
Algorithms and Explicit Constructions via
Spectral Techniques

Jun-Ting Hsieh

CMU-CS-25-131

August 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Pravesh K. Kothari, Chair (CMU/Princeton University)

Ryan O’Donnell
Jason Li

Venkatesan Guruswami (UC Berkeley)
David Steurer (ETH Zurich)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2025 Jun-Ting Hsieh

This research was sponsored by the National Science Foundation under award numbers CCF2047933 and
CCF2211971. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: Spectral Methods, Spectral Expanders, Vertex Expanders, Constraint
Satisfaction Problems, Independent Set

To my parents Tsang-Jen and Chui-Hui, my sister Jun-Shiuan, and my wife Bingbin

iv

Abstract
Spectral methods have become ubiquitous in computer science. By an-

alyzing the eigenvalues and eigenvectors of matrices naturally associated
with a graph, such as its adjacency matrix, one can extract useful informa-
tion about the graph’s structure. Such methods have yielded the best-known
results for a wide range of foundational problems.

In this thesis, we apply this “spectral lens” to prove new results in graph
theory, design algorithms, and construct explicit vertex expanders. The re-
sults are divides into three parts:

• Part I. We develop spectral techniques to obtain new results in graph
theory. These results are not only of independent interest but are also
key ingredients in later parts of the thesis.

• Part II. We present algorithms for both refuting semirandom constraint
satisfaction problems and recovering solutions in planted ones, both
utilizing spectral information of the underlying hypergraph. Moreover,
we give algorithms to find large independent sets in spectral expanders.

• Part III. We construct explicit constant-degree vertex expanders using
the tripartite line product. First, we obtain explicit unique-neighbor ex-
panders by instantiating the product using Ramanujan graphs — the
optimal spectral expanders. Then, by replacing Ramanujan graphs with
the incidence graphs of Ramanujan cubical complexes, we obtain the
first explicit lossless vertex expanders.

vi

Acknowledgments

First and foremost, I would like to thank my advisor Pravesh K. Kothari. I first
met him when he was still a postdoc at Princeton, just about to move to CMU. At the
time, I knew nothing about theory, but he still spoke to me with great enthusiasm about
Sum-of-Squares, average-case complexity, robust statistics, and more. To this day, I
am grateful that he took me as his student despite my background and lack of prior
experience. As an advisor, he has taught me not only math/theory but also how to
do research, while giving me the constant support and encouragement I needed. As
a researcher, he is always energetic and seems to have endless ideas. Moreover, as a
friend, we had a lot of fun together, for example the countless boba/food trips where
we chatted about all sorts of random things.

I must also thank my other committee members, Ryan O’Donnell, Jason Li, Venkat
Guruswami, and David Steurer, for being on my committee and attending my thesis
proposal and defense. They provided valuable feedback and suggestions that helped
shape this thesis.

I had the privilege of visiting several professors over the course of my PhD. In the
summer of 2022, I visited Luca Trevisan at Bocconi University. Even before the visit,
I had read several of Luca’s blog posts, which had a profound impact on my research
career. In one post, he wrote, “I consider a mathematical proof to be understood if one can see
it as a series of inevitable steps”, a piece of advice I continue to keep in mind. During my
visit, I got to know Luca personally. He was a very inspiring person to talk to, and it’s
clear to me that he knew almost every part of TCS. He was also quite funny at times.
Sadly, he passed away far too soon, but I will always be grateful for his mentorship and
lasting impact.

I also visited Venkat Guruswami and Prasad Raghavendra at Berkeley, Sam Hopkins
at MIT, Raghu Meka at UCLA, and recently David Steurer at ETH Zurich. I am deeply
grateful for the opportunities I had to visit different places during my PhD. These visits
allowed me to explore new areas of TCS and to make new friends. My research career
would have been very different without them.

Among professors at CMU, I am especially grateful to Ryan O’Donnell for his ”The-
orist’s Toolkit” course, which has benefited not only me but many others as well. The
course was instrumental for my early career in theory, and I would not be where I am
today without it. I would also like to thank Aayush Jain, Anupam Gupta, Jason Li, and
David Woodruff for valuable research discussions, helpful suggestions about giving
talks, and also many fun conversations.

I must also thank Li-Yang Tan at Stanford. At the time, I was doing research in
computer vision, but I took his Computational Complexity course as a breadth require-
ment, and I absolutely loved it. That course sparked my interest in TCS. Perhaps more
importantly, it was Li-Yang who recommended that I talk to Pravesh!

vii

I would like to thank the entire CSD staff for their continuous support. In particu-
lar, I am grateful to Patricia Loring for always handling the reimbursements efficiently,
and to Matthew Stewart for helping with logistical matters and sending all the email
announcements. I had countless email exchanges with them throughout my PhD.

Now, among my peers, let me start with my collaborators that contributed to the
results in this thesis. I would like to thank Sidhanth Mohanty for “kikuchi-fun”, Jeff
Xu for constantly drawing shapes on the board, Mitali Bafna for tackling the 3-coloring
problem together, Peter Manohar for our struggles with planted CSPs, Theo McKen-
zie and Pedro Paredes for unique-neighbor expanders, and Sidhanth Mohanty and
Rachel Zhang for our journey towards lossless expanders (i.e., the adventure of the
three Pokémons: Scizor, Vulpix, and Psyduck).

I am deeply grateful for my first two friends in TCS: Sidhanth Mohanty and Jeff
Xu. During my first year in Pravesh’s group, due to COVID, Pravesh hosted virtual
group meetings every week. That was when I first met Jeff (another Pravesh’s student)
and Sidhanth (then at Berkeley but could join remotely). Being a student with little
background in theory, I am extremely lucky to have them; they taught me so many
things I didn’t know. In fact, my first paper in TCS was with them, just the three of us.
Almost immediately, we became very good friends. I really enjoyed all the fun activities
we did (and still do) together — basketball, NBA 2K, and musicals with Jeff; Pokémon
Showdown, Pokémon charades, and table tennis with Sidhanth; and with both of them,
countless boba trips, movies and shows, cooking, adventures, etc.

I’m lucky to have so many amazing friends at CMU. First, my officemates: Kun-
ming (Benny) Jiang, Lingjing Kong, Jeff Xu (and Sarah Wang), and Tesla Zhang. We
had so much fun together, from watching/playing various sports to seeing the solar
eclipse, and much more. I also want to thank my wonderful friends among the cur-
rent and former members of the CMU theory group: Omar Alrabiah, Prashanti Ander-
son, Ainesh Bakshi, Tolson Bell, Isaac Grosof, Daniel Hathcock, William He, Praneeth
Kacham, George Li, Hoai-An Nguyen, Pedro Paredes, Madhusudhan Pittu, Kevin Pratt,
Sherry Sarkar, Noah Singer, Xinyu Wu, Mik Zlatin, and many others. Many thanks as
well to my friends in Machine Learning: Arundhati Banerjee, Zhili Feng, Jerry Huang,
Justin Khim, Oscar Li, Yuchen Li, Yusha Liu, Tanya Marwah, Ashwini Pokle, Che-Ping
Tsai, Chih-Kuan Yeh. I also want to especially thank Yusha for Lord of the Rings, Dune,
hiding Bingbin’s “snacks”, etc, and Ashwini for introducing BTS to Bingbin and me.

Outside of CMU, I got to know many amazing friends from research visits and con-
ferences. I am especially grateful to people from “Dirham Store 1641 Walnut”: Yesh-
wanth Cherapanamjeri, Bingbin Liu, Sidhanth Mohanty, Amit Rajaraman, and Nived
Rajaraman; so many CLUELESSes and fun memories like removing tape on the card-
board. I would also like to thank the numerous friends in TCS: Arpon Basu, Rares-
Darius Buhai, Antares Chen, Sitan Chen, Tommaso d’Orsi, Louis Golowich, Aparna
Gupte, Yiding Hua, Brice Huang, Nathan Ju, Jane Lange, Daniel Lee, Jerry Li, Andrew

viii

Lin, David Lin, Allen Liu, Chih-Hung Liu, Siqi Liu, Fermi Ma, Mahbod Majid, Shivam
Nadimpalli (and Stitch), Ansh Nagda, Lucas Pesenti, Louie Putterman, Goutham Ra-
jendran, Stefan Tiegel, Thuy-Duong (June) Vuong, Yimeng (Kobe) Wang, David Wu,
Rachel Zhang, and many more.

Many thanks to my friends before graduate school — from high school: Chi-Fang
(Anthony) Chen, Yi-Shiou Duh, Hung-Jui (Joe) Huang, Chris Lee, and Ching-Ting Tsai;
the StarCraft crew from undergrad: Justin Doong, Steven Lin, Maurice Shih, and Timo-
thy Wu; Vision Lab: Edward Chou, Michelle Guo, De-An Huang, and Zelun Luo.

Last but not least, I am truly grateful to my family, the most important people in my
life. Thanks to my parents Tsang-Jen and Chui-Hui, and my sister Jun-Shiuan for their
love and support throughout my entire life. Finally, I want to thank my wife Bingbin.
We have gone through many stages of life together, including Masters, PhD, and now
postdoc. Bingbin has always by my side, a constant source of love, encouragement, and
joy. I am so lucky to have her in my life.

ix

x

Contents

1 Introduction 1
1.1 Part I: Spectral methods in graph theory . 2
1.2 Part II: Spectral methods in algorithm design 3
1.3 Part III: Spectral methods in constructing vertex expanders 4
1.4 Organization of the thesis . 6

2 Background and Preliminaries 9
2.1 Elementary graph theory . 9
2.2 Non-backtracking matrix . 10
2.3 Graph pruning and expander decomposition 11
2.4 Concentration inequalities . 12
2.5 The Sum-of-Squares algorithm . 13

I Graph Theory 17

3 Introduction 19
3.1 Girth-density trade-off in hypergraphs . 19
3.2 Subgraph density in spectral expanders . 23

4 Girth-Density Trade-Off in Hypergraphs 27
4.1 Generalization of the Moore bound . 27
4.2 Warm-up: weak Moore bound for graphs 29
4.3 Hypergraph Moore bound: even arity . 31
4.4 Hypergraph Moore bound: odd arity . 34

5 Subgraph Density in Spectral Expanders 43
5.1 Average degree of bipartite graphs . 44
5.2 Non-backtracking matrix of subgraphs in bipartite expanders 45

xi

II Algorithms 53

6 Introduction 55
6.1 Algorithms for strongly refuting semirandom CSPs 56
6.2 Efficient algorithms for semirandom planted CSPs 58
6.3 Finding large independent sets in expanders 61

7 Algorithms for Strongly Refuting Semirandom CSPs 65
7.1 Refuting semirandom even arity XOR . 66
7.2 Refuting semirandom odd arity XOR . 67

8 Efficient Algorithms for Semirandom Planted CSPs 73
8.1 Technical overview . 75
8.2 From planted CSPs to noisy XOR . 85
8.3 From k-XOR to spread bipartite k-XOR . 89
8.4 Identifying noisy constraints in spread bipartite k-XOR 92
8.5 Notions of relative approximation . 104

