b����Ik�� � qI���k���	��� (since there exists at most qI�b��� different trees of size � in

G	 and b � I�). Since q � P , we can make this probability less than ��P��

, for � � logP ,

and any fixed constant 	� � �, by choosing k to be a sufficiently large constant. Hence,

with probability at least ����P��

, the size of the largest spanning tree in G	 will be logP .

We can now bound the size of the largest connected component in G�. Since (i) the

largest connected component in G	 has at most � nodes, with probability at least ����P��

;

(ii) each of these � nodes may have b	 neighbors in G�; and (iii) each node in G� is either

in G	 or is a neighbor of a node in G	, the largest connected component in G� contains at

most b	� nodes, with probability at least ����P��

. As we argued before, the critical nodes

in any connected component of G� are connected in G�. Thus, the maximum number of

critical nodes in any connected component of G� is at most b	�. Since each of these nodes

may have as many as b endangered neighbors (and each endangered neighbor is adjacent

to a critical node), and since � � logP , the size of the largest connected component in G�

is at most b�� � I�� logP , with high probability. Q.E.D.

Since I � logP in the scope of this lemma, the size of the largest connected component

in G� is at most �logP��	, for k large enough, with probability at least � � ��P��

, for any

70 CHAPTER 3. PACKET ROUTING SCHEDULES

constant 	� � �. We still have to find a schedule for the packets not in P . We now have a

collection of independent subproblems to solve, one for each component in the dependence

graph. We can use Proposition 3.6 to find the initial delays for these packets. Since each

node in the dependence graph corresponds to an edge in the routing network, a component

with x nodes in the dependence graph corresponds to at most x, and possibly fewer, edges

in the routing network.

We apply Proposition 3.6 to each of the independent subproblems. In the original block,

let rg be the relative congestion of edge g with respect to the packets not in P in frames of

size I or larger, and let rHg be the relative congestion of edge g with respect to the packets in

subproblemH in frames of size I or larger (rg �
P

H rHg). Let qH be the number of distinct

edges associated with subproblem H , for all H . Note that qH � I��� � I�� logP � I�	,

since I � logP. After applying Proposition 3.6 to a subproblemH , the relative congestion

of any edge g with respect to the packets in H in frames of size log� I or larger, in between

the first and last I� steps in the final schedule is at most rHg �� � k��
p
log I�, for some

constant k� � �, with probability at least �� qH�I
 � �� ���logP�
��	, for any constant

� � �.

Since the routing subproblems are mutually independent and disjoint, if we apply

Proposition 3.6 logP��log logP� times to each of the at most N � P subproblems (note

that each packet appears in at most one subproblem), then for any constant � � ��, and P
large enough, with probability at least � � N��logP��
��	� logP��log logP� � � � ��P
���,

the relative congestion of edge g with respect to the packets not in P , in any frame of size

log� I or greater is at most
P

H�G�
rHg �� � k��

p
log I� � rg�� � k��

p
log I�.

Applying Proposition 3.6 logP��log logP� times for each subproblem takes time

O�
P

H qH�I	 � I���log� I� logP� log logP� � O�Q�log�P��log logP��, since I � logP
and Q �P

H qH .

We now have schedules for the packets in P and for the packets not in P . Fix any edge g

traversed by some packet in the block and a T -frame � , where T � �log� I�
 log� I���. The

total number of candidate packets in P to use edge g in � after the delays have been assigned

is given by Cg. The number of packets in P that traverse edge g in � in the resulting

schedule is at most CgT�I � kr�I � T �T��I
p
log I� � r�I � T �T �� � k�

p
log I��I �

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 71

rT �� � �
k � ���
p
log I�, since �I � T ��I � �� � ���

p
log I��, for I large enough, and

Cg � r�I � T �. Hence the relative congestion of edge g in � with respect to the packets in

P is at most r�� � �
k � ���
p
log I�.

Now we consider the relative congestion of the packets not in P . With probability at

least � � ��P�� � ��P�
����, for any positive constants 	� and �, there exists a constant

k� such that the number of packets not in P that traverse g in the new schedule is at most

rgT �� � k��
p
log I� � rT �� � k��

p
log I�.

Combining the relative congestions for packets in P and not in P , we get that the

relative congestion of edge G in � is at most
r�� � max�
k � �� k���
p
log I�. Choose

� � max�
k � �� k���
p
log I. Choose 	 such that ��P� � ��P��

� ��P
���. Hence, for

any constant 	 � �, there exist constants k and k� � � such that the relative congestion

of edge g in � is at most
r�� � ��, for any edge g, for any T -frame � , for any T �
�log� I�
 log� I � ��, with probability at least �� ��P�.

The number of time steps taken by the algorithm just described is O�Q�log logP �

logP��log	P��log logP�� � O�Q�log�P��log logP��. Q.E.D.

Proposition 3.7.2 Let the relative congestion in any frame of size I or greater be at most r

in a block of size
I	 �
I� � I , where � � r � I and I � �log logP��. Let Q be the sum

of the lengths of the paths traversed by the packets in this block. Then, for any constant

	 � �

1. there is an algorithm for assigning initial delays in the range ��� I� to the packets

so that in between the first and last I� steps of the block, the relative congestion in

any frame of size log� I or greater is at most r�, where r� �
r�� � �� and � �

O����
p
log I;

2. this algorithm runs in Q�logP��log logP���log log logP�O��� time steps, with prob-

ability at least � � ��P� .

Proof: The first part of the proof of this proposition is identical to the part where we assign

delays to the packets in P in the proof of the Proposition 3.7.1 (we let I � �log logP�� in

that proof).

72 CHAPTER 3. PACKET ROUTING SCHEDULES

However, since I � �log logP��, we need to make an additional pass assigning de-

lays to the packets in this proof, in order to reduce the component size in the depen-

dence graph to a polynomial in I . From there, we proceed by applying Proposition 3.6

to each component separately, as we did in the proof of Proposition 3.7.1. In the first

pass, we reduce the maximum component size in G� from qI� to I�� logP (by taking

� � logP , as in Proposition 3.7.1), with probability at least � � ��P��

, for any con-

stant 	� � �. In the second pass, we reduce the component size from I�� logP down

to I�� log logP � I�	, by taking � � log logP , and noting that the number of edges in

any connected component is at most I�� logP . For any component, this step will suc-

ceed with probability at least � � ���I�� logP���

, for any constant 	� � �. To make

this probability as high as it was in the case I � logP , if a pass fails for any compo-

nent, we simply try to reduce the component size again, up to logP��log logP� times.

Then with probability at least � � ��P��

, for any constant 	� � �, we have reduced the

component size to at most I�	. Since (i) for each packet assigned a delay in these two

passes, we have to check whether the event for an edge g and a T -frame � becomes critical,

for all edges g traversed by the packet, for all T -frames � , for T � �log� I�
 log� I � ��

(using a similar procedure to that in the last paragraph of Proposition 3.6), and since

(ii) we repeat the second pass O�logP� log logP� times, the two passes take O�Q�I	 �

I���log� I��logP���log logP�� � O�Q�log logP�� log���log logP��� logP��log logP�� �
Q�logP��log logP���log log logP�O��� time steps.

The second pass adds some packets to the set P . Let P� and P� denote the number of

packets assigned delays in the first and second pass, respectively. Then the relative conges-

tion due to these packets will be at most ��P� � P��T�I �
kr�I � T �T��I
p
log I���T �

r�I �T ��I�
kr�I �T ���I
p
log I� � r���T�I �
k�I �T ���I

p
log I�� � r��� ��k�

���
p
log I�, since T

 log� I and
 log� I�I � ��

p
log I.

If the two passes fail to achieve the desired relative congestion, we try again.

Now we apply Proposition 3.6 up to logP��log log logP� times, assigning delays to the

packets not in P , verifying at the end of each application whether the schedule obtained has

relative congestion r�� � k��
p
log I�, for some constant k� to be specified later. Here we

need to apply Proposition 3.6 up to logP��log log logP� times to each resulting component

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 73

(rather than logP��log logP� as in the proof of Proposition 3.7.1) since the component

size now is O�I�	� � �log logP�O���, and so our bound on the failure probability for each

component is only ���log logP�O��� (since the bound given by Proposition 3.6 is at best

polynomially small in I and I � �log logP��), rather than ���logP�O���. The assignment

of delays to the packets not in P takes at mostQ�log logP���log log logP�O����logP� time

steps, since Q is an upper bound on the sum of the number of edges in each component.

For any constant 	� � �, there exists a constant k� � � such that we obtain a feasible

schedule for these packets with relative congestion r�� � k��
p
log I� with probability at

least �� ��P��

.

We have schedules for the packets in P and for the packets not in P , with relative

congestions r�� � ��k � ���
p
log I� and r�� � k��

p
log I�, respectively, with probability

at least � �
�P��

, for any constant 	� � �. The two schedules can be found in at most

Q�logP��log logP���log log logP�O��� time steps. When we merge the two schedules, the

resulting relative congestion may be as large as the sum of the two relative congestions —

that is, the resulting relative congestion may be as large as
r���max��k��� k���
p
log I�,

with probability at least � � ��P� , for large enough constants k and k� � �, for any fixed

	 � � (choose 	� such that ��P� �
�P��

). Let � � max��k � �� k���
p
log I.