9 Rounding Large Independent Sets on Expanders 107
9.1 Technical overview . 108
9.2 Independent sets on spectral expanders . 115
9.3 Independent sets on almost 3-colorable spectral expanders 121
9.4 Hardness of finding independent sets in k-colorable expanders 130
9.5 Rounding independent sets via Karger-Motwani-Sudan 132

III Explicit Constructions of Vertex Expanders 135

10 Introduction 137
10.1 History of vertex expanders . 138
10.2 Explicit lossless vertex expanders . 139

11 Tripartite Line Product 143
11.1 Gadget graph . 144
11.2 Outline of the analysis . 145

12 Unique-Neighbor Expanders with Lossless Small-Set Expansion 147
12.1 Lossless expansion in high-girth graphs . 148
12.2 Proof of Theorem 12.0.2 . 149

xii

13 Explicit Lossless Vertex Expanders 153
13.1 Technical overview . 154
13.2 Construction of lossless vertex expanders 159
13.3 Cubical complexes and coded incidence graphs 165
13.4 Ramanujan cubical complexes . 175
13.5 Free group action and good quantum LDPC codes 179

Bibliography 183

xiii

xiv

Chapter 1

Introduction

Spectral methods are now widespread across computer science. Many computational
problems naturally involve matrices, either as explicit inputs or as representations of the
underlying structures. Spectral methods refer to those that utilize the spectra of these
matrices –— their eigenvalues, eigenvectors, or singular values and vectors –— in the
analysis or in an algorithm’s implementation. Graphs, for example, are natural appli-
cations for spectral methods, as they can be represented by their adjacency matrices. In
particular, the second eigenvalue of the adjacency matrix is closely related to the edge
expansion due to Cheeger’s inequality [Alo86], and it also gives bounds on subgraph
densities via the expander mixing lemma [AC88]. These connections have led to exten-
sive study on spectral expanders — graphs with small second eigenvalues — for which we
now have several explicit constructions and far-reaching applications, including error
correcting codes, communication and computation networks, and derandomization.1

Spectral methods have enjoyed a lot of success in algorithm design as well. The
aforementioned Cheeger’s inequality is in fact a graph partitioning algorithm that finds
a sparse cut in a graph using the second eigenvector of the adjacency matrix. Another
notable example is the planted clique (also known as hidden clique) problem, where
the goal is to find a clique planted in a random Erdős-Rényi graph G(n, 1/2). The
best known polynomial-time algorithm utilizes the eigenvalues and eigenvectors of the
graph’s adjacency matrix to detect and recover the planted clique [AKS98].

Across the various applications, the unifying theme is to extract useful informa-
tion about the graph from the spectra of these associated matrices, translating com-
binatorial structure to linear-algebraic information. A classic example is the connec-
tion between counting walks in a graph and the top eigenvalue of its adjacency matrix.
More precisely, given a symmetric matrix A ∈ Rn×n, the trace power tr(A2`) counts
weighted closed walks of length 2` on n vertices, while the spectral norm λ of A satis-
fies λ 6 tr(A2`)1/2` 6 n1/2`λ. Thus, for ` � log n, the spectral norm serves as a tight

1We refer readers to the survey of Hoory, Linial, and Wigderson [HLW06] for a thorough exposition.

1

proxy for combinatorial closed walks in the matrix.
Another key component in spectral methods is identifying the “correct” matrix rep-

resentation and its spectral properties. In many cases, the main innovation lies in select-
ing the right matrix that enables the desired analysis or proof technique. For example,
in Chapter 5, we analyze subgraph densities in spectral expanders using the spectral
radius of the non-backtracking matrix, rather than the adjacency matrix. In Chapters 4
and 7, we will use the Kikuchi matrix [WAM19] constructed from the given hypergraph
to prove girth-density trade-offs in hypergraphs as well as give refutation algorithms
for semirandom constraint satisfaction problems (CSPs).

In this thesis, we follow this theme of studying fundamental problems in theoretical
computer science through the “spectral lens”. We focus on three aspects: graph theory,
algorithm design, and explicit constructions.

1.1 Part I: Spectral methods in graph theory

We begin the thesis with some new results in graph theory. These results will be used
in later chapters, and we believe they are of independent interest.

Girth-density trade-off in graphs. Alon, Hoory, and Linial [AHL02] proved a cele-
brated result, known as the Moore bound, which states that that any n-vertex graph of
average degree d > 2 must contain a cycle of length at most 2 logd−1 n + 2. While this
fact is straightforward for d-regular graphs, the remarkable aspect of their result is that
it also applies to irregular graphs, where the average degree d need not be an integer.

In Chapter 4, we show an improved upper bound on girth in terms of the spectral
radius of the graph’s non-backtracking matrix (Definition 2.2.1). This result recovers the
classical Moore bound as a special case, but in many settings — including those appear-
ing in Chapter 12 — it provides substantially stronger guarantees.

The proof relies on the relationship between non-backtracking walks in a graph and
the spectrum of its non-backtracking matrix, similar to the classical connection between
walks and the spectrum of the adjacency matrix.

Hypergraph Moore bound. There is a natural generalization of cycles to hypergraphs,
called even covers. An even cover is a collection of hyperedges such that every vertex
participates in an even number of hyperedges. The girth of a hypergraph is defined as
the smallest size of an even cover in it. Due to the equivalence between even covers and
linear dependencies over F2, the girth-density trade-off in hypergraphs has been previ-
ously studied in coding theory. Moreover, it is closely related to constraint satisfaction
problems, which led Feige [Fei08] to conjecture that every k-uniform hypergraph with
n vertices and m & n(n

r)
k
2−1 hyperedges has an even cover of size O(r log n).

Feige’s conjecture was resolved by Guruswami, Kothari, and Manohar [GKM22] up
to polylogarithmic factors. Their proof goes via a spectral argument applied to the

2

Kikuchi graph [WAM19] — a graph derived from the given hypergraph (see Defini-
tion 4.3.2).

In Chapter 4, we present a simple and short proof of the hypergraph Moore bound
that is almost tight, up to a single logarithmic factor. Our simplified analysis also leads to
refutation algorithms for semirandom constraint satisfaction problems, which we will
discuss in the next section.

Subgraph density in spectral expanders. We next study the relationship between
spectral expansion and vertex expansion. In particular, we focus on subgraph den-
sity and vertex expansion of small subsets in graphs with bounded non-trivial eigen-
values. The well-known expander mixing lemma [AC88] (Fact 2.1.1) already provides
non-trivial bounds, which were further improved by Kahale [Kah95], who proved tight
bounds for d-regular expanders. See Section 3.2 for more discussions.

In Chapter 5, we give a sharp upper bound on the density of subgraphs in bipar-
tite spectral expanders, generalizing the results of Kahale [Kah95] and Asherov and
Dinur [AD24]. At a high level, our approach bounds the spectral radius of the non-
backtracking matrix of subgraphs, which in turn yields upper bounds on the density.
This improves over the expander mixing lemma, which bounds the density via the spec-
trum of the adjacency matrix.

1.2 Part II: Spectral methods in algorithm design

Boolean constraint satisfaction problems (CSPs). One focus of this thesis is on algo-
rithms for average-case Boolean CSPs, such as random k-SAT or k-XOR. A CSP instance
can be represented as a hypergraph along with literal negation patterns associated with
each hyperedge. The general approach we use here is to represent the hypergraph us-
ing the Kikuchi matrix — first introduced by Wein, Alaoui, and Moore [WAM19] and
further developed by Guruswami, Kothari, and Manohar [GKM22] — and analyzing
its spectral properties to design algorithms.

For fully random k-CSPs — where the hypergraph and literal patterns are both cho-
sen randomly — the instance is highly unsatisfiable with high probability, and the task
is to output a refutation, i.e., a certificate of unsatisfiability. A closely related setting is
the search problem for planted random CSPs, where the literal patterns are chosen from
some distribution that aligns with an unknown planted solution. Here, the algorithmic
task is to recover the planted solution.

Random CSPs have received a lot of attention over the past decade. For both the
refutation and search problem, we now have algorithms that succeed at the optimal
clause density threshold [AOW15, RRS17, FPV15] (see Chapter 6 for more background).
However, many such algorithms break down under minor perturbations of the instance,
such as the addition of a vanishingly small fraction of extra clauses. This motivates the

3

study of semirandom models, which are hybrid models between average-case and worst-
case pioneered by Blum and Spencer [BS95]. In the case of semirandom CSPs, we allow
the underlying hypergraph to be adversarial, while the literal patterns are still random.

In Chapters 7 and 8, we give algorithms for both refuting semirandom CSPs as well
as solving semirandom planted CSPs. The key technique is analyzing the spectral prop-
erties of the Kikuchi matrix (see Definition 7.0.3). At a high level, a k-XOR instance can be
represented as a signed Kikuchi matrix, and its spectral norm (or a reweighted version)
is an upper bound on the value of the k-XOR instance. Furthermore, the connection
between closed walks in the Kikuchi matrix and its spectral norm has led to the hyper-
graph Moore bound, a result in extremal combinatorics that characterizes the girth-density
trade-offs in hypergraphs [Fei08, GKM22]. See Chapter 3 for more background.

Solving problems on spectral expanders. The study of (semi)random CSPs can be
viewed as a way to circumvent worst-case hardness. A complementary approach is to
study problems under certain structural assumptions on the input, such as expansion.
A notable success story is the line of work on Unique Games (UG). Research started
with algorithms for Unique Games assuming that the underlying graph is a spectral
expander or has low threshold rank [Tre08, AKK+08, MM11]. This ultimately led to the
groundbreaking subexponential-time algorithm for arbitrary UG instances [ABS15].

We follow this paradigm and study the problem of finding large independent sets in
graph that are either 3-colorable or promised to contain large independent sets — prob-
lems that are UG-hard without further assumptions on the input graphs. In Chapter 9,
we give polynomial-time algorithms that find linear-sized independent sets in one-sided
spectral expanders that are almost 3-colorable or are promised to contain independent
sets of size (1/2− ε)n.

In sharp contrast to our algorithmic result, we show that the analogous task of find-
ing a linear-sized independent set in an almost 4-colorable one-sided expander (even
when the second eigenvalue is on(1)) is NP-hard, assuming the Unique Games Con-
jecture. This reveals a surprising difference between 3-colorable and 4-colorable ex-
panders. See Chapter 6 for our results and more discussions.

1.3 Part III: Spectral methods in constructing vertex ex-
panders

Spectral expansion — more specifically, bounded second eigenvalue — is one the most
well-studied notion of expansion. Many applications require graph properties such as
high conductance, low subgraph densities, and rapid mixing of random walks, all of
which are closely connected to the second eigenvalue of a graph. The optimal spectral
expanders are called Ramanujan graphs, where all non-trivial eigenvalues are bounded

4

by 2
√

d− 1 for d-regular graphs. Moreover, random d-regular graphs are known to be
almost Ramanujan with high probability, with all non-trivial eigenvalues bounded by
(2 + o(1))

√
d− 1 [Fri08, Bor20].2

However, many applications require explicit constructions of such expanders, where
random graphs do not suffice. In the weaker notion of explicitness, one requires that
an n-vertex graph be generated deterministically “from scratch” in time polynomial in
n. The stronger notion, called strongly explicit, requires that the neighborhood of any
given vertex be computable in time polylog(n). There are now several strongly explicit
constructions of Ramanujan graphs [Mar88, LPS88, Mor94]. While the analyses of these
constructions are technically deep, one could attribute their success to the “analytic
nature” of the second eigenvalue.

Vertex and unique-neighbor expanders. There is a wide range of problems that re-
quire different notions of expansion — unique-neighbor expansion or vertex expansion. The
definitions are very intuitive: in a d-regular graph, we require every “small” set S of ver-
tices to have γd|S| (unique-)neighbors, for constant γ > 0. Here, a unique-neighbor of
S is a vertex v with exactly one edge to S. When γ can be made arbitrarily close to 1, i.e.,
γ = 1− ε, then we call such graphs lossless expanders. We refer readers to Chapter 10
and the survey of [HLW06] for more background and various applications of explicit
vertex expanders.

Significant research has gone into explicit constructions of bipartite vertex expanders.
In particular, in a breakthrough work, Capalbo, Reingold, Vadhan, and Wigderson
[CRVW02] gave explicit constructions for one-sided lossless expanders, in which lossless
expansion holds only for subsets on one side. Such expanders already enable numer-
ous applications in error-correcting codes, distributed routing networks, and more (see
[CRVW02] and references therein). On the other hand, constructing explicit two-sided
lossless expanders has been a long-standing open problem.

Given the abundance of explicit Ramanujan graph constructions, a natural question
is whether spectral expansion implies vertex expansion or unique-neighbor expansion.
Kahale [Kah95] showed that Ramanujan graphs exhibit vertex expansion with γ = 1/2,
but unfortunately it can have subsets with zero unique-neighbors. See Chapter 5 for our
results that extend Kahale’s to bipartite near-Ramanujan graphs.

Explicit lossless expanders via the tripartite line product. In a sequence of papers
[HMMP24, HLMOZ25, HLMRZ25], we achieve the goal of constructing strongly ex-
plicit two-sided lossless expanders [HLMRZ25]. In all three papers, the key object is the
tripartite line product, introduced in [HMMP24].

This product has two ingredients: a large (infinite family of) tripartite base graph
and a constant-size gadget graph. The base graph G has vertex set L ∪ M ∪ R, where

2Recently, a breakthrough result by Huang, McKenzie, and Yau [HMY24] showed that a random d-
regular graph is Ramanujan with probability approximately 0.69.

5

we place a (k, DL)-biregular graph between L and M, and a (DR, k)-biregular graph
between M and R. The gadget graph H is a (dL, dR)-biregular graph on vertex set [DL]∪
[DR]. The tripartite line product between G and H is the (kdL, kdR)-biregular graph on
L and R obtained as follows: for each vertex v ∈ M, place a copy of H between the DL
left neighbors of v and the DR right neighbors of v (see Chapter 11 for more details and
Figure 11.1 for an illustration).

Since the gadget graph is of constant size, we think of it as a random graph that
satisfies strong expansion properties. Thus, the innovation lies in the choice of the base
graph. In [HMMP24], we instantiate the base graph (i.e., the two bipartite graphs) with
bipartite Ramanujan graphs and obtain two-sided γ-unique-neighbor expanders, with
γ being a small universal constant. In [HLMOZ25], we instantiate it using the face-
vertex incidence graphs of Ramanujan simplicial complexes and obtain two-sided 3/5-
vertex expanders, beating the spectral barrier of 1/2 by Kahale. Finally, in [HLMRZ25],
we instantiate it using the face-vertex incidence graphs of Ramanujan cubical complexes
(see Section 13.3) and obtain two-sided lossless expanders.

1.4 Organization of the thesis

This thesis is divided into three parts. Each part begins with an introductory chapter
that states the main results and provides additional background.

Part I: Graph Theory.
• Chapter 3: Introduction.

• Chapter 4: Girth-density trade-off in hypergraphs. This chapter is based on [HKM23,
Sections 2, 3, and A].

• Chapter 5: Subgraph density in spectral expanders. This chapter is based on
[HMMP24, Sections 5-6].

Part II: Algorithms.
• Chapter 6: Introduction.

• Chapter 7: Algorithms for strongly refuting semirandom CSPs. This chapter is
based on [HKM23, Section 4].

• Chapter 8: Efficient algorithms for semirandom planted CSPs. This chapter is
based on [GHKM23].

• Chapter 9: Rounding large independent sets on expanders. This chapter is based
on [BHK25].

Part III: Explicit constructions.
• Chapter 10: Introduction.

6

• Chapter 11: Tripartite line product. This chapter is based on [HMMP24, HLMOZ25,
HLMRZ25].

• Chapter 12: Unique-neighbor expanders with lossless small-set expansion. This
chapter is based on [HMMP24].

• Chapter 13: Explicit lossless vertex expanders. This chapter is based on [HLMRZ25].

7

8

Chapter 2

Background and Preliminaries

2.1 Elementary graph theory

In this thesis, we will restrict to undirected graphs. Given an undirected graph G =

(V, E) with |V| = n vertices and |E| = m edges, we denote AG ∈ {0, 1}n×n to be its
adjacency matrix, and DG ∈ Nn×n to be its diagonal degree matrix. We also denote
ÃG = D−1/2

G AGD−1/2
G to be the normalized adjacency matrix. We will drop the depen-

dence on G when the graph is clear from context.
For bipartite graphs, we often write it as G = (L ∪ R, E), where L and R are the left

and right vertex sets respectively. If G has left degree c and right degree d, then we say
that G is (c, d)-biregular.

Spectrum of the graph. Unless stated otherwise, we use λ1 > λ2 > · · · > λn to denote
the eigenvalues of AG.

Fact 2.1.1 (Expander mixing lemma [AC88]). Let G = (V, E) be a d-regular graph on n
vertices, and let λ2 be the second eigenvalue of its adjacency matrix. For any subsets S, T ⊆ V,∣∣∣∣e(S, T)− d

n
|S||T|

∣∣∣∣ 6 λ2

√
|S||T| .

Ramanujan graphs. For any d-regular graph G, the top eigenvalue λ1 = d. We say that
G is a Ramanujan graph if max{λ2, |λn|} 6 2

√
d− 1. The quantity 2

√
d− 1 is precisely

the spectral radius of the adjacency operator of the infinite d-regular tree. Therefore, d-
regular Ramanujan graphs are graphs whose non-trivial eigenvalues lie in the spectrum
of the infinite d-regular tree.

Ramanujan graphs are the optimal spectral expanders — Alon and Boppana [Nil91]
showed that a d-regular graph must have λ2 > 2

√
d− 1− on(1) for any fixed d.

Ramanujan bipartite graphs. The definition of Ramanujan graphs can be generalized
to biregular graphs. Let c < d be integers. For any (c, d)-biregular graph G = (L∪ R, E),

9

the top eigenvalue λ1 =
√

cd. This is witnessed by the eigenvector x with entries xu =√
c for u ∈ L and xv =

√
d for v ∈ R. Note that for any bipartite graph, λ is an

eigenvalue if and only if −λ is an eigenvalue, so λn = −
√

cd.
We say that G is a (c, d)-biregular Ramanujan graph if

|λi| ∈
[√

d− 1−
√

c− 1 ,
√

d− 1 +
√

c− 1
]
∪ {0} , ∀i 6= 1, n .

The above is precisely the spectrum of the infinite (c, d)-biregular tree [GM88, LS96].
Therefore, (c, d)-biregular Ramanujan graphs are graphs whose non-trivial eigenvalues
lie in the spectrum of the infinite (c, d)-biregular tree.

There is an analog of expander mixing lemma (Fact 2.1.1) for bipartite graphs (see,
e.g., [Hae95]).

Fact 2.1.2 (Bipartite expander mixing lemma). Let G = (L ∪ R, E) be a (c, d)-biregular
graph. For any subsets S ⊆ L and T ⊆ R,

∣∣∣∣ e(S, T)
|E| −

|S|
|L| ·

|T|
|R|

∣∣∣∣ 6 λ2√
cd

√
|S|
|L| ·

|T|
|R| .

2.2 Non-backtracking matrix

Definition 2.2.1 (Non-backtracking matrix). For an undirected graph G = (V, E) with
m edges, its non-backtracking matrix BG ∈ {0, 1}2m×2m is defined as follows: for directed
edges (u1, v1), (u2, v2) in the graph,

BG[(u1, v1), (u2, v2)] = 1(v1 = u2) · 1(u1 6= v2) .

Note that the non-backtracking matrix is not symmetric. Let λ1(BG), . . . , λ2m(BG) ∈
C be the eigenvalues of BG ordered such that |λ1(BG)| > |λ2(BG)| > · · · > |λ2m(BG)|.
The Perron-Frobenius theorem implies that λ1(BG) is real and non-negative. We denote
ρ(BG) = λ1(BG) to be the spectral radius of BG.

A crucial identity we will need is the Ihara-Bass formula [Iha66, Bas92] which gives
a translation between the eigenvalues of the adjacency matrix and the eigenvalues of
the non-backtracking matrix:

Fact 2.2.2 (Ihara-Bass formula). For any graph G with n vertices and m edges, the following
identity on univariate polynomials is true:

det(I− BGt) = det(HG(t)) · (1− t2)m−n

where HG(t) := (DG − I)t2 − AGt + I is the Bethe Hessian of G.

10

The Ihara-Bass formula gives a direct relationship between the spectral radius of BG
and the positive definiteness of HG(t). The following is classic (e.g., [FM17, Proof of
Theorem 5.1]), though we include a proof for completeness.

Lemma 2.2.3. Let G be a graph and 0 < α < 1. Then, the spectral radius ρ(BG) 6 1
α if and

only if HG(t) � 0 for all t ∈ [0, α). As a result, if HG(
1
ρ) has a non-positive eigenvalue for

some ρ > 0, then ρ(BG) > ρ.

Proof. First observe that HG(0) = I � 0. Since HG(t) is symmetric, the eigenvalues of
HG(t) are real and move continuously on the real line as t increases from 0. Note also
that by the Perron-Frobenius theorem, ρ(BG) = λ1(BG) > 0.

Suppose for contradiction that ρ(BG) 6
1
α but HG(t) has a non-positive eigenvalue

for some t ∈ [0, α). Due to HG(0) = I and continuity of the eigenvalues, there must
be a t∗ ∈ (0, t] such that HG(t∗) has a zero eigenvalue, meaning det(HG(t∗)) = 0. By
Fact 2.2.2, this means that det(I− BGt∗) = 0, i.e., BG has an eigenvalue 1

t∗ >
1
t > 1

α . This
contradicts that ρ(BG) 6

1
α .