Q.E.D.

3.3.3 Applying exhaustive search

The remaining O�log	�c � d�� applications of Lemma 3.7 in [27] are replaced by appli-

cations of the following proposition, which uses the same technique as Propositions 3.7.1

and 3.7.2, except that instead of using Proposition 3.6 for each component of the subgraph

induced by critical and endangered nodes in the dependence graph, it uses the Lovász Local

Lemma and exhaustive search to find the settings of the delays for the packets. Proposi-

tion 3.7.3 does not allow a constant factor increase in the relative congestion of the refined

schedule, which prevents a
O�log��c�d�� blowup in the final relative congestion.

Proposition 3.7.3 Let the relative congestion in any frame of size I or greater be at most r

in a block of size
I	 �
I� � I , where � � r � I and I � �log log logP�O���. Let Q be

74 CHAPTER 3. PACKET ROUTING SCHEDULES

the sum of the lengths of paths taken by the packets in this block. Then, for any constant

	 � �,

1. there is an algorithm for assigning initial delays in the range ��� I� to the packets so

that the relative congestion in any frame of size log� I or greater in between the first

and last I� steps in the resulting schedule is at most r�, where r� � r�� � �� and

� � O����
p
log I;

2. this algorithm runs in Q�logP��log log logP�O����log log log logP�O��� time steps,

with probability at least �� ��P� .

Proof: The proof uses the Lovász Local Lemma to show that an assignment of initial delays

satisfying the conditions of the proposition exists.

We first assign delays to some packets by making three passes through the packets

using the algorithm of Proposition 3.7.1 (for making the initial pass assigning delays to the

packets in P) in each pass. Let C�i�
g , � � i � �, be the number of candidate packets to use

edge g in � that were assigned delays in the ith pass. After the first pass, we have that (i)

the number of packets assigned delays in this pass that use edge g in the new schedule is at

most C���
g T�I � kr�I � T ���I

p
log I�, and (ii) with probability at least �� ��P��

, for any

constant 	� � �, the size of the largest component in the dependency graph is I�� logP .

We need to make two more passes assigning delays to the packets, reducing the size

of the largest connected component first to I���log logP�, and then to I���log log logP� �
�log log logP�O��� (since I � �log log logP�O���), by taking � � log logP in the second

pass and � � log log logP in the third pass. If we fail to reduce the component size as

desired, the second pass is repeated up to logP��log logP� times and the third pass is

repeated up to logP��log log logP� times. The number of packets assigned delays in the

second (resp., third) pass that traverse edge g in the new schedule is at most C���
g T�I �

kr�I � T ���I
p
log I� (resp., C�	�

g T�I � kr�I � T ���I
p
log I�). As before, k is chosen

large enough so that the failure probability in each pass is at most ��P��

, for any constant

	� � �.

In each pass, we assign a random delay to each packet and check whether the event for

any edge g traversed by this packet and any T -frame � , where T � �log� I�
 log� I � ��,

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 75

becomes critical, as we did in Propositions 3.7.1-2. Thus each pass takes time O�Q�I	 �

I���log� I�� � Q�log log logP�O����log log log logP�O���. For any constant 	 � �, choose

	� such that ��P� � ��P��

. Hence, since we repeat the second and third passes up to

logP��log logP� and logP��log log logP�, respectively, we succeed in reducing the com-

ponent size to �log log logP�O��� inQ�logP��log log logP�O����log log log logP�O��� time

steps, with probability at least � � ��P�. Let P be the number of packets assigned delays

in the three passes.

We now use the Lovász Local Lemma to show that there exists a way of completing the

assignment of delays (i.e., to assign delays to the packets not in P) so that the relative con-

gestion in frames of size log� I or greater in this block is at most r�� � O����
p
log I�.

We associate a bad event with each edge and each time frame of size log� I through

 log� I � �. The bad event for an edge g and a particular T -frame � occurs when more

than Mg � �r�I � T �� Pg�T�I � kr�I � T �T��I
p
log I� packets not in P use edge g in

� , where Pg is the number of packets in P that traverse edge g during � after the delays

have been assigned to the packets in P (note that there are at most r�T � I��Pg candidate

packets not in P to use edge g in �). As we argued in the proof of Proposition 3.7.1, the to-

tal number of bad events involving any one edge is at most I�. We show that if each packet

not in P is assigned a delay chosen randomly, independently, and uniformly from the range

��� I�, then with nonzero probability no bad event occurs. In order to apply the lemma, we

must bound both the dependence of the bad events, and the probability that any bad event

occurs. The dependence b is at most I�	, as argued before. For any edge g and T -frame

� that contains g, where log� I � T � �
 log� I� � �, the probability pg that more than

Mg packets not in P use g in � , can be shown to be at most ��I��, for sufficiently large k,

using exactly the same Chernoff-bound argument that was used in Proposition 3.7.1. Thus,

�maxg�Gfpggb � ��I
 � (for I � �). Hence, since maxg�Gfpgg is an upper bound on

the probability of any bad event occurring, by the Lovász Local Lemma, there is some way

of assigning delays to the packets not in P so that no bad event occurs.

Since at most r�T � I� packets pass through the edge associated with any critical node,

and there are at most �I � �� choices for the delay assigned to each packet, the number

of different possible assignments for any subproblem containing �log log logP�O��� critical

nodes is at most �I � ��r�I�T ��log log logP�O��� � I�I
��log log logP�O��� (since r
 I and T

76 CHAPTER 3. PACKET ROUTING SCHEDULES

 log� I). For I
 �log log logP�O��� and P larger that some constant, this quantity is

smaller than �logP�� , for any fixed constant � � �. Hence, we need to try out at most

log� P possible delay assignments.

After assigning delays to all of the packets, the number of packets that use an edge g in

any T -frame � is at most

	X
i��

�
C�i�
g T

I
�
kr�I � T �T

I
p
log I

�
�

�r�I � T �� Pg�T

I
�
kr�I � T �T

I
p
log I

� r�I � T �T

I
�

�kr�I � T �T

I
p
log I

with probability at least � � ��P� , since each packet is assigned a delay exactly once, and

thus r�I � T �� Pg � C���
g � C���

g � C�	�
g � r�I � T �. Thus the relative congestion in any

T -frame, for log� I � T

 log� I , is at most

�
r�I � T �

I

�
�� �

�kp
log I

� � r
�
� �

T

I

�� �

�kp
log I

�

� r

�
� �

��k � ��p
log I

�
� r�� � ���

by taking � � ��k � ����I
p
log I�, since
 log� I�I � ��

p
log I, for I large enough.

We can bound the total number of time steps taken by the algorithm as follows. The first

three passes take time Q�logP��log log logP�O����log log log logP�O���, with probability

at least ����P� . After the third pass, we solve subproblems containing �log log logP�O���

critical nodes exhaustively. For each subproblem, for each of the at most log� P possible as-

signment of delays to the packets in the subproblem, for each of the at most �I	�I�� log� I

T -frames � in the subproblem, log� I � T

 log� I , and for every edge g in � , we

check whether more than Mg packets traverse g during � (using the procedure described

in the proof of Proposition 3.6). This takes time O�Q�I	 � I���log� I��log� P��, which is

at most Q�log log logP�O����log log log logP�O����log� P�, for P large enough, for any

fixed � � � (since the sum of the number of distinct edges in each subproblem is at

most Q, and since I � �log log logP�O���). In particular, for � � �, this quantity is

bounded by Q�logP��log log logP�O����log log log logP�O���. Hence the algorithm runs

3.3. AN ALGORITHM FOR CONSTRUCTING OPTIMAL SCHEDULES 77

in Q�logP��log log logP�O����log log log logP�O��� time steps, with probability at least

�� ��P�, for any constant 	 � �.

Q.E.D.

3.3.4 Moving the block boundaries

Now we present the three replacement propositions for Lemma 3.9 of [27], which bounds

the relative congestion after we move the block boundaries (as in [27]). The three proposi-

tions that follow are analogous to the three replacement propositions, Propositions 3.7.1-3,

for Lemma 3.7 of [27]. The necessary changes in the proof of Lemma 3.9 of [27], in places

where the Lovász Local Lemma is used, are analogous to the changes made in the proof of

Lemma 3.7 of [27], for the cases I � logP , I � �log logP��, and I � �log log logP�O���.

Therefore, we omit the proofs of Propositions 3.9.1-3.

Suppose we have a block of size
I	 � �I�, obtained after the insertion of delays into

the schedule as described in Propositions 3.7.1, 3.7.2, or 3.7.3, according to the current

value of I . Then suppose we move the block boundaries as described in [27]. Each Propo-

sition 3.9.1-3 also refers to a specific size of I . Note that in [27], the steps between steps

I	 and I	 �
I� in the block are called the “fuzzy region” of the block. We assume that

the relative congestion in any frame of size I or greater in the block is at most r, where

� � r � I . Let Q be the sum of the lengths of the paths taken by the packets in the block.

Proposition 3.9.1 For I � logP , for any constant 	 � �

1. there is an algorithm for assigning delays in the range ��� I�� to the packets such that

in between steps I log	 I and I	 and in between steps I	��I� and
I	��I��I log	 I ,

the relative congestion in any frame of size log� I or greater is at most
r�� � ���,

where �� � O����
p
log I , and such that in between steps I	 and I	 � �I�, the

relative congestion in any frame of size log� I or greater is at most
r������, where

�� � O����
p
log I;

2. this algorithm runs in O�Q�logP���log logP�� time steps, with probability at least

�� ��P�.

78 CHAPTER 3. PACKET ROUTING SCHEDULES

Proposition 3.9.2 For I � �log logP��, for any constant 	 � �,

1. there is an algorithm for assigning delays in the range ��� I�� to the packets such that

in between steps I log	 I and I	 and in between steps I	��I� and
I	��I��I log	 I ,

the relative congestion in any frame of size log� I or greater is at most
r�� � ���,

where �� � O����
p
log I , and such that in between steps I	 and I	 � �I�, the

relative congestion in any frame of size log� I or greater is at most
r������, where

�� � O����
p
log I;

2. this algorithm runs in Q�logP��log logP���log log logP�O��� time steps, with prob-

ability at least � � ��P� .

Proposition 3.9.3 For I � �log log logP�O���, for any constant 	 � �,

1. there is an algorithm for assigning delays in the range ��� I�� to the packets such that

in between steps I log	 I and I	 and in between steps I	��I� and
I	��I��I log	 I ,

the relative congestion in any frame of size log� I or greater is at most r�� � ���,

where �� � O����
p
log I , and such that in between steps I	 and I	 � �I�, the

relative congestion in any frame of size log� I or greater is at most r�� � ���, where

�� � O����
p
log I;

2. this algorithm runs in Q�logP��log log logP�O����log log log logP�O��� time steps,

with probability at least �� ��P� .

3.4 Running time

Theorem 1 For any constant � � �, the algorithm for finding an O�c � d�-steps schedule

of the packets takes O�m�c� d��logP���log logP�� time steps overall, with probability at

least �� ��P�.

Proof: For any constant 	 � �, we place an upper bound on the number of time steps taken

by the application of Proposition 3.2, followed by the applications of Propositions 3.7.1,

3.9.1, 3.7.2, and 3.9.2, then followed by the applications of Propositions 3.7.3 and 3.9.3.

3.5. A PARALLEL SCHEDULING ALGORITHM 79

The application of Proposition 3.2 takes O�m�c � d� logP� time steps, with probability at

least ����P� . Each of the Propositions 3.7.1-3, and each of the Propositions 3.9.1-3 dealt

with a single block. For any I , partitioning the schedule into disjoint blocks and moving

the block boundaries as described in [27] take O�P� time. Let nI be the number of blocks

in the schedule for any given I .

We place an upper bound on the number of time steps taken by the applications of

Propositions 3.7.1-3 and 3.9.1-3 as follows. Assume the blocks are numbered from �

to nI . Note that
PnI

i��Qi � P , where Qi is the sum of the lengths of the paths tra-

versed by the packets in block i. Thus the applications of Proposition 3.7.1 and 3.9.1 take

O�P�logP���log logP�� steps; and the applications of Propositions 3.7.2 and 3.9.2 take

P�logP��log logP���log log logP�O��� steps. For each partition of the schedule for a given

I � �log log logP�O���, we apply Propositions 3.7.3 and 3.9.3 to every block i in this parti-

tion, � � i � nI , taking overall time P�logP��log log logP�O����log log log logP�O���.

Since we will repartition the schedule O�log	�c � d�� times after we bring I down to

�log log logP�O���, the overall running time due to applications of Propositions 3.7.3 and

3.9.3 is P�logP��log log logP�O����log log log logP�O��� log	�c� d�.

Choose � � � such that ��P � � O�log	�c � d���P�. Thus the total number of time

steps taken by the algorithm is O�m�c� d��logP���log logP��, for P large enough, with

probability at least � � ��P�, for any constant � � �. Note that we used the inequalities

P � c, P � d, and P � m�c� d�. Q.E.D.

3.5 A parallel scheduling algorithm

At first glance, it seems as though the algorithm that was described in Section 3.3 is inher-

ently sequential. This is because the decision concerning whether or not to assign a delay to

a packet is made sequentially. In particular, a packet is deferred (i.e., not assigned a delay)

if and only if the packet might be involved in an event — i.e., the packet traverses an edge

that corresponds to an event — that became critical because of the delays assigned to prior

packets.

80 CHAPTER 3. PACKET ROUTING SCHEDULES

In [1], Alon describes a parallel version of Beck’s algorithm which proceeds by assign-

ing values to all random variables (in this case delays to all packets) in parallel, and then

unassigning values to those variables that are involved in bad events. The Alon approach

does not work in this application because we cannot afford the constant factor blow-up in

relative congestion that would result from this process.

Rather, we develop an alternative method for parallelizing the algorithm. The key idea

is to process the packets in a random order. At each step, all packets that do not share an

edge with an as-yet-unprocessed packet of higher priority are processed in parallel.

To analyze the parallel running time of this algorithm, we first make a dependency graph

G� with a node for every packet and an edge between two nodes if the corresponding packets

can be involved in the same event. Each edge is directed towards the node corresponding

to the packet of lesser priority. By Brent’s Theorem [9], the parallel running time of the

algorithm is then at most twice the length of the longest directed path in G�.

Let D denote the maximum degree of G�. There are at most NDL paths of length L

in G�. The probability that any particular path of length L has all of its edges directed

in the same way is at most
�L� (the factor of
 appears because there are two possible

orientations for the edges). Hence, with probability near 1, the longest directed path length

in G� is O�D � logN�. This is because if L � k�D � logN�, for some large constant k,

then NDL 	 �
L�
� �.

Each packet can be involved in at most �
I	�
I���
I	� I�� log� I events, and at most

r�I � T � � O�I� packets can be involved in the same event. Hence, the degree D of G� is

at most O�I� log� I�. By using the method of Proposition 3.2 as a preprocessing phase, we

can assume that c, d, and thus I , are all polylogarithmic inP . Hence, the parallel algorithm

runs in NC , as claimed.

3.6 Concluding remarks

Our algorithm for packet scheduling can also be used to route messages that are composed

of sequences of packets. This is possible since our algorithm can easily maintain the prop-

3.6. CONCLUDING REMARKS 81

erty that any two packets traveling along the same path to the same destination always

proceed in order.

The algorithms described in this chapter are randomized, but they can be derandomized

using the method of conditional probabilities [43, 52].

Chapter 4

New Approximation Techniques for
Some Ordering Problems

4.1 Introduction

In this chapter, we address the minimum linear arrangement problem, an optimization prob-

lem that arises in embeddings of networks into a linear array. Let G be a network with

associated nonnegative edge weights. The weight of an edge can represent the capacity, or

the cost of communication through the edge. Informally, a minimum linear arrangement of

G is an embedding of G into the linear array such that (i) we have a one-to-one mapping

from the nodes of G to the nodes of the linear array, and (ii) the weighted sum of the edge

dilations — that is, the cost of the linear arrangement — is minimum. In Figure 4.1, we

show a linear arrangement � for the networkG with cost 28 (in fact this linear arrangement

is a minimum linear arrangement of G).

As we saw in Chapter 1, a guest network G can be emulated by a host network H by

embedding G into H . The slowdown of an emulation is given by the ratio between the

number t� of steps on H needed to emulate any t steps of computation on G. We would

like the slowdown to be as small as possible. The slowdown of an emulation is closely

related to the dilations of the edges in the associated embedding: The dilation of an edge

This is joint work with Satish Rao, NEC Research Institute; a preliminary version of this work appears
in [47].

82

4.1. INTRODUCTION 83

b

c

e

a

d

1 3

5

3

4

2

1

2

5

3

3 4

w e()

b a c e d

2

2

cost of = 4 + 4 + 6 + 5 + 3 + 4 + 2 = 28�
G

� b() 1 � a() 2 � c() 3 � e() 4 � d(), 5==,=,=,=

Figure 4.1: A graph G and a minimum linear arrangement � of G.

introduces an extra factor in the cost of communication between the endpoint nodes of this

edge in the emulation.

Note that, as in the problem addressed in Chapter 2, the idea of preserving locality in

order to minimize the use of shared resources in the network also arises in the minimum

linear arrangement problem — i.e., we would like that nodes that are “close” in the network

G also be “close” in the linear array, in order to minimize the average edge dilation.

Finding a minimum linear arrangement is NP-hard, even for the case when all the edges

have unit weight. An �-approximation algorithm is an algorithm that finds a solution to

the problem whose cost is at most � times the cost of an optimal solution to the prob-

lem. In this chapter, we present a polynomial-time O�log n�-approximation algorithm for

finding a minimum linear arrangement of an n-node network, improving on the best pre-

vious approximation bound of Even, Naor, Rao, and Schieber [13] for this problem by a

��log log n� factor.

If the network is planar (or, more generally, if it excludes Kr�r as a minor, for fixed r,

whereKr�r is the r�r complete bipartite graph), we achieve anO�log log n�-approximation

factor for the minimum linear arrangement problem, using a variation of the algorithm

presented for the general case. We obtain this improvement by combining the techniques

used for the general case with the algorithm presented by Klein, Plotkin, and Rao [23] for

finding separators in graphs that exclude fixed Kr�r-minors, as presented in Section 4.5.