On the other hand, if HG(t) � 0 for all t ∈ [0, α), then by Fact 2.2.2 det(I− BGt) > 0
for all t ∈ [0, α). Since det(I− BG/λ1) = 0, it follows that 1

λ1
> α, i.e., λ1 6

1
α .

Finally, suppose HG(
1
ρ) 6� 0 for some ρ > 0, then setting α = 1

ρ−ε > 1
ρ for any

ε→ 0+, we have that ρ(BG) > ρ− ε. This implies that ρ(BG) > ρ.

2.3 Graph pruning and expander decomposition

It is a standard result that given a graph with m edges and average degree d, one can
delete vertices such that the resulting graph has minimum degree εd and at least (1−
2ε)m edges. We include a short proof for completeness.

Lemma 2.3.1 (Graph pruning). Let G be an n-vertex graph with average degree d and m = nd
2

edges, and let ε ∈ (0, 1/2). There is an algorithm that deletes vertices of G such that the
resulting graph has minimum degree εd and at least (1− 2ε)m edges.

Proof. The algorithm is simple: repeatedly remove any vertex with degree < εd. First,
we show by induction that each deletion cannot decrease the average degree. Suppose
there are n′ 6 n vertices left and average degree d′ > d. Then, after deleting a vertex u
with degree du < εd, the average degree becomes n′d′−2du

n′−1 > n′d−2εd
n′−1 = d · n′−2ε

n′−1 . Thus,
for ε < 1/2, the average degree is always at least d. Furthermore, since the algorithm
can delete at most n vertices, it can delete at most εdn = 2εm edges.

We will also need an algorithm that partitions a graph into expanding clusters such
that total number of edges across different clusters is small. Expander decomposition
has been developed in a long line of work [KVV04, ST11, Wul17, SW19] and has a wide

11

range of applications. For our algorithm, we only require a very simple expander de-
composition that recursively applies Cheeger’s inequality.

Fact 2.3.2 (Expander decomposition). Given a (multi)graph G = (V, E) with m edges and
a parameter ε ∈ (0, 1), there is a polynomial-time algorithm that finds a partition of V into
V1, . . . , VT such that λ2(L̃G{Vi}) > Ω(ε2/ log2 m) for each i ∈ [T] and the number of edges
across partitions is at most εm.

Proof. Fix λ = cε2/ log2 m for some constant c to be chosen later. The algorithm is very
simple. Given a graph G = (V, E) (with potentially parallel edges and self-loops), if
λ2(L̃G) < λ, then by Cheeger’s inequality we can efficiently find a subset S ⊆ V with

vol(S) 6 vol(S) such that |E(S,S)|
vol(S) <

√
2λ. Here vol(S) := ∑v∈S deg(v). Then, we

cut along S, add self-loops to the induced subgraphs G[S] and G[S] so that the vertex
degrees remain the same (each self-loop contributes 1 to the degree). This produces
two graphs G{S} and G{S}, and we recurse on each. By construction, in the end
we will have partitions V1, . . . , VT where either Vi is either a single vertex or satisfies
λ2(L̃G{Vi}) > λ.

We now bound the number of edges cut via a charging argument. Consider the
“half-edges” in the graph, where each edge (u, v) contributes one half-edge to u and
one to v, and each self-loop counts as one half-edge. Then, vol(S) equals the number of
half-edges attached to S. Now, imagine we have a counter for each half-edge, and every
time we cut along S we add

√
2λ to each half-edge attached to S (the smaller side). Since

E(S, S) <
√

2λ · vol(S), it follows that the number of edges cut is at most the total sum
of the counters. On the other hand, each half-edge can appear on the smaller side of the
cut at most log2 2m times, as each time the half-edge is on the smaller side of the cut,
vol(S) decreases by at least a factor of 2, and vol([n]) = 2m. So, the total sum must be
6
√

2λ · 2m log2 2m 6 εm for a small enough constant c.

2.4 Concentration inequalities

Fact 2.4.1 (Chernoff bound). Let X1, . . . , Xn be independent random variables taking values
in {0, 1}. Let X = ∑n

i=1 Xi and µ = E[X]. Then, for any δ ∈ [0, 1],

Pr [|X− µ| > δµ] 6 2e−δ2µ/3 .

Fact 2.4.2 (Matrix Chernoff [Tro15, Theorem 5.1.1]). Let X1, . . . , Xn ∈ Rd×d be independent,
random, symmetric matrices such that Xi � 0 and λmax(Xi) 6 R almost surely. Let X =

∑n
i=1 Xi and µ = λmax(E[X]). Then, for any δ ∈ [0, 1],

Pr [λmax(X) > (1 + δ)µ] 6 d · exp
(
−δ2µ

3R

)
.

12

2.5 The Sum-of-Squares algorithm

We refer the reader to the monograph [FKP19] and the lecture notes [BS16] for a detailed
exposition of the sum-of-squares method and its usage in algorithm design.

Pseudo-distributions. Pseudo-distributions are generalizations of probability distri-
butions. Formally, a pseudo-distribution on Rn is a finitely supported signed measure
µ : Rn → R such that ∑x µ(x) = 1. The associated pseudo-expectation is a linear operator
Ẽµ that assigns to every polynomial f : Rn → R the value Ẽµ f = ∑x µ(x) f (x), which
we call the pseudo-expectation of f . We say that a pseudo-distribution µ on Rn has
degree d if Ẽµ[f 2] > 0 for every polynomial f on Rn of degree 6 d/2.

A degree-d pseudo-distribution µ is said to satisfy a constraint {q(x) > 0} for any
polynomial q of degree 6 d if for every polynomial p such that deg(p2) 6 d− deg(q),
Ẽµ[p2q] > 0. For example, in this work we will often say that µ satisfies the Booleanity
constraints {x2

i − xi = 0, ∀i ∈ [n]}, which means that Ẽµ[p(x)(x2
i − xi)] = 0 for any i

and any polynomial p of degree d− 2. We say that µ τ-approximately satisfies a con-
straint {q > 0} if for any sum-of-squares polynomial p, Ẽµ[pq] > −τ ‖p‖2 where ‖p‖2
is the `2 norm of the coefficient vector of p.

We rely on the following basic connection that forms the basis of the sum-of-squares
algorithm.

Fact 2.5.1 (Sum-of-Squares algorithm, [Par00, Las01]). Given a system of degree 6 d poly-
nomial constraints {qi > 0} in n variables and the promise that there is a degree-d pseudo-
distribution satisfying {qi > 0} as constraints, there is a nO(d) polylog(1/τ) time algorithm
to find a pseudo-distribution of degree d on Rn that τ-approximately satisfies the constraints
{qi > 0}.

Sum-of-squares proofs. Let f1, f2, . . . , fm and g be multivariate polynomials in x. A
sum-of-squares proof that the constraints { f1 > 0, . . . , fm > 0} imply g > 0 consists of
sum-of-squares polynomials (pS)S⊆[m] such that g = ∑S⊆[m] pS ∏i∈S fi. The degree of
such a sum-of-squares proof equals the maximum of the degree of pS ∏i∈S fi over all S
appearing in the sum above. We write { fi > 0, ∀i ∈ [m]} d

x {g > 0} where d is the
degree of the sum-of-squares proof.

We will rely on the following basic connection between SoS proofs and pseudo-
distributions:

Fact 2.5.2. Let f1, . . . , fm and g be polynomials, and let A = { fi(x) > 0, ∀i ∈ [m]}. Suppose
A d

x {g(x) > 0}. Then, for any pseudo-distribution µ of degree > d satisfying A, we have
Ẽµ[g] > 0.

Therefore, an SoS proof of some polynomial inequality directly implies that the same
inequality holds in pseudo-expectation. We will use this repeatedly in our analysis.

13

2.5.1 Sum-of-Squares toolkit

The theory of univariate sum-of-squares (in particular, Lukács Theorem) says that if a
univariate polynomial is non-negative on an interval, then this fact is also SoS-certifiable.
The following corollary of Lukács theorem is well-known, and we will use it multiple
times to convert univariate inequalities into SoS inequalities in a blackbox manner.

Fact 2.5.3 (Corollary of Lukács Theorem). Let a 6 b ∈ R. Let p ∈ R[x] be a univariate real
polynomial of degree d such that p(x) > 0 for all a 6 x 6 b. Then,

{x > a, x 6 b} d
x {p(x) > 0} .

Similarly, true inequalities on the hypercube are also SoS-certifiable.

Fact 2.5.4. Let p be a polynomial in n variables. Suppose p(x) > 0 for all x ∈ {0, 1}n, then{
x2

i − xi = 0, ∀i ∈ [n]
}

max(n,deg(p))
x {p(x) > 0} .

More generally, all true inequalities have SoS certificates under mild assumptions.
In particular, Schmüdgen’s Positivstellensatz establishes the completeness of the SoS
proof system under compactness conditions (often called the Archimedean condition).
Moreover, bounds on the SoS degree (given the polynomial and the constraints) were
given in [PD01, Sch04].

Fact 2.5.5 (Positivstellensatz [PD01, Sch04]). For all polynomials g1, g2, . . . , gm over x =

(x1, x2, . . . , xn) defining a non-empty set

S := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} ⊆ (−1, 1)n ,

and for every polynomial f of degree d with coefficients bounded by R and f ∗ := minx∈S f (x) >
0, there exists an integer D = D(n, g1, . . . , gm, R, f ∗) ∈N such that

{g1 > 0, . . . , gm > 0} D
x { f > 0} .

Independent samples from a pseudo-distribution. Recall that a pseudo-expectation
operator Ẽµ can be interpreted as the average of functions f (x) over a pseudo-distribution
x ∼ µ. We will need to be able to mimic averaging over t independently chosen samples
x(1), . . . , x(t) ∼ µ. We define the product pseudo-distribution µ⊗t along with pseudo-
expectation Ẽµ⊗t as follows: let p(x) = (x(1))α1 . . . (x(t))αt be a monomial in variables
x = (x(1), . . . , x(t)); we define

Ẽµ⊗t [p] := Ẽµ[xα1] · Ẽµ[xα2] · · · Ẽµ[xαt] .

It is easy to check that Ẽµ⊗t is also a pseudo-expectation operator corresponding to t
independent samples from the pseudo-distribution µ.

14

Fact 2.5.6. If µ is a valid pseudo-distribution of degree D in variables x, then µ⊗t is a valid
pseudo-distribution of degree D. Furthermore, if additional SoS inequalities are true for µ, they
also hold for µ⊗t.

2.5.2 Conditioning pseudo-distributions

We can reweigh or condition a degree-D pseudo-distribution µ by a polynomial s(x),
where s(x) is non-negative under the program axioms, i.e., A d

x {s(x) > 0} for d < D.
Technically, this operation defines a new pseudo-distribution µ′ of degree D − d with
pseudo-expectation operator Ẽµ′ by taking

Ẽµ′ [xα] =
Ẽµ[xα · s(x)]

Ẽµ[s(x)]
,

for every monomial xα of degree at most D− d.
It is easy to verify that µ′ is a valid pseudo-distribution of degree D − d and sat-

isfies the axioms of the original µ. As an example, under the independent set axioms
presented in (9.1), since xi > 0 is an axiom, one can reweigh µ by xi, essentially “con-
ditioning” the pseudo-distribution on the event xi = 1. Thus, we will also refer to this
operation as conditioning and denote µ′ by µ|s(x). Often times, the polynomial s(x)
we will “condition” on will be a polynomial approximation of the indicator function of
some event E. In this case, the above operation can be interpreted as conditioning µ to
satisfy some properties specified by the event E.