84 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

We extend our approximation techniques (and bounds) to two other problems that in-

volve finding a linear ordering of the nodes of a graph: the minimum containing interval

graph, and the minimum storage–time product problems. Using techniques from [48],

we can view the minimum containing interval graph problem (which we define formally

in Section 4.7) as a “vertex version” of the minimum linear arrangement problem (see

[13]). Thus, we also obtain an O�log n�-approximation algorithm for general graphs, and

an O�log log n�-approximation algorithm for graphs that exclude fixed Kr�r-minors for this

problem. This improves on the best known previous approximation bounds for this prob-

lem of O�log n log log n� for general graphs [13], and of O�log n� for graphs that exclude

fixed Kr�r-minors.

We can also use techniques from [48] to extend our ideas to produce an O�log T �-

approximation algorithm for the minimum storage–time product problem (defined in Sec-

tion 4.6), improving on a previous approximation bound of O�log T log log T � [13], where

T is the sum of the processing times of all tasks. The minimum storage–time product prob-

lem also generalizes the minimum linear arrangement problem. The techniques in [23] do

not apply to directed graphs; therefore, the approach used in the two former problems that

led to better approximation bounds for graphs that exclude Kr�r-minors does not apply to

the minimum storage–time product problem.

Our approximation techniques rely on a lower bound W on the cost of an optimal

solution provided by a spreading metric (to be defined soon), for each of the problems

considered: We find a solution to the problem that has cost O�W log n� (O�W log T � for

the minimum storage–time product problem). Alon and Seymour [50] showed that there

exists a logarithmic gap between the lower bound provided by any spreading metric, and

the true optimal values for certain instances of the problems of minimum linear arrange-

ment, minimum containing interval graph, and minimum storage–time product. Thus we

provide an existentially tight bound on the relationship between the lower bound provided

by spreading metrics and the true optimal values for these problems.

4.1. INTRODUCTION 85

4.1.1 Previous work

Leighton and Rao [29] presented an O�log n�-approximation algorithm for balanced par-

titions of graphs. Among other applications, this provided O�log� n�-approximation al-

gorithms for the minimum feedback arc set, and for the minimum-cut linear arrange-

ment problem. Hansen [19] used the ideas in [29] to present O�log� n�-approximation

algorithms for the minimum linear arrangement problem, and for the more general prob-

lem of graph embeddings in d-dimensional meshes. Ravi, Agrawal, and Klein [48] pre-

sented polynomial-time approximation algorithms that deliver a solution with cost within

an O�log n log T � factor from optimal for the minimum storage–time product problem,

where T is the sum of the processing times of all tasks, and within an O�log� n� factor

from optimal for the minimum containing interval graph.

Seymour [50] was the first to present a directed graph decomposition divide-and-conquer

approach that does not rely on balanced cuts. He presented a polynomial-time O�log n

log log n�-approximation algorithm for the minimum feedback arc set problem. Even,

Naor, Rao, and Schieber [13] extended the spreading metric approach used by Seymour

to obtain polynomial-time O�log n log log n�-approximation algorithms for the minimum

linear arrangement, and the minimum containing interval graph problems, and an O�log T

log log T �-approximation algorithm minimum storage–time product problem. Even et al.

actually showed similar approximation results for a broader class of graph optimization

problems, namely for the problems that satisfy their “approximation paradigm”: A graph

optimization problem satisfies this paradigm if (i) the divide-and-conquer approach pre-

sented by Even et al. is applicable to the problem; and (ii) a spreading metric that provides

a lower bound on the cost of an optimal solution to the problem can be computed in polyno-

mial time. They defined spreading metrics that led to polynomial-time algorithms for these

problems with an O�minflogW log logW� log k log log kg� approximation bound, where k

denotes the number of “interesting” nodes in the problem instance (clearly k � n), and

W is the lower bound on the cost of a solution to the optimization problem provided by

a spreading metric. Examples of such problems, besides the ones already mentioned, are

graph embeddings in d-dimensional meshes, symmetric multicuts in directed networks,

k-multiway separators and �-separators (for small values of �) in directed graphs. For a

86 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

detailed description of each of those problems, see [13].

Even, Naor, Rao, and Schieber [14] also extended the spreading metric techniques to

graph partitioning problems. They used simpler recursions that yield a logarithmic approx-

imation factor for balanced cuts and multiway separators. However, they were not able to

extend this simpler technique to obtain a logarithmic approximation bound for the other

problems considered in [13].

4.1.2 Spreading metrics and our recursion

Our algorithms use an approach that relies on spreading metrics. Spreading metrics have

been used in recent divide-and-conquer techniques to obtain improved approximation algo-

rithms for several graph optimization problems that are NP-hard [13, 50]. These techniques

perform the divide step according to the cost of a solution to the subproblems generated,

rather than according to the size of such subproblems.

A spreading metric on a graph is an assignment of lengths to the edges or nodes of the

graph that has the property of “spreading apart” (with respect to the metric lengths) all the

nontrivial connected subgraphs. The volume of the spreading metric is the sum, taken over

all edges (resp., nodes), of the length of each edge (resp., node) multiplied by its weight.

For each of the optimization problems we consider here, Even, Naor, Rao, and Schieber

[13] defined a spreading metric of volume W such that W is a lower bound on the cost of

a solution to the problem. Our techniques are based on showing that a spreading metric

of volume W can be used to find a solution with cost O�W log n� (O�W log T �, for the

minimum storage–time product problem).

We develop a recursion where at each level we identify cost which, if incurred, yields

subproblems with reduced spreading metric volume. Specifically, we present a divide-and-

conquer strategy where the cost of a solution to a problem at a recursive level is C plus

the cost of a solution to the subproblems, and where the spreading metric volume on the

subproblems is less than the original volume by ��C� log n� (resp., ��C� log T � for the

minimum storage–time product problem). We will show that this ensures that the resulting

solution has cost O�log n� (resp., O�log T �) times the original spreading metric volume.

4.1. INTRODUCTION 87

The recursion is based on divide-and-conquer — that is, we find an edge set whose

removal divides the graphs into subgraphs, and then recursively order the subgraphs. The

cost of a recursive level is the cost associated with the edges in the cut selected at this

level. Previous recursive methods and analyses proceeded by finding a small cutset of edges

where the maximum spreading metric volumes of the subproblems were quickly reduced.

We proceed by finding a sequence of cutsets whose total cost can be upper bounded, say

by a quantity C , and whose total spreading metric volume is ��C� log n� (��C� log T � for

the minimum storage–time product problem), as stated above. The crux of the argument is

that the cost associated with an edge in a cutset can be bounded by the number of nodes

between the previous and the next cutset in the sequence.

We point out that the methods in [13] applied to more problems, including the d-

dimensional graph embedding and the minimum feedback arc set problems [50]. We could

not extend our methods to these other problems, since we were unable to find a suitable

bound on the cost of a sequence of cutsets associated with any of these problems.

Finally, for planar graphs and other graphs that exclude some fixed minors, we combine

a structural theorem of Klein, Plotkin, and Rao [23] with our new recursion techniques, to

show that the spreading metric cost volumes are within an O�log log n� factor of the cost

of the optimal solution for the minimum linear arrangement and the minimum containing

interval graph problems.

4.1.3 Overview

We present a formal definition of the minimum linear arrangement problem in Section 4.2.

In Section 4.3, we define the spreading metric used for this problem; in Section 4.4, we

present a polynomial-time O�log n�-approximation algorithm for the minimum linear ar-

rangement problem on an arbitrary graph with n nodes and nonnegative edge weights. In

Section 4.5, we show how to improve this approximation factor to O�log log n�, in case

the graph has no fixed Kr�r-minors — e.g., the graph is planar. In Sections 4.6 and 4.7,

we define and briefly discuss the algorithms for approximating the minimum storage–time

product problem and minimum containing interval graph problem respectively.

88 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

4.2 The problem

The minimum linear arrangement (MLA) problem is defined as follows: Given an undi-

rected graph G�V�E�, with n nodes, and nonnegative edge weights w�e�, for all e in E, we

would like to find a linear arrangement of the nodes �	V � f�� � � � � ng that minimizes the

sum, over all �i� j� in E, of the weighted edge lengths j��i� � ��j�j. In other words, we

would like to minimize the cost

X
�i�j��E

w�i� j� j��i�� ��j�j�

of a linear arrangement �. In the context of VLSI layout, j��i����j�j represents the length

of the interconnection between i and j.

4.3 Spreading metric

In this section, we define the spreading metric used in the algorithms for the MLA problem

presented in Sections 4.4 and 4.5. Analogous functions are used when approximating the

minimum storage–time product problem (as presented in Section 4.6), and the minimum

containing interval graph problem (see Section 4.7).

Here we present spreading metrics in the context of the MLA problem (see [13] for a

more general definition). A spreading metric for the MLA problem is a function � 	 E � Q

that assigns rational lengths to every edge in E, and that can be computed in polynomial

time. It also satisfies the two properties below. The volume of a spreading metric � is given

by
P

e�E w�e���e�.

1. Diameter guarantee: Let the distances be measured with respect to the lengths ��e�.

The distances induced by the spreading metric “spread” the graph and all its nontriv-

ial subgraphs. In this application, this translates to “The diameter of every nontrivial

connected subgraph U of V is ��jU j�”.

2. Lower bound: The minimum volume of a spreading metric is a lower bound on the

cost of a MLA of G.

4.4. THE ALGORITHM 89

A solution � to (4.1– 4.2) is a spreading metric for the MLA (see [13]). Let V denote

the set of all nontrivial connected subgraphs of V .

�
P

u�U dist�u� v��
jU j � jU j

�
� �U � V��v � U (4.1)

��e� � �� �e � E (4.2)

where dist�u� v� is the length of a shortest path from u to v according to the lengths ��e�.

The metric � can be computed in polynomial time (see [13]) using, e.g., the ellipsoid

method (There may be an exponential number of constraints in (4.1)). Note that (4.1)

actually implies that ��e� � �, for all e in E (simply consider the subsets U that consist of

a single edge and its endpoints).

A solution �	 to (4.1– 4.2) that minimizes
P

e�E w�e���e� is a lower bound on the cost

of a MLA, since for any linear ordering � of the nodes of G, the assignment of lengths

to the edges of G given by ��i� j� � j��i� � ��j�j satisfies (4.1– 4.2). The volume of

such an assignment is exactly the cost of �. In particular this is true for a MLA �. Hence

W 	 �
P

e�E w�e��
	�e� is less than or equal to the cost of a MLA (Note that this lower

bound is existentially tight, since there exist instances of this problem such that �	�i� j� �

j��i� � ��j�j, where � is a MLA of G, as for example, when G is a linear array.). We

will use this fact later, when proving Theorems 5 and 6. Figure 4.2 illustrates such an

assignment of lengths for the linear arrangement � given by the ordering of the nodes of

G from left to right in this figure (the lengths ��i� j� are the numbers associated with the

edges in that picture; without loss of generality, assume that all the edge weights are 1).

Let � be a spreading metric of volume W �
P

e�E w�e���e� that satisfies (4.1– 4.2). In

the remainder of this chapter, all the distances in G are measured with respect to �.

4.4 The algorithm

We now present our O�log n�-approximation algorithm for the MLA problem on general

graphs. Let G�V�E� be a graph with nonnegative edge weights w�e�. Assume without

90 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

2

1

2

1 1

4

linear arrangement of G� :

W l i j,()� 12= =

b a c e d
1

Figure 4.2: An assignment of lengths to the edges of G.

loss of generality that G is connected (otherwise consider each connected component of G

separately), and that all the edge weights w�e� are at least 1.

In this paragraph, we introduce the notion of a level according to �. Fix a node v in V .

An edge �x� y� is at level i with respect to v if and only if dist�v� x� � i and dist�v� y� � i,

for any i � N. Note that an edge may be at more than one level, and that there may be

edges that are not at any level. Let the weight of level i, denoted by �i, be the sum of the

weights of the edges at level i. Without loss of generality, we will assume that logW is an

integer. Let �k �
k, for all k in ��logW � � ��. Level i has index k, k in �logW �, if and

only if �i belongs to the interval Ik � ��k� �k���.

It follows from (4.1) that there exists a node u such that dist�v� u� � n��. Hence

we have at least n�� distinct levels with nonzero weight. Note that since w�e� � � and

��e� � �, for all e, any level with nonzero weight must have weight at least 1. Since there

are logW distinct level indices, there are at least n��� logW � levels with same index k, for

some k. Let � be the exact number of levels of index k. Figure 4.3 illustrates the algorithm

and charging scheme described below.

In a recursive step of the algorithm, we cut along the sequence of � levels of index k

— i.e., we remove all the edges that are at at least one of those levels, even if they also

are at some other level of index different from k. For all i, let level ai be the ith level of

index k, in increasing order of distances to v. Let Hi be the subgraph induced by the nodes

that are at distance greater than ai and less than or equal to ai�� from v; let H� (resp., H�)

be the subgraph induced by the nodes that are at distance less than or equal to a� (resp.,

4.4. THE ALGORITHM 91

� n()

levels of same index k

.

.

.

linear arr. for G

�
n

Wlog
-------------� �
� �

v

H2

H1

H0

n0 n1+

n2 n3+

n1 n2+

a3

a2

a1

H3

�1 1()

�0 n0()

�0 1()

...

...

Figure 4.3: The algorithm and charging scheme.

greater than a�) from v. Let ni denote the number of nodes in Hi. We recurse on each Hi,

obtaining a linear arrangement �i for the ni nodes in this subgraph. We combine the linear

arrangements obtained for the Hi’s, obtaining a linear arrangement � for G, as follows:

������ � � � � ��n�� � ������� � � � � ���n��� � � � � ������ � � � � ���n���

Each recursive step runs in polynomial time; at each recursive step, we decompose a

connected component into at least two connected components. Hence the algorithm runs

in polynomial time.

We use a charging scheme to account for the length of an edge e in the linear arrange-

ment forG obtained by our algorithm (note that we account for the length of the edge in the

linear arrangement, rather than for the spreading metric length of the edge). If some edge

e in level ai belongs to some other level of index k, say level aj, then this edge also belongs

to every level of index k between ai and aj . Without loss of generality, assume that i
 j.

Edge e will be “stretched over” all the nodes in Hi � � � � �Hj��, and possibly over some

of the nodes in Hi�� and Hj , in the linear arrangement produced by our algorithm. Hence

the length of such an edge in the final linear arrangement will be at most ni�� � � � �� nj .

Suppose we charge np�� � np for the portion of the edge that is stretched over the nodes in

Hp���Hp, when considering level ap, for all p in �i� j���. Then the total charge associated

with edge e is equal to ni�� �
�ni � � � � nj��� � nj � ni�� � � � � � nj — that is, edge e

will be charged at least its length in the final linear arrangement.

92 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

We will now compute an upper bound on the cost of the linear arrangement obtained

by our algorithm. Let C�Z� be the maximum cost of a linear arrangement obtained by our

algorithm for a subgraph of G whose volume of the spreading metric � is at most Z . Since

the sum of the weights of all edges in level ai is �ai , and since we charge for the length of an

edge as described in the preceding paragraph, we derive the following recurrence relation

for C�W �:

C�W � � C�W �
�X
i��

�ai� �
�X
i��

��ai�ni�� � ni��

� C�W � �kn

� logW
� � �k��

X
i

�ni�� � ni�

We now show that C�W � � O�W log n�. We first prove the following lemma:

Lemma 4.4.1 C�W � � cW logW , for some constant c.

Proof: We will use induction on W . Our base case for the induction will be the case

W � �. We can use induction on W here since, for any subgraph of G on x nodes whose

volume of the spreading metric � is at most Z (Z � W),

�kx

� log Z
� �kx

� logW
� �

� logW

That is, the recursive relation above will converge to the base case in at most �W logW

steps.

The base case W � � corresponds to a totally disconnected graph (a graph with no

edges); therefore C�W � � �. If W � � then

C�W � � C�W � �kn

� logW
� � �k��

X
i

�ni�� � ni�

� c�W � �kn

� logW
� log�W � �kn

� logW
� �
�k��n

� c�W � �kn

� logW
� logW �
�k��n

� cW logW � �k��n�
� c

�
�

� cW logW

for a sufficiently large constant c (c � ��). The second step follows from the induction

hypothesis, and the fourth step follows since �k�� �
�k .

Q.E.D.

4.4. THE ALGORITHM 93

We still need to show how to bring the approximation factor down from O�logW � to

O�log n�. We will do this by using standard techniques of rescaling and rounding down the

edge weights (as in [15]).

Our goal will be to reduce, by rescaling and rounding down weights, our original input

graph G to an “equivalent” input graph G� whose spreading metric volume is a polynomial

in n. Consider the set E� of edges e such that w�e� � W��mn�. Since an edge has length

at most n in any linear arrangement for G, the contribution of the edges in E� to a MLA of

G is at most W . Suppose we delete all those edges, and apply a �-approximation algorithm

to the resulting graph. We thus obtain a linear arrangement of G — by simply adding those

edges back into the linear arrangement found — with cost that is within a ��� �� factor of

the cost of a MLA of G.

We now round down each weight w�e�, for all e in E n E�, to its nearest multiple of

W��mn�. The error incurred by this rounding procedure is again at most W . Furthermore,

we scale the rounded weights by W��mn�, obtaining new weights for the edges that are

all integers in the interval ���mn�. Note that we have only changed the units in which the

weights are expressed. Hence we obtain a polynomial time ���
�-approximation algorithm

for the MLA problem onG with weightsw�e�, by solving the MLA problem onG� � GnE�

with integral weights that belong to ���mn�. The volume W � of the spreading metric for

G� is at most a polynomial in n. By Lemma 4.4.1, we have C�W �� � cW � log�W �� �

c�W � log n, for some constant c�. Rescaling the edge weights back by multiplying C�W ��

by W��mn�, we obtain a MLA for the original weights on G with cost at most c�W log n.

Finally, we can choose �	 such that �	 satisfies (4.1– 4.2), and whose volume W 	 mini-

mizes
P

e�E w�e���e�, over all spreading metrics � that satisfy (4.1– 4.2). As we have seen,

W 	 is a lower bound on the cost of a MLA. Hence, by Lemma 4.4.1 and the considerations

that follow this lemma, we have proved the following theorem:

Theorem 5 The cost of a solution to the MLA problem, obtained by our algorithm for the

spreading metric �	 on G is within an O�log n� factor times the cost of a MLA of G.