Reducing average correlation. An important technique we need is reducing the av-
erage correlation of random variables through iterative conditioning, which was intro-
duced in [BRS11] (termed global correlation reduction) and is also applicable to pseudo-
distributions of sufficiently large degree. We will use the following version from [RT12].

Lemma 2.5.7 (Lemma 4.5 of [RT12]). Let Y1, . . . , YM be a set of random variables each taking
values in {1, . . . , q}. Then, for any ` ∈N, there exists k 6 ` such that:

Ei1,...,ik∼[M]Ei,j∼[M][I(Yi; Yj | Yi1 , . . . , Yik)] 6
log q
`− 1

.

Note that the above lemma holds as long as there is a local collection of distributions
over (Y1, . . . , YM) that are valid probability distributions over all collections of `+ 2 vari-
ables and are consistent with each other. Of particular interest to us would be the setting
where we have a degree > `+ 2-pseudo-distribution µ over the variables (Y1, . . . , YM).

Lemma 2.5.7 is stated in terms of mutual information between pairs of variables.
One can translate it to a bound on average correlation (in L1) via the following:

15

Fact 2.5.8 (Pinsker’s inequality). Given any two distributions D1, D2:

TV(D1, D2) 6

√
1
2

DKL(D1‖D2) .

We also require a generalization of Lemma 2.5.7 to t-wise correlations.

Lemma 2.5.9 (Lemma 32 of [MR17]). Let Y1, . . . , YM be a set of random variables each taking
values in {1, . . . , q}. The total t-wise correlation of a distribution µ over Y1, . . . , YM is defined
as

TCt(µ) := Ei1,...,it∼[M]

[
KL((Yi1 , . . . , Yit)‖Yi1 × · · · ×Yit)

]
.

Then, for any ` ∈N, there exists k 6 ` such that:

E i1,...,ik∼[M]
(yi1

,...,yik
)∼µ

[TCt(µ | Yi1 = yi1 , . . . , Yik = yik)] 6
t2 log q

`
.

Similar to Lemma 2.5.7, the above holds for pseudo-distributions of degree > `+ t.

16

Part I

Graph Theory

17

Chapter 3

Introduction

In Part I, we present new results in graph theory that serve both as standalone contri-
butions and as key tools for later chapters.

(1) Section 3.1 and Chapter 4: Girth-density trade-off in graphs and hypergraphs.
First, we generalize the classical Moore bound [AHL02] on the girth-density trade-
offs in graphs. Then, we study the hypergraph analogue, known as the hypergraph
Moore bound, which was conjectured by Feige [Fei08] and resolved up to poly-
logarithmic factors by Guruswami, Kothari, and Manohar [GKM22]. We present
a substantially simpler and shorter proof that also improves the bound to within
a single extra log factor. This chapter is based on [HKM23].

(2) Section 3.2 and Chapter 5: Subgraph density in spectral expanders. We give
a sharp upper bound on the density of subgraphs in bipartite spectral expanders,
generalizing results of Kahale [Kah95] and Asherov and Dinur [AD24]. This chap-
ter is based on [HMMP24].

These results are proved using various tools from spectral graph theory, with a gen-
eral theme of analyzing walks on graphs (or certain graphs constructed from hyper-
graphs) and relating them to the spectra of the adjacency or non-backtracking matrices.

These results are not only of independent interest but also play important roles in
later chapters. The analysis of the hypergraph Moore bound will be extended to refu-
tation algorithms for semirandom CSPs in Chapter 7. Similarly, the generalized Moore
bound and the subgraph density bounds will be used in explicit constructions of vertex
expanders in Chapter 12.

3.1 Girth-density trade-off in hypergraphs

What is the maximum girth of a graph on n vertices and average degree d? For d-regular
graphs, a simple “ball growing” argument shows that the graph must have a cycle of

19

length at most 2 logd−1 n + 2. This threshold is called the Moore bound [Wik22] (see also
Page 180 of [Big93]), and graphs achieving it are called Moore graphs. In a classical
paper that resolved a question of Bollobás [Bol78], Alon, Hoory and Linial [AHL02]
proved that the same upper bound holds even for irregular graphs of average degree
d > 2, including the case where d is not an integer.

Theorem 3.1.1 (Moore bound [AHL02]). For any d > 2, an n-vertex graph of average degree
d must contain a cycle of length at most 2 logd−1 n + 2.

Later, Hoory [Hoo02] obtained a better bound for bipartite graphs, and Babu and
Radhakrishnan [BR14] found an elegant proof based on the entropy of random walks
on the graph.

The Moore bound resolves a natural graph Turán problem — such problems, more
generally, study the maximum number of edges that one can pack in a graph while
avoiding a given forbidden structure. Turán’s original work on triangle free graphs
marks the birth of extremal graph theory, and its various generalizations form a center-
piece of modern extremal combinatorics.

3.1.1 Generalized Moore bound

We present an improvement of the Moore bound that bounds the maximum girth of a
graph in terms of its non-backtracking matrix (Definition 2.2.1). In addition to showing
the existence of short cycles, we also show the existence of short bicycles (also known as
“tangles” in [Bor20]).

Definition 3.1.2 (Bicycles [MOP20]). A graph H = (V, E) is cyclic if |E| − |V| = −1, and
bicyclic if |E| − |V| = 0.

Theorem 3.1.3 (Generalized Moore bound). Suppose G is a graph on n vertices, and let
ρ = ρ(BG) be the spectral radius of its non-backtracking matrix BG. Suppose ρ > 1, then G
contains a cycle of size at most 2(blogρ nc+ 1) and a bicycle of size at most 3(blogρ 2nc+ 1).

For a graph G with average degree d, ρ(BG) is at least d− 1. This follows from the
fact that~1>HG(

1
d−1)

~1 = 0 and Lemma 2.2.3 (HG(t) is defined in Fact 2.2.2). Therefore,
Theorem 3.1.3 is at least as strong as the girth guarantee of 2 logd−1 n from the classical
Moore bound (Theorem 3.1.1). A simple example where this yields tighter bounds is a
(d, 2)-biregular graph. When d � 2, the average degree is ≈ 4 and the classical Moore
bound yields a cycle of length 2 log3 n. Nevertheless, the generalized Moore bound tells
us that there is a cycle of length ≈ 4 logd−1 n, which is much smaller than 2 log3 n when
d is large. In Chapter 12, we will also use Theorem 3.1.3 to analyze certain unbalanced
bipartite graphs.

We prove Theorem 3.1.3 in Section 4.1, utilizing a key connection (Fact 4.1.1) between

20

non-backtracking walks in the graph G and the Bethe Hessian HG(t) (recall its definition
in Fact 2.2.2).

3.1.2 Girth-density trade-off for hypergraphs

We next shift our attention to hypergraphs. A cycle1 in a hypergraph, more descrip-
tively called an even cover, is a collection of hyperedges such that every vertex partici-
pates in an even number of them. Formally,

Definition 3.1.4 (Even cover). For a hypergraphH, a set S of hyperedges inH is an even
cover if⊕

C∈S
C := {v ∈ V(H) : v belongs to an odd number of hyperedges in S} = ∅ .

Equivalently, S is an even cover if ∑C∈S 1C = 0 over F2, where 1C denotes the char-
acteristic vector of C. Therefore, an even cover in a k-uniform hypergraphs is exactly a
linearly dependent subset of a system of k-sparse linear equations over F2.

The girth of a hypergraph is the smallest size of an even cover in it. When specialized
to graphs, an even cover is simply a union of cycles, i.e., a subgraph with all vertices of
even degree. Thus, this formulation naturally generalizes the standard notion of girth
in graphs.

Like the graph Moore bound, girth-density trade-offs for hypergraphs have founda-
tional connections to theoretical computer science. Due to the equivalence between even
covers and linear dependencies, the girth-density trade-offs for k-uniform hypergraphs
correspond to the rate vs. distance trade-offs for low density parity check (LDPC) codes.
As a result, there is an extensive line of work that studies the girth-density trade-offs for
hypergraphs (see e.g. [BKHL99, BMS08, AF09]).

For k-uniform hypergraphs H with k > 2, this trade-off was first studied by Naor
and Verstraëte [NV08]. They showed that everyHwith m > nk/2 logO(1)(n) hyperedges
on n vertices must contain an even cover of length O(log n). The logO(1)(n) factor was
further improved to a O(log log n) factor in a subsequent work of Feige [Fei08]. For
k = 2, this recovers a coarse version of the irregular Moore bound. For k > 2, however,
there is an interesting regime between the two extreme thresholds of m = n + 1 (with
maximum possible girth of n + 1) and m ∼ nk/2 logO(1)(n) (with maximum possible
girth of O(log n)).

Hypergraph Moore bound. Feige [Fei08] formulated a conjecture about this regime
that suggests a smooth interpolation between the two extremes noted above.

1There are several well-studied combinatorial notions of cycles in contrast to the more linear algebraic
notion of even covers.

21

https://en.wikipedia.org/wiki/Hypergraph#Cycles

Conjecture 3.1.5 (Conjecture 1.2 of [Fei08]). For every k ∈ N and 1 6 r 6 n, every k-
uniform hypergraph with n vertices and m & n(n

r)
k
2−1 hyperedges has an even cover of size

O(r log n).

The quantitative behavior above can be verified for random hypergraphs (up to
a multiplicative factor of log(n) in m). Indeed, Feige’s conjecture was based on the
hypothesis that random hypergraphs are approximately extremal for the purpose of
avoiding short even covers.

Feige’s conjecture was settled by Guruswami, Kothari and Manohar [GKM22] up
to an additional log4k+1 n multiplicative factor in the density m. Their proof goes via a
spectral argument applied to the Kikuchi graph [WAM19] — a graph with an appropri-
ate algebraic structure, built from the given hypergraph (see Definition 4.3.2).

While [GKM22] begins with an elegant and simple observation, their technical anal-
ysis, especially for odd k (the “hard” case), is quite complicated and involves bucketing
and pruning the Kikuchi matrix and invoking the Schudy–Sviridenko concentration in-
equality [SS12] for polynomials with combinatorial structure in the monomials. As a
consequence, even for the simplest case of k = 2 (i.e., recovering the classical Moore
bound), their proof incurs an additional log3 n factor.

We give a simple and short proof of the hypergraph Moore bound that is almost tight
up to a single logarithmic factor.

Theorem 3.1.6 (Hypergraph Moore bound). For every k ∈ N, there exists a constant C >

0 such that for any 1 6 r 6 n, every hypergraph on n vertices and m > Cn(n
r)

k
2−1 log n

hyperedges has an even cover of size O(r log n).

In a follow-up work [HKMMS25] which will not be included in this thesis, we found
a simple and purely combinatorial argument that recovers Theorem 3.1.6. Moreover, for
odd k, we introduced a variant of the Kikuchi graph and improved the log n factor in the
density m to (log n)

1
k+1 . We believe that the hypergraph Moore bound is true without

any extra log factors.
Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion trick

(for odd k). These allow us to drop several involved steps in [GKM22]’s analysis such
as combinatorial bucketing of rows of the Kikuchi matrix and the use of the Schudy–
Sviridenko polynomial concentration.

As an illustration of the power of our reweighting idea, in Section 4.2 we will give a
simple proof of the classical Moore bound (Theorem 3.1.1) that is tight up to an absolute
constant factor (as opposed to the log3 n loss incurred by the strategy of [GKM22]). In
Section 4.3, we will generalize the reweighting idea to prove hypergraph Moore bound
for all even k. Finally in Section 4.4, we combine the reweighting idea and the key new
idea of edge deletions to prove the case of odd k.

22

3.2 Subgraph density in spectral expanders

Expander graphs are widely used in computer science, with applications spanning
coding theory, complexity theory, cryptography, and more. Intuitively, expanders are
sparse graphs that exhibit strong connectivity properties, where every (small) subset of
vertices has many neighbors and contains few internal edges. We refer readers to the
survey of [HLW06] for a thorough exposition on expander graphs.

While these expansion properties can be defined combinatorially, they are often
studied analytically via spectral expansion, which concerns the non-trivial eigenvalues of
the graph’s adjacency matrix. Spectral expansion is closely related to edge expansion via
Cheeger’s inequality, and it is a very natural notion of expansion as it directly governs
the mixing time of random walks on the graph. Moreover, several explicit construc-
tions of Ramanujan graphs (i.e., optimal spectral expanders; see Section 2.1) are known
[LPS88, Mar88, Mor94].

Therefore, a fundamental question is: to what extent does spectral expansion — i.e.,
bounds on the non-trivial eigenvalues — imply vertex expansion?

3.2.1 Expander mixing lemma and Kahale’s improvement

Let G = (V, E) be a d-regular graph on n vertices, and let λ = max{λ2, |λn|}. Consider
a set S ⊆ V with |S| 6 δn, where δ = δ(d, ε) is a small constant that depends only on d
and ε ∈ (0, 1). Let N(S) := {v ∈ V : ∃u ∈ S, (u, v) ∈ E} be the set of neighbors of S. By
the expander mixing lemma (Fact 2.1.1),

d|S| = e(S, N(S)) 6
d
n
|S||N(S)|+ λ

√
|S||N(S)| .

Since |N(S)| 6 d|S| trivially, for δ small enough depending on d, ε, we have

|N(S)| > d2

λ2 |S|(1− ε) . (3.1)

Similarly, we can upper bound the density of the subgraph G[S] as follows:

e(S, S) 6
d
n
|S|2 + λ|S| 6 λ|S| · (1 + ε) .

Here, note that the notation e(S, S) double counts each edge within S. Thus, the average
degree of the induced subgraph G[S] is at most

e(S, S)
|S| 6 λ · (1 + ε) . (3.2)

For d-regular Ramanujan graphs with λ 6 2
√

d− 1, Eq. (3.1) and (3.2) imply that the
vertex expansion |N(S)| > d

4 |S| and the average degree of G[S] is at most 2
√

d− 1 (up
to the (1± ε) factor).

23

Kahale’s improvement. Kahale [Kah95] showed:

Theorem 3.2.1 (Expansion and subgraph density in spectral expanders [Kah95]). Let
G = (V, E) be a d-regular n-vertex graph with eigenvalues d = λ1 > λ2 > · · · > λn,
and let λ = max{λ2, |λn|, 2

√
d− 1}. Then, for ε ∈ (0, 1), for any nonempty subset S ⊆ V

with |S| 6 d−1/εn,

|N(S)|
|S| >

d
2

(
1−

√
1− 4(d− 1)

λ2

)
(1−O(ε)) .

Moreover, the average degree of the induced subgraph G[S] is at most(
1 +

λ

2
+

√
λ2

4
− (d− 1)

)
(1 + O(ε)) .

For d-regular Ramanujan graphs where λ = 2
√

d− 1, the above implies that the
expansion is at least d

2 and the average degree is at most
√

d− 1 + 1. These are factors
of 2 better than the guarantees (Eq. (3.1) and (3.2)) from expander mixing lemma.

The d/2 barrier for spectral expanders. Kahale [Kah95] also showed that the d/2 ver-
tex expansion for near-Ramanujan graphs is tight. [KK22] further showed that sev-
eral well-known explicit algebraic constructions of d-regular Ramanujan graphs contain
subsets of vertices S with exactly d/2 · |S| neighbors and zero unique-neighbors. Con-
structing vertex expanders that surpass the d/2 barrier has been a longstanding open
problem, one that we will resolve in Part III.

3.2.2 Bipartite spectral expanders

We now look at biregular graphs. Recall from Section 2.1 that a (c, d)-biregular graph
G = (L ∪ R, E) has λ1 =

√
cd, and G is Ramanujan if λ2 6

√
c− 1 +

√
d− 1. Without

loss of generality, we assume that c 6 d, thus |L| > |R| since |E| = c|L| = d|R|.
For a subset S ⊆ L with |S| 6 δ|L|, where δ = δ(ε, c, d) > 0 is small enough, the

bipartite expander mixing lemma (Fact 2.1.2; see [AD24, Claim 4]) gives

c|S|
|N(S)| 6 (1 + ε)

(
1 +

d− 1
c− 1

+ 2

√
d− 1
c− 1

)
. (3.3)

Note that by flipping the left and right side, the above actually shows lossless expansion
from the smaller side — that is, if c� d, then for small subsets T ⊆ R, we have |N(T)| >
(1− ε)d|T|.

For the expansion from the larger side, Asherov and Dinur [AD24] proved an im-
provement over Eq. (3.3) for bipartite Ramanujan graphs.

24

Theorem 3.2.2 (Expansion in bipartite Ramanujan graphs; [AD24, Theorem 2]). Let G =

(L ∪ R, E) be a (c, d)-biregular graph with second eigenvalue λ2 6
√

c− 1 +
√

d− 1, and let
ε ∈ (0, 1). Then, there exists δ = δ(ε, c, d) > 0 such that for any nonempty subset S ⊆ L with
|S| 6 δ|L|,

c|S|
|N(S)| 6 1 + (1 + ε)

√
d− 1
c− 1

.

Therefore, if c � d, then Theorem 3.2.2 is a significant improvement over the guar-
antee from expander mixing lemma (Eq. (3.3)).

Interestingly, the proof of [AD24] requires the graph to be exactly Ramanujan. How-
ever, many existing constructions of bipartite expanders, including those with addi-
tional useful properties, are only near-Ramanujan with λ2 6 (

√
c− 1 +

√
d− 1)(1 + γ)

(for an arbitrarily small constant γ) [MOP20, OW20].
We prove the following general result on the subgraph density in near-Ramanujan

bipartite graphs. In particular, it implies that the bound in Theorem 3.2.2 also holds
(approximately) for near-Ramanujan graphs.

Theorem 3.2.3 (Subgraph density in near-Ramanujan graphs). Let 3 6 c 6 d be integers,
γ ∈ [0, 1], and ε ∈ (0, 0.1). Let G = (L ∪ R, E) be a (c, d)-biregular graph such that λ2 6
(
√

c− 1+
√

d− 1)(1+ γ/d). Then, there exists δ = δ(ε, c, d) > 0 such that for every S1 ⊆ L
and S2 ⊆ R with |S1|+ |S2| 6 δ|L ∪ R|, the left and right average degrees d1 = |E(S1,S2)|

|S1|
and

d2 = |E(S1,S2)|
|S2|

in the induced subgraph G[S1 ∪ S2] must satisfy

(d1 − 1)(d2 − 1) 6
√
(c− 1)(d− 1) · (1 + O(ε +

√
γ)) .

In fact, we will prove a more general result in Theorem 3.2.6 where the bound
is stated explicitly in terms of λ2. Theorem 3.2.3 then follows by substituting λ2 ≈√

c− 1 +
√

d− 1.
Theorem 3.2.3 will be used repeatedly in Chapter 12 of Part III to analyze our con-

struction of unique-neighbor expanders.

3.2.3 Non-backtracking matrix of subgraphs in bipartite expanders

Expander mixing lemma bounds the subgraph density by the spectrum of the adjacency
matrix. In the following, we show a similar bound using the spectral radius of the non-
backtracking matrix (Definition 2.2.1).

Lemma 3.2.4. Let G = (L∪ R, E) be a bipartite graph, and let the left and right average degrees
be d1 = |E|

|L| and d2 = |E|
|R| , respectively. Then,

(d1 − 1)(d2 − 1) 6 ρ(BG)
2 .

25

Then, we show that the non-backtracking matrix of small subgraphs in a biregular
expander must be small.

Theorem 3.2.5. Let ε ∈ (0, 0.1), and let 3 6 c 6 d be integers. Let G = (L ∪ R, E) be a
(c, d)-biregular graph and S ⊆ L ∪ R such that |S| 6 d−1/ε|L ∪ R|. Then, for any t > 0 such
that

ρ(BG[S]) 6
1
2

(√
λ2 − (

√
c− 1 +

√
d− 1)2 +

√
λ2 − (

√
c− 1−

√
d− 1)2

)
,

where λ = max(λ2(AG),
√

c− 1 +
√

d− 1) · (1 + O(ε)).

We will prove Lemma 3.2.4 and Theorem 3.2.5 in Chapter 5. Lemma 3.2.4 and The-
orem 3.2.5 directly imply the following, which is the more general version of Theo-
rem 3.2.3:

Theorem 3.2.6. Let 3 6 c 6 d be integers, γ ∈ [0, 1], and ε ∈ (0, 0.1). Let G = (L∪R, E) be a
(c, d)-biregular graph, and let λ = max(λ2(AG),

√
c− 1+

√
d− 1) · (1+O(ε)). Then, there

exists δ = δ(ε, c, d) > 0 such that for every S1 ⊆ L and S2 ⊆ R with |S1|+ |S2| 6 δ|L ∪ R|,
the left and right average degrees d1 = |E(S1,S2)|

|S1|
and d2 = |E(S1,S2)|

|S2|
in the induced subgraph

G[S1 ∪ S2] must satisfy

(d1 − 1)(d2 − 1) 6
1
4

(√
λ2 − (

√
c− 1 +

√
d− 1)2 +

√
λ2 − (

√
c− 1−

√
d− 1)2

)2

.

To understand Theorems 3.2.5 and 3.2.6, consider λ ≈
√

c− 1 +
√

d− 1. Then, the
bound in Theorem 3.2.5 simplifies to

ρ(BG[S]) . ((c− 1)(d− 1))1/4 ,

and the bound in Theorem 3.2.6 implies to

(d1 − 1)(d2 − 1) .
√
(c− 1)(d− 1) .