94 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

4.5 Graphs with excluded minors

In this section we show how to obtain, in polynomial time, an O�log log n�-approximation

bound for the MLA problem on a graph G with no fixed Kr�r-minors — e.g., on a planar

graph G. We denote the r � r complete bipartite graph by Kr�r.

Definition 4.5.1 Let H and G be graphs. Suppose that (i) G contains disjoint connected

subgraphs Av, for each node v of H; and that (ii) for every edge �u� v� in H , there is a

path P�u�v� in G with endpoints in Au and Av, such that any node in P�u�v� other than its

endpoints does not belong to any Aw, w in H , nor to any P�i�j�, �i� j� in H n �u� v�. Then

�vAv is said to be an H-minor of G.

Klein, Plotkin, and Rao [23], showed how to decompose (in polynomial time) a graph

with no Kr�r-minors into connected components of small diameter. In our application, this

implies that each connected component has at most a constant fraction of the nodes in G,

as shown in the next section.

4.5.1 The algorithm

We recursively solve the problem, as we do in the general case. We combine the partial

solutions returned by each recursive step, and charge for each edge removed at a cut step

in the same way as in the algorithm of Section 4.4. It is in the way we decompose the

graph before a recursive step that the algorithm of Section 4.4 differs considerably from

the one presented in this section. Before each recursive step, we may perform a series

of shortest path levelings, to be defined soon, on each induced connected subgraph, until

we can guarantee that the original graph has been decomposed into subgraphs that contain

at most a fixed fraction (strictly less than one) of the nodes each. In the algorithm of

Section 4.4, we always perform only one shortest path leveling before each recursive step.

The algorithm proceeds in rounds. In each round we have a cut step, which corresponds

to the series of cuts performed during the round, and a recursive step, which consists of

recursing on the connected components that result from the cut step. Let G�V�E� be a

4.5. GRAPHS WITH EXCLUDED MINORS 95

graph on n nodes that excludes Kr�r as a minor, for some fixed r � �. Let � be a spreading

metric for G of volume W that satisfies (4.1 – 4.2).

A cut step in G will produce a series of subgraphs of G, G � G�� � � � � Gt, t
 r, where

each Gi�� results from a shortest path leveling of Gi. Fix a node v in Gi. A shortest path

leveling (SPL) of Gi rooted at v consists of an assignment of levels to the edges of Gi as

follows: An edge �x� y� is at level j of this SPL if and only if dist�v� x� (in Gi) is at most

j and dist�v� y� (in Gi) is greater than j, for all j � N. (An edge may be at more than one

level.)

We will cut along a sequence of levels of the SPL; one of the connected components

resulting from this cut procedure will be Gi��. Let n�Gi� denote the number of nodes

in Gi. Let s � n�b, where b is a constant to be specified later. The spreading metric

diameter guarantee implies that this SPL has at least n�Gi��� levels. We will see later

that n�Gi� � ��n�, and that we can choose b such that n�Gi��� �
s (we need b � �).

We group the levels of this SPL into bands of
s consecutive levels as follows: Alternate

coloring the bands “blue” and “red”, in increasing order of the levels. Without loss of

generality, assume that the subgraph induced by the blue bands has at least n�Gi��
 nodes.

We have
s cuts of the following type: For � � j �
s � �, a leveled cut j consists of all

the edges in the jth level (with respect to distance from v) of every red band. That is, if the

band consisting of the first
s levels is colored blue, then the leveled cut j consists of the

levels
s� j� �s � j� � � �, for all j.

Now we group the leveled cuts according to their indices. Let 	k � W
k��s log n�,

for all integer k in ���
 log log n�. Let 	� � � and 	�� log logn� � W . The weight of leveled

cut j is the sum of the weights of the levels in the cut (the weight of a level being the sum

of the weights of the edges at that level). Leveled cut j has index k, for all integer k in

�
 log log n�, if and only if the weight of cut j belongs to the interval Ik � �	k� 	k���. There

are at least
s��
 log log n� leveled cuts with same index ki (since there exist at least
s

distinct leveled cuts).

If ki � �, then we cut along these at least s��log log n� leveled cuts of index ki, and

recurse on the resulting connected components. In this case, we let t � i, and the cut

step of this round is complete. Otherwise, we first cut along only one of the leveled cuts

96 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

of index ki � � (chosen arbitrarily). Then we check whether there exists a connected

component Gi�� of Gi with more than n�Gi��
 nodes. In case no such component exists,

we let t � i (the cut step of this round is complete), and we recurse. If i � r��, we also let

t � i � r�� and recurse. Otherwise, we proceed by performing a SPL on Gi��, following

the procedure just described, with i � i� �.

The number of nodes in Gi, n�Gi�, is proportional to n, for all i in �r�. This follows

since n�Gi��� � n�Gi��
, for all i, by the choice of Gi�� and since r is a constant.

Suppose we just performed a series of r SPL’s and corresponding cut procedures. The

last cut performed, on Gr��, generated a collection of connected components of Gr��.

Klein, Plotkin, and Rao [23] proved that the distance in G between any pair of nodes in

any such component is O�s� (where the constant in the O�	� notation depends only on r).

Thus, for a suitably chosen constant b, we can ensure that the distance between any pair of

nodes is at most n��, in any such component.

It follows from the result by Klein, Plotkin, and Rao that any connected component

that results from this cut step has at most
n�� nodes, as we now show. Fix any node

u in G. It follows from (4.1), that any subgraph of G on �n � x� nodes that contains u

has a node at distance at least �n � x��� from u. Suppose we start with the graph G,

and proceed by removing one node at a time, choosing always a node that has maximum

distance to u among the remaining nodes. Thus, we need to remove at least one-third of

the nodes before we are left only with nodes that are within distance n�� from u in G.

This implies that any resulting connected component of Gr�� has at most
n�� nodes. Any

other resulting connected component (of G n Gr��) has at most n�
 nodes, by the choice

of the Gi’s.

We distinguish between two types of cut steps: if kt � �, then we call the cut step in

this round a cut step with reduction in size; otherwise kt � �, and we call the cut step in

this round a cut step with reduction in volume. Note that kt � � implies kj � �, for all j in

�t�.

Let C�Z� x� denote the maximum cost of a linear arrangement obtained by our algo-

rithm for a subgraph of G with x nodes, whose volume of the spreading metric � is at most

Z .

4.5. GRAPHS WITH EXCLUDED MINORS 97

Lemma 4.5.1 C�W�n� � cW log log n, for some constant c.

Proof: We use induction on n and W : We apply induction on n whenever we have a cut

step with reduction in size, and we use induction on W whenever we have a cut step with

reduction in volume. Our base cases will be the cases when n � � or W � �. When we

have a cut step with reduction in volume, for a subgraph of G on x nodes whose volume of

the spreading metric � is at most Z (Z � W), the reduction in volume in that cut step is at

least
	kx

b log log x
� 	kx

b log log n
� �

b log log n

Thus, at every recursive step, we either reduce the volume of the spreading metric in the re-

maining subgraph by at least ���b log log n� or we decompose the graph into more than one

connected components, all of which have at most a 2/3-fraction of the nodes. Hence, the in-

ductive process will converge to one of the base cases in at most max�bW log log n�O�log n��

steps (since we can have at most bW log log n cut steps with reduction in volume and at

most O�log n� cut steps with reduction in size).

The base cases for W � � or n � � are trivial. Suppose we perform a cut step with

reduction in size. Let the connected components resulting from this step be H�� � � � �Hp.

Then, since we cut along r leveled cuts of weight at least W��s log n� (we over-charge n

for the cost of each occurrence of an edge in each of these leveled cuts)

C�W�n� �
pX

i��

C�Wi� ni� � r

W

s log n
n

�
pX

i��

c�Wi� log log�
n��� �

brW

log n

� cW log log n� cW

� log n
�

brW

log n

� cW log log n� W �c�� �
br�

log n
� cW log log n

where Wi and ni are the volume and number of nodes, respectively, associated with com-

ponent Hi. We have shown that every ni is at most
n��. The second step follows by

induction and since
Pp

i��Wi � W . Note that log log�
n��� � log log n� ���� log n�, and

98 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

thus the third step follows. The last step follows for a sufficiently large constant c (e.g.,

c � �br).

If the cut step performed was with reduction in volume, then we performed a series

of t � r SPL’s and respective cut procedures. The last term on the right-hand side of the

first inequality below accounts for the first �t� ��th leveled cuts used. The second term on

the right-hand side of that inequality accounts for the tth leveled cut used. The charging

scheme for the edges removed in the tth leveled cut of this cut step is analogous to the

scheme presented in Section 4.4.

C�W�n� � C�W � 	ks

log log n
� n� �
	k��n� �r � ��

W

s log n
n

� C�W � 	ks

log log n
� n� � �r � ��	kn

� c�W � 	ks

log log n
� log log n� �r � ��	kn

� cW log log n� 	kn�r � �� c log log n

b log log n
�

� cW log log n

when c � b�r � ��� The second step above follows from 	k �
W��s log n�, and from

	k�� �
	k, �
 k

 log log n� �; the third step follows by induction.