More specifically, we will plug in λ2 = (
√

c− 1 +
√

d− 1)(1 + γ/d) to prove Theo-
rem 3.2.3:

Proof of Theorem 3.2.3. Suppose λ = (
√

c− 1 +
√

d− 1)(1 + γ/d) for some γ > 0. Then,
denoting η := (

√
c− 1 +

√
d− 1)2(2γ

d + γ2

d2), a straightforward calculation shows that
Theorem 3.2.5 implies

ρ(BG[S1∪S2]) 6

√√
(c− 1)(d− 1) + η/4 +

1
2
√

η .

In particular, for γ 6 2, the above is at most
√
(c− 1)(d− 1) · (1 + 3

√
γ). Replacing γ

with γ + ε2 completes the proof of Theorem 3.2.3.

26

Chapter 4

Girth-Density Trade-Off in
Hypergraphs

In Section 4.1, we prove Theorem 3.1.3 which strengthens the classical Moore bound of
Alon, Hoory and Linial [AHL02] and generalizes the result to bicycles.

Theorem (Restatement of Theorem 3.1.3). Suppose G is a graph on n vertices, and let ρ =

ρ(BG) be the spectral radius of its non-backtracking matrix BG. Suppose ρ > 1, then G contains
a cycle of size at most 2(blogρ nc+ 1) and a bicycle of size at most 3(blogρ 2nc+ 1).

Then, in Sections 4.3 and 4.4, we prove the hypergraph Moore bound.

Theorem (Restatement of Theorem 3.1.6). For every k ∈ N, there exists a constant C >

0 such that for any 1 6 r 6 n, every hypergraph on n vertices and m > Cn(n
r)

k
2−1 log n

hyperedges has an even cover of size O(r log n).

As a warm-up, in Section 4.2 we present a simple, alternative proof of a weaker
version of the classical Moore bound, using the strategy of “counting reweighted walks”
— a key technique that we will use in the subsequent sections. In Section 4.3, we prove
the hypergraph Moore bound for even k, with almost the same proof as in Section 4.2.
Finally, in Section 4.4, we handle the more involved case of odd k.

4.1 Generalization of the Moore bound

The proof of Theorem 3.1.3 is based on non-backtracking walks, which are walks such that
no edge is the inverse of its preceding edge. For a graph G on n vertices with adjacency
matrix A, we define A(s) to be the n× n matrix whose (u, v) entry counts the number
of length-s non-backtracking walks between vertices u and v in G. The following is a
standard fact.

27

Fact 4.1.1 (Recurrence and generating function of A(s)). The non-backtracking matrices A(s)

satisfy the following recurrence:

A(0) = I ,

A(1) = A ,

A(2) = A2 − D ,

A(s) = A(s−1)A− A(s−2)(D− I) , s > 2 .

The recurrences imply that these matrices have a generating function:

J(t) :=
∞

∑
s=0

A(s)ts = (1− t2) · H(t)−1 for t ∈ [0, 1) ,

whenever the series converges. Here, we recall that H(t) = (D− I)t2 − At + I.

We first prove the following lemma,

Lemma 4.1.2. Let s, k ∈ N, s > k, and let q, r be the quotient and remainder of s divided by k,
i.e. s = qk + r. Then,

tr(A(s)) 6
√

n · ‖A(k)‖q
2 · ‖A(r)‖F .

Proof. tr(A(s)) counts the number of closed non-backtracking walks of length s in the
graph. Now, consider the set of closed walks of length s = qk + r such that after every k
non-backtracking steps, we can “forget the previous step”, i.e. we are allowed to back-
track at step ik for every i = 0, . . . , q. The number of such walks is tr((A(k))q A(r)). The
set of closed non-backtracking walk is clearly a subset of such walks, thus we have

tr(A(s)) 6 tr((A(k))q A(r)) 6
∥∥∥(A(k))q

∥∥∥
F
·
∥∥∥A(r)

∥∥∥
F

.

Let λ1, . . . , λn be the eigenvalues of A(k) and λmax = ‖A(k)‖2. Then,

∥∥∥(A(k))q
∥∥∥

F
=

√
n

∑
i=1

λ
2q
i 6

√
n(λmax)

q .

This completes the proof.

With Fact 4.1.1 and Lemma 4.1.2, we now prove Theorem 3.1.3 by analyzing the
convergence of J(t) as t increases from 0.

Proof of Theorem 3.1.3. Let ρ = λ1(BG) be the spectral radius of the non-backtracking
matrix BG of G (recall Definition 2.2.1). We will analyze the convergence of tr(J(t)) =

∑∞
s=0 tr(A(s))ts as t increase from 0 to 1/ρ. In particular, by Lemma 2.2.3 we have that

HG(t) � 0 (thus tr(J(t)) < ∞) for all t ∈ [0, 1/ρ), and tr(J(1/ρ)) diverges.

28

Fix k ∈N. For each s ∈N we can write s = qk + r, and

J(t) =
∞

∑
s=0

A(s)ts =
k−1

∑
r=0

∞

∑
q=0

A(qk+r)tqk+r .

By Lemma 4.1.2, we have

tr(J(t)) 6
k−1

∑
r=0

tr√n‖A(r)‖F

∞

∑
q=0
‖A(k)‖q

2 · t
qk

=
k−1

∑
r=0

tr√n‖A(r)‖F

∞

∑
q=0

(
‖A(k)‖2 · tk

)q
. (4.1)

Now, let k := blogρ nc + 1 and suppose for contradiction that G contains no cycle

of size 6 ` = 2k. Observe that every entry of A(k) must be either 0 or 1, otherwise if
A(k)[i, j] > 1 then there are two distinct length-k paths from i to j, meaning there is a
cycle of length at most 2k = `, a contradiction. Therefore, the L1 norm of each row of
A(k) is at most n, hence ‖A(k)‖2 6 n. Then, setting t = 1/ρ, we have ‖A(k)‖2 · (1/ρ)k <

1 since k > logρ n, and Eq. (4.1) shows that tr(J(1/ρ)) < ∞. This contradicts that
tr(J(1/ρ)) must diverge.

Similarly, let k′ := blogρ 2nc+ 1, and suppose for contradiction that G hs no bicycle
of size 6 `′ = 3k′. We claim that three distinct non-backtracking walks of a given
length-k′ between any two vertices must form a bicycle, hence every entry of A(k′) must
be at most 2. Suppose the union of the three distinct non-backtracking walks between
vertices u and v, called Huv, did not give rise to a bicycle, its excess must be at most
0. Since Huv is connected, it must have at most one cycle. If there are no cycles, then
there is exactly one non-backtracking walk from u to v, so we assume there is exactly
one cycle. Any non-backtracking walk in Huv can enter and exit the cycle at most once.
Further, there is a unique way to start from u and enter the cycle, and a unique way
to exit the cycle and arrive at v. Between entering and exiting the cycle, there are only
two choices: walking in the cycle clockwise or counterclockwise. There are at most two
ways to walk between u and v in k′ steps — either the shortest path between them is
of length exactly k′ and does not touch the cycle, or a length-k non-backtracking walk
must enter the cycle, which we established gives at most 2 distinct walks.

Thus, ‖A(k′)‖2 6 2n and ‖A(k′)‖2 · (1/ρ)k′ < 1 since k′ > logρ 2n. Again, Eq. (4.1)
shows that tr(J(1/ρ)) < ∞, a contradiction. This completes the proof.

4.2 Warm-up: weak Moore bound for graphs

Before giving the proof of the hypergraph Moore bound (Theorem 3.1.6), in this sec-
tion, we first give a simple, alternative proof of a weaker version of the classical Moore

29

bound. The purpose of this is to illustrate our strategy of “counting reweighted walks”
for the hypergraph Moore bound, which is a key ingredient in improving the analy-
sis of [GKM22]. Indeed, our proof for the even arity case (in Section 4.3) looks almost
identical to the proof in this section.

Proposition 4.2.1 (Weak Moore bound for irregular graphs). Every graph with n vertices
and average degree d > 16 has a cycle of length at most 2dlog(d/16) ne.

We note that [GKM22] also proved a weak Moore bound (see Proposition 2.3 of
[GKM22]) to illustrate their “row bucketing” strategy that partitions the vertices into
O(log n) buckets, each of which has vertices with degrees within a multiplicative con-
stant factor of each other. This strategy splits the adjacency matrix into O(log2 n) pieces
and ends up requiring an average degree d & log3 n in order to contain a cycle of length
O(log n).

Our simple proof of Proposition 4.2.1 will show how the reweighting handles differ-
ent degrees automatically, avoiding the lossy row bucketing step completely.

The core of the proof of Proposition 4.2.1 is the following spectral norm bound on
the reweighted adjacency matrix.

Claim 4.2.2. Let G be a graph with n vertices and average degree d > 1 that has no cycle of
length 6 ` for some even ` ∈ N. Let A be the {0, 1} adjacency matrix of G, and let Γ =

D + dI be the diagonal matrix such that Duu = du where du is the degree of vertex u. Then,∥∥Γ−1/2AΓ−1/2
∥∥

2 < 2n1/`
√

d
.

We now complete the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1 by Claim 4.2.2. Suppose G has no cycle of length6 `, then Claim 4.2.2
implies that A ≺ 2n1/`

√
d

Γ. Then, the quadratic form 1>A1 < 2n1/`
√

d
tr(Γ) since 1>Γ1 =

tr(Γ). By definition, 1>A1 = nd and tr(Γ) = ∑n
u=1(du + d) = 2nd. Thus, n1/` >

√
d/4,

and taking logs, we get

1
`

log n >
1
2

log(d/16)⇒ `

2
< logd/16 n .

` is even, so we have ` < 2dlogd/16 ne. Thus, by the contrapositive, G must contain a
cycle of length 2dlogd/16 ne. This completes the proof.

We now prove Claim 4.2.2 using the well-known trace moment method, which re-
duces to counting weighted closed walks in the graph. In the analysis, we will see ex-
actly how the choice of the reweighting matrix Γ accounts for different vertex degrees.

Proof of Claim 4.2.2. Let Ã = Γ−1/2AΓ−1/2. For even ` ∈ N, the trace moment method
states that ‖Ã‖`2 6 tr(Ã`) = tr((Γ−1A)`), which is a summation of all (weighted) closed

30

walks of length ` in G. Since there is no cycle of length 6 `, the only closed walks
are the ones that backtrack to the original vertex, meaning that there can be at most `/2
“new” edges and at least `/2 “old” edges in the walk. We encode each closed walk
u1 → u2 → · · · → u` → u1 as follows,

• Choose a starting vertex u1 ∈ [n].
• One bit bi ∈ {0, 1} at each step i to encode whether this step uses a new edge or

an old one.
If bi = 0 (new edge), select one of ui’s neighbors as ui+1.
If bi = 1 (old edge), we must backtrack to the previous vertex ui−1.