Q.E.D.

As in Section 4.4, we choose a spreading metric �	 that satisfies (4.1 – 4.2), and whose

volume W 	 is a lower bound on the cost of a MLA of G. By Lemma 4.5.1, we obtain the

following theorem:

Theorem 6 Given a graph G on n nodes that excludes fixed Kr�r-minors, the cost of a

solution to the MLA problem, obtained by the algorithm presented in this section for the

spreading metric �	, is within an O�log log n� factor times the cost of a MLA of G.

4.6 Minimum storage–time product

In this section, we sketch our approach to approximating the storage–time product for a

directed acyclic graph G�V�E�. The minimum storage–time product problem arises in a

4.6. MINIMUM STORAGE–TIME PRODUCT 99

b

c

e

a

d

1 3

5
3

2

decab

1

2

5

3

3

w e()

10

10

10

10

88 2

2

3

3

p v()

cost of ordering = 13 + 4 + 9 = 26

G

Figure 4.4: A minimum storage–time product of G.

manufacturing or computational process, in which the goal is to minimize the storage–time

product of the process: We want to minimize the use of storage over time, assuming storage

is an expensive resource. Let G�V�E� be an acyclic directed graph on n nodes with edge

weightsw�e�, for all e inE, and node weights � �v�, for all v in V . The nodes of G represent

tasks to be scheduled on a single processor. The time required to process task v is given by

� �v�. The weight on edge �u� v�,w�u� v�, represents the number of units of storage required

to save the intermediate results generated by task u until they are consumed at task v. The

minimum storage–time product problem consists of finding a topological ordering� of the

nodes � 	 V � f�� � � � � ng that minimizes

X
�i�j��E���i����j�

��
�w�i� j�

�
� X
k 	 ��i����k����j�

� ���k��

�
�
��
� �

Figure 4.4 illustrates a topological ordering of the nodes of G (given from left to right on

the rightmost representation of the graph) with minimum storage–time product of 26.

This problem generalizes the MLA problem: When all tasks have unit execution time,

it becomes a directed version of the MLA problem. It is also a generalization of the single-

�An ordering � of the nodes of G (where G is an acyclic graph) is said to be topological if and only if for
every �i� j� � E, ��i� � ��j�.

100 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

processor scheduling problem, if we are minimizing the weighted sum of completion times

(this problem is NP-complete [16, problem SS13, page 240]).

We use a spreading metric defined as follows (see [13]). Let ER � f�u� v�j�v� u� � Eg.

We define G� � �V�E � ER�. Let V denote the set of all nontrivial strongly connected

subgraphs of G�. Find �	 	 E � Q that minimizes
P

e�E w�e���e�, while satisfying the

constraints P
v�U ��v� u�

jU j �
P

v�U � �v�

�
� �u � U��U � V

��i� j� � � �i� � � �j�� ��i� j� � E

where ��u� v� � dist�u� v� � dist�v� u�. Here we define dist�u� v� to be the length of a

shortest path from u to v in G� according to the lengths ��e� for e in E, and where each e

in ER has length 0.

For any linear ordering � of V , the assignment of lengths to the edges given by ��i� j� �P
k 	 ��i����k����j� � ���k��, for all �i� j� in E, satisfies the constraints above. Thus the

volume W 	 of the spreading metric �	 is a lower bound on the optimal cost of a solution to

the storage–time product problem.

Given the spreading metric constraints above we can apply the algorithm of Section 4.4

to this problem as follows. Let T �
P

v�V � �v�. There is a node v such that either the

out-tree or the in-tree rooted at v has depth ��T �. Thus, we can find a sequence a�� � � � � a�

of � � ��T� logW � levels whose weights �a�� ����a� are within a factor of two of each

other (as in Section 4.4.

Laying out the resulting pieces successively, we obtain a solution where the cost is

bounded by

C�W � � C�W �
�X
i��

�ai� �
�X
i��

��ai��i�� � �i���

where �i is the sum of � �v� over all nodes v that lie between levels ai�� and ai (�� and ��

are defined accordingly).

This recursion can be upper bounded by O�W logW �, as in Section 4.4. This cost can

be reduced to O�W log T � using the standard techniques that were used in Section 4.4 to

reduce O�logW � to O�log n�.

4.7. MINIMUM CONTAINING INTERVAL GRAPH 101

4.7 Minimum containing interval graph

In this section, we sketch our approach to approximating the cost of a minimum containing

interval graph of a graph G�V�E�. We first introduce interval graphs. An interval graph

is a graph whose vertices can be mapped to distinct intervals in the real line such that two

vertices in the graph have an edge between them if and only if their corresponding intervals

overlap. A completion of a graph G into an interval graph results in an interval graph with

same node set as G that contains G as a subgraph.

We use the following characterization of interval graphs, due to [44]. An undirected

graph G�V�E� on n nodes is an interval graph if and only if there exists a linear ordering

� 	 V � f�� � � � � ng of the nodes in V such that if an edge �u� v� is in E, where ��u�

��v�, then every edge �u�w�, for w such that ��u�
 ��w�
 ��v�, also belongs to E.

This characterization implies that, for any given ordering �, there exists a unique way of

completing G into an interval graph by adding as few edges to G as possible.

The cost of a completed graph is given by the total number of edges in the (completed)

graph. This cost can be viewed as the sum over vertices of the maximum backward stretch

of the vertex — i.e., of the distance to the farthest lower-numbered node to which the vertex

is connected. This is very similar to the MLA problem, except that the nodes are stretched

along the order rather than the edges (see [13]). Thus, our techniques also apply to this

problem.

This problem arises in several areas, from computer science, to biology (see [34]), to

archaeology (e.g., when finding a consistent chronological model for tool use while making

as few assumptions as possible [22]).

The spreading metric �	 that we use (due to [13]) assigns lengths to the nodes of the

graph, rather than to its edges, as in the minimum linear arrangement and in the minimum

storage–time product problems. Let V denote the set of all nontrivial connected subgraphs

ofG. The metric �	 is a function � 	 V � Q that minimizes �
P

v�V ��v���
, while satisfying

the constraints

X
v�U

dist�u� v� � �

�
�jU j� � ��� �u � U� �U � V

��v� � �� �v � V

102 CHAPTER 4. APPROXIMATING SOME ORDERING PROBLEMS

where dist�u� v� is the shortest length — given by ���u� �
Pp

i�� ��xi� � ��v�� — of a path

u� x�� � � � � xp� v, xi � V , from u to v in G.

Let G��V�E�� be a completion of G into an interval graph. If we let ��v� be the degree

of node v in G�, the cost �
P

v�V ��v���
 clearly gives the number of edges in E�. Also this

assignment of lengths to the nodes satisfies the constraints above. Hence the volume W 	

of the metric �	 is a lower bound on the number of edges in a minimum containing interval

graph of G.

The recurrence relations that bound the cost of a solution obtained for the minimum

containing interval graph problem are analogous to the ones for the MLA problem, both

for the general case and for the excluded Kr�r-minors case.

4.8 Conclusion

We provided an existentially tight bound on the relationship between the spreading metric

cost volumes and the true optimal values for the problems of minimum linear arrangement,

minimum containing interval graph, and minimum storage–time product.

It would be interesting to extend our techniques to obtain O�log n�-approximation al-

gorithms for other problems. In particular, it seems natural to extend our techniques to

improve the best known approximation factors for other problems that satisfy the “approx-

imation paradigm” of [13]. We would then provide an existentially tight bound — on the

ratio between the value of an optimal solution and the spreading metric volume — for any

such problem.

However, since the approach used here depends on the structure of graph ordering prob-

lems, new ideas may be required.

Bibliography

[1] N. Alon.

A parallel algorithmic version of the Local Lemma.

Random Structures and Algorithms, 2(4):367–378, 1991.

[2] D. Angluin and L. G. Valiant.

Fast probabilistic algorithms for hamiltonian circuits and matchings.

Journal of Computer and System Sciences, 18(2):155–193, April 1979.

[3] B. Awerbuch, Y. Bartal, and A. Fiat.

Distributed paging for general networks.

In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 574–583, January 1996.

[4] B. Awerbuch and D. Peleg.

Routing with polynomial communication space tradeoff.

SIAM Journal on Discrete Mathematics, 5:151–162, 1990.

[5] B. Awerbuch and D. Peleg.

Sparse partitions.

In Proceedings of the Thirty-First Annual IEEE Symposium on Foundations of Com-

puter Science, pages 503–513, October 1990.

[6] B. Awerbuch and D. Peleg.

Online tracking of mobile users.

Journal of the ACM, 42(5):1021–1058, September 1995.

[7] Y. Bartal, A. Fiat, and Y. Rabani.

Competitive algorithms for distributed data management.

103

104 BIBLIOGRAPHY

In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Comput-

ing, pages 39–47, May 1992.

[8] J. Beck.

An algorithmic approach to the Lovász Local Lemma I.

Random Structures and Algorithms, 2(4):343–365, 1991.

[9] R. P. Brent.

The parallel evaluation of general arithmetic expressions.

Journal of the ACM, 21(2):201–208, April 1974.

[10] H. Chernoff.

A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations.

Annals of Mathematical Statistics, 23:493–507, 1952.

[11] S. Dolev, E. Kranakis, D. Krizanc, and D. Peleg.

Bubbles: Adaptative routing scheme for high-speed dynamic networks.

In Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Com-

puting, pages 528–537, May 1995.

[12] P. Erdös and L. Lovás.

Problems and results on 3-chromatic hypergraphs and some related questions.

In A. Hajnal et al., editor, Infinite and Finite Sets.

Volume 11 of Colloq. Math. Soc. J. Bolyai, pages 609–627. North Holland, Amster-

dam, The Netherlands, 1975.

[13] G. Even, J. Naor, S. Rao, and B. Schieber.

Divide-and-conquer approximation algorithms via spreading metrics.

In Proceedings of the Thirty-Sixth Annual Symposium on Foundations of Computer

Science, pages 62–71, October 1995.

[14] G. Even, J. Naor, S. Rao, and B. Schieber.

Spreading metric based approximate graph partitioning algorithms.

In Proceedings of the Eigth Annual ACM–SIAM Symposium on Discrete Algorithms,

pages 639–648, January 1997.

BIBLIOGRAPHY 105

[15] G. Even, J. Naor, B. Schieber, and M. Sudan.

Approximating minimum feedback sets and multicuts in directed graphs.

In E. Balas and J. Clausen, editors, Integer programming and combinatorial optimiza-

tion.

Volume 920 of Lecture Notes in Computer Science, pages 14–28. Springer–Verlag,

New York, 1995.

Full version appears in IBM Research Report RC 20074 (88796).

[16] M. R. Garey and D. S. Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, NY, 1979.

[17] R. L. Graham, D. E. Knuth, and O. Patashnik.

Concrete Mathematics.

Addison-Wesley, Reading, MA, 1989.

[18] J. D. Guyton and M. F. Schwartz.

Locating nearby copies of replicated Internet servers.

In Proceedings of ACM SIGCOMM, pages 288–298, 1995.

[19] M. Hansen.

Approximation algorithms for geometric embeddings in the plane with applications

to parallel processing problems.

In Proceedings of the Thirtieth Annual Symposium on Foundations of Computer Sci-

ence, pages 604–609, October 1989.

[20] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.

Consistent hashing and random trees: Distributed caching protocols for relieving hot

spots on the World Wide Web.

In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Comput-

ing, pages 654–663, May 1997.

[21] R. Karp, M. Luby, and F. Meyer auf der Heide.

Efficient PRAM simulation on a distributed memory machine.

In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Comput-

ing, pages 318–326, May 1992.

106 BIBLIOGRAPHY

[22] D. G. Kendall.

Incidence matrices, interval graphs, and seriation in archeology.

Pacific J. Math., 28:565–570, 1969.

[23] P. Klein, S. Plotkin, and S. Rao.

Excluded minors, network decomposition and multicommodity flow.

In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Com-

puting, pages 682–690, October 1993.

[24] R. R. Koch, F. T. Leighton, B. M. Maggs, S. B. Rao, A. L. Rosenberg, and E. J.

Schwabe.

Work-preserving emulations of fixed-connection networks.

Journal of the ACM, 44(1):104–147, January 1997.

[25] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao.

Randomized routing and sorting on fixed-connection networks.

Journal of Algorithms, 17(1):157–205, July 1994.

[26] F. T. Leighton, B. M. Maggs, and S. Rao.

Universal packet routing algorithms.

In Proceedings of the Twenty-Ninth Annual Symposium on Foundations of Computer

Science, pages 256–271, October 1988.

[27] F. T. Leighton, B. M. Maggs, and S. B. Rao.

Packet routing and job-shop scheduling in O(congestion + dilation) steps.

Combinatorica, 14(2):167–180, 1994.

[28] F. T. Leighton, B. M. Maggs, and A. W. Richa.

Fast algorithms for finding O(congestion + dilation) packet routing schedules.

Technical Report CMU–CS–96–152, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, July 1996.

To appear in Combinatorica.

[29] F. T. Leighton and S. Rao.

An approximate max-flow min-cut theorem for uniform multicommodity flow prob-

lems with applications to approximation algorithms.

BIBLIOGRAPHY 107

In Proceedings of the Twenty-Ninth Annual Symposium on Foundations of Computer

Science, pages 422–431. IEEE Computer Society Press, October 1988.

[30] C. E. Leiserson.

Fat-trees: Universal networks for hardware-efficient supercomputing.

IEEE Transactions on Computers, C–34:892–900, 1985.

[31] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann.

Exploiting locality for data management in systems of limited bandwidth.

In Proceedings of the Thirty-Eighth Annual Symposium on Foundations of Computer

Science, pages 284–293, October 1997.

[32] B. M. Maggs and E. J. Schwabe.

Real-time emulations of bounded-degree networks.

Information Processing Letters, 1998.

To appear.

[33] Y. Mansour and B. Patt-Shamir.

Greedy packet scheduling on shortest paths.

Journal of Algorithms, 14:449–65, 1993.

[34] J. Meidanis and J. C. Setubal.

Introduction to Computational Molecular Biology.

PWS Publishing Co., Boston, MA, 1997.

[35] F. Meyer auf der Heide and C. Scheideler.

Routing with bounded buffers and hot-potato routing in vertex-symmetric networks.

In Proceedings of the Third European Symposium on Algorithms, pages 341–354,

1995.

[36] F. Meyer auf der Heide and B. Vöcking.

A packet routing protocol for arbitrary networks.

In Proceedings of the Twelfth Symposium on Theoretical Aspects of Computer Sci-

ence.

Volume 349 of Lecture Notes in Computer Science, pages 291–302. Springer–Verlag,

Heidelberg, Germany, March 1995.

108 BIBLIOGRAPHY

[37] S. J. Mullender, editor.

Distributed Systems.

Addison-Wesley, 1993.

[38] S. J. Mullender and P. M. B. Vitányi.

Distributed match-making.

Algorithmica, 3:367–391, 1988.

[39] R. Ostrovsky and Y. Rabani.

Universal O�congestion � dilation � log��
N� local control packet switching algo-

rithms.

In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Comput-

ing, pages 644–653, May 1997.

[40] C. G. Plaxton and R. Rajaraman.

Fast fault-tolerant concurrent access to shared objects.

In Proceedings of the Thirty-Seventh Annual IEEE Symposium on Foundations of

Computer Science, pages 570–579, October 1996.

[41] C. G. Plaxton, R. Rajaraman, and A. W. Richa.

Accessing nearby copies of replicated objects in a distributed environment.

In Proceedings of the Ninth ACM Symposium on Parallel Algorithms and Architec-

tures, pages 311–320, June 1997.

To appear in special issue of Theory of Computing Systems.

[42] Y. Rabani and É. Tardos.

Distributed packet switching in arbitrary networks.

In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-

puting, pages 366–375, May 1996.

[43] P. Raghavan.

Probabilistic construction of deterministic algorithms: Approximate packing integer

programs.

Journal of Computer and System Sciences, 37(4):130–143, October 1988.

[44] G. Ramalingam and C. Pandu Rangan.

A unified approach to domination problems in interval graphs.

BIBLIOGRAPHY 109

Information Processing Letters, 27:271–174, 1988.

[45] A. G. Ranade.

How to emulate shared memory.

Journal of Computer and System Sciences, 42:307–326, 1991.

[46] G. N. Raney.

Functional composition patterns and power series reversion.

Transactions American Mathematical Society, 94:441–451, 1960.

[47] S. Rao and A. W. Richa.

New aprroximation techiniques for some ordering problems.

In Proceedings of the Ninth Annual ACM–SIAM Symposium on Discrete Algorithms,

pages 211–218, January 1998.

[48] R. Ravi, A. Agrawal, and P. Klein.

Ordering problems approximated: Single processor scheduling and interval graph

completion.

In Proceedings of the Eighteenth International Colloquium on Automata, Languages

and Programming, pages 751–762, July 1991.

[49] C. Scheideler.

Universal Routing Strategies for Interconnection Networks,

Vol. 1390 of Lecture Notes in Computer Science.

Springer–Verlag, Berlin, Germany, 1998.

[50] P. D. Seymour.

Packing directed circuits fractionally.

Combinatorica, 15(2):281–288, 1995.

[51] D. B. Shmoys, C. Stein, and J. Wein.

Improved approximation algorithms for shop scheduling problems.

In Proceedings of the Second Annual ACM–SIAM Symposium on Discrete Algorithms,

pages 148–157, January 1991.

[52] J. Spencer.

Ten Lectures on the Probabilistic Method.

110 BIBLIOGRAPHY

SIAM, Philadelphia, PA, 1987.

[53] A. Srinivasan and C.-P. Teo.

A constant-factor approximation algorithm for packet routing, and balancing local vs.

global criteria.

In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Comput-

ing, pages 636–643, May 1997.

[54] E. Upfal and A. Wigderson.

How to share memory in a distributed system.

Journal of the ACM, 34:116–127, 1987.

[55] M. van Steen, F. J. Hauck, and A. S. Tanenbaum.

A model for worldwide tracking of distributed objects.

In Proceedings of Telecommunications Information Networking Architecture, pages

203–212, September 1996.