For b ∈ {0, 1} and u ∈ [n], let Nb(u) ⊆ [n] be the possible next steps in the walk from u.
Then, simply expanding tr((Γ−1A)`), we get

tr((Γ−1A)`) = ∑
b∈{0,1}`

∑
u1∈[n]

∑
u2∈Nb1

(u1)

Γ−1
u1u1 ∑

u3∈Nb2
(u2)

Γ−1
u2u2
· · · ∑

u`+1∈Nb`
(u`)

Γ−1
u`u`
·1(u`+1 = u1) .

As we can see, each step ui → ui+1 gets a factor Γ−1
uiui

= 1
dui+d . We can now bound the

above by observing that if bi = 0 (new edge), then |N0(ui)| 6 dui and

∑
ui+1∈N0(ui)

Γ−1
uiui

6
dui

dui + d
< 1 ,

and if bi = 0 (old edge), then |N1(ui)| = 1 (the previous step) and

∑
ui+1∈N1(ui)

Γ−1
uiui

6
1

dui + d
<

1
d

.

Finally, considering b ∈ {0, 1}`, u1 ∈ [n], and there are at least `/2 old edges, we have

tr((Γ−1A)`) < 2`n
(

1
d

)`/2

,

and taking the `-th root completes the proof.

4.3 Hypergraph Moore bound: even arity

In this section, we prove the existence of small even covers in even arity hypergraphs.

Theorem 4.3.1 (Theorem 3.1.6, even k). For even k ∈ N and any r ∈ N with k 6 r 6 n/8,
any k-uniform hypergraphH with n vertices and m > 128n log n · (n

r)
k/2−1 hyperedges has an

even cover of size at most dr log2 ne+ 1.

31

The proof is simple and almost identical to the proof of the weak Moore bound
(Proposition 4.2.1), but with A being the adjacency matrix of the Kikuchi graph.

Definition 4.3.2 (Kikuchi graph). LetH be a k-uniform hypergraph on vertex set [n] for
even k. For an integer parameter r, define the Kikuchi graph Kr associated toH is a graph
on vertex set

(
[n]
r

)
such that a pair of vertices S, T ∈

(
[n]
r

)
have an edge between them

if the symmetric difference S⊕ T ∈ H. For such an edge, we write S C←→ T and think of
the edge as “colored” by C ∈ H where C = S⊕ T. We call the adjacency matrix A of Kr

the Kikuchi matrix.

The key insight of [GKM22] (and also our starting point) is relating even covers in
H to cycles in the Kikuchi graph. For sets R1, R2, . . . , R` ⊆ [n], let ⊕i6`Ri denote the set
of elements of [n] that appear in an odd number of Ris (i.e., the sum modulo 2 of the
indicator vectors of Ris).

Observation 4.3.3 (Closed walks in the Kikuchi graph). Let H be a k-uniform hyper-
graph on [n] for even k and let S1 → S2 → · · · S` → S1 be a closed walk on vertices in

Kr such that for every i 6 `, Si
Ci←→ Si+1 for C1, C2, . . . , C` ∈ H (denoting S`+1 = S1).

Then, ⊕i6`Ci = 0. Further, if H has no even cover of length `, then every hyperedge in
H appears an even number of times in the multiset {C1, C2, . . . , C`}. We will call such
walks in Kr trivial.

Proof. Note that Si ⊕ Si+1 = Ci for every i 6 `. If we add both sides of all ` such
equalities then each Si occurs in exactly two of the equations so the LHS must be 0.
Thus, ⊕i6`Ci = 0.

Next, we repeatedly remove hyperedges that occur an even number of times in the
multiset {C1, C2, . . . , C`} to obtain a collection of `′ 6 ` distinct hyperedges of H. The
sum (modulo 2) of the remaining hyperedge should still be 0 as we removed hyperedges
in pairs. The resulting `′ must be 0 as otherwise the remaining hyperedges form an even
cover of length `′ 6 `.

Consider a hypergraph H with n vertices and m hyperedges, and its associated
Kikuchi graph (V, E) with parameter r. Each C ∈ H introduces 1

2

(k
k/2
)(n−k

r−k/2

)
edges

in the Kikuchi graph (select k/2 vertices from C and select r− k/2 vertices from [n] \ C
to complete S), thus the total edges |E| = 1

2

(k
k/2
)(n−k

r−k/2

)
· m. Let dS be the degree of

S ∈ V, and let d denote the average degree. A straightforward calculation shows that

d =

(k
k/2
)(n−k

r−k/2

)
m

(n
r)

>
(r

n

)k/2
m ·
(k

k/2
) (

1− 2r
n

)k/2(
1− k

2r

)k/2

>
1
2

(r
n

)k/2
m , (4.2)

32

when k 6 r 6 n/8.
We will follow the reweighting strategy with Γ = D + dI to bound the spectral norm

of the reweighted Kikuchi matrix. The following lemma is analogous to Claim 4.2.2.

Lemma 4.3.4. Let k, r, n ∈N such that k 6 r 6 n, and let ` ∈N be even. Let A be the Kikuchi
matrix with parameter r of a k-uniform hypergraph H on n vertices, and let Γ = D + dI where
D is the degree matrix and d is the average degree of the Kikuchi graph. Suppose there is no even
cover of size at most ` inH, then∥∥∥Γ−1/2AΓ−1/2

∥∥∥
2
< 2nr/`

√
`

d
.

We can immediately complete the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1 by Lemma 4.3.4. Suppose that there is no even cover of size 6 ` :=
dr log2 ne (assume this is even, otherwise add 1). Then, nr/` 6 2 and Lemma 4.3.4 states
that the Kikuchi graph (V, E) satisfies A ≺ 4

√
`/d · Γ where Γ = D + dI. Then,

1>A1 < 4

√
`

d
· tr(Γ) = 4

√
`

d
· ∑

S∈V
(dS + d) = 8

√
`

d
· |V|d .

On the other hand, 1>A1 = 2|E| = |V|d. Thus, we have d < 64`. By Eq. (4.2) we have
d > 1

2(
r
n)

k/2m when k 6 r 6 n/8. Thus, if there is no even cover of size 6 `, then
m < 128n log n · (n

r)
k/2−1, completing the proof.

Now, we prove Lemma 4.3.4 by counting weighted closed walks in the Kikuchi
graph, essentially the same way we prove Claim 4.2.2.

Proof of Lemma 4.3.4. Let Ã = Γ−1/2AΓ−1/2. We use the trace power method:

‖Ã‖`2 6 tr(Ã`) = tr((Γ−1A)`) .

We upper bound tr((Γ−1A)`) by counting (weighted) closed walks of length ` in the
Kikuchi graph. Note that each edge (S, T) of the Kikuchi graph corresponds to a hyper-
edge S⊕ T ∈ H. Since there is no even covers of size at most `, any closed walk must
contain an even number of each hyperedge inH.

We can encode a closed walk S1 → S2 → · · · → S` → S1 as follows:

• Choose a starting vertex S1 ∈ V.
• One bit bi ∈ {0, 1} at each step i to encode whether this step uses a new hyperedge

or an old one.
If bi = 0 (new hyperedge), select one of Si’s neighbors as Si+1.
If bi = 1 (old hyperedge), select an old hyperedge C from the previous steps,
and set Si+1 = Si ⊕ C.

33

Note that there are at most `/2 new hyperedges and at least `/2 old hyperedges since
each hyperedge must occur an even number of times. For b ∈ {0, 1} and S ∈ V, let
Nb(S) ⊆ V be the possible next steps in the walk from S (according to b). Each step
Si → Si+1 gets a factor (Γ−1A)Si,Si+1 = Γ−1

Si,Si
= 1

dSi
+d . Thus,

tr((Γ−1A)`) = ∑
b∈{0,1}`

∑
S1∈V

∑
S2∈Nb1

(S1)

1
dS1 + d ∑

S3∈Nb2
(S2)

1
dS2 + d

· · · ∑
S`+1∈Nb`

(S`)

1(S`+1 = S1)

dS` + d
.

We can upper bound the above as follows. If b = 0, then |N0(Si)| 6 dSi and

∑Si+1∈N0(Si)
Γ−1

SiSi
6

dSi
dSi

+d < 1. If b = 1, then |N1(Si)| 6 ` as there are only ` options

to choose one of the previous steps, and ∑Si+1∈N1(Si)
Γ−1

SiSi
6 `

dSi
+d < `

d . Furthermore, we

can assume that ` 6 d, otherwise we can simply treat all steps as new hyperedges.
Finally, b ∈ {0, 1}`, there are |V| = (n

r) choices for the starting vertex S1, and there
are at least `/2 old hyperedges. Thus, we have

tr((Γ−1A)`) < 2`(n
r)

(
`

d

)`/2

6 2`nr
(
`

d

)`/2

.

Taking the `-th root completes the proof.

4.4 Hypergraph Moore bound: odd arity

In this section we prove the hypergraph Moore bound for k-uniform hypergraphs when
k is odd.

Theorem 4.4.1 (Theorem 3.1.6, odd k). There is a universal constant B such that for any odd
k ∈ N, and any r ∈ N satisfying 2k 6 r 6 n

Bk , any k-uniform hypergraph H with n vertices

and m > Bkn log n ·
(n

r
)k/2−1 hyperedges has an even cover of size at most r log2 n.

Our proof strategy broadly involves the following steps.
• Hypergraph decomposition. We partitionH into subhypergraphsH(0),H(1), . . . ,
H(k−1) with the property that every size-(i + 1) set in H(i) is contained in only a
small number of clauses, and every clause inH(i) intersects many other clauses at
a size-i set. One of theH(i) must contain at least m/k clauses, and we find an even
cover in thatH(i).

• Large i. When i > k+1
2 , we give a direct reduction to the hypergraph Moore bound

for even arity hypergraphs and apply Theorem 4.3.1.

• Kikuchi graph. To handle the remaining values of i, we show the existence of
an even cover by proving the contrapositive — a hypergraph with no small even

34

covers has a bounded number of hyperedges. To achieve this, we appropriately
define the Kikuchi graph for odd arity hypergraphs, and show that the adjacency
matrix Â of some suitably chosen subgraph (via the “edge deletion process” de-
scribed below) satisfies Â � Q for some diagonal matrix Q. Then the resulting
inequality 1> Â1 6 tr(Q) can be rearranged to bound the number of hyperedges.

• Trace method. The way we prove Â � Q is by using the trace moment method to
show

∥∥∥Q−1/2ÂQ−1/2
∥∥∥

2
6 1. Bounding a high trace power of Q−1/2ÂQ−1/2 cor-

responds to bounding the total weight of closed walks that use every hyperedge
an even number of times in the Kikuchi graph.

• Edge deletion process. We delete a small fraction of the edges in Kr with the
guarantee that in the resulting subgraph any clause participates in only a small
number of incident edges to every vertex.

Hypergraph decomposition. We describe our algorithm to partition our hypergraph.

Algorithm 4.4.2. We partition H into hypergraphs H(0), . . . ,H(k−1) via the following
algorithm.

1. Set t = k− 1 andHcurrent := H.
2. Set counter s = 1. While there is some subset U ⊆ [n] such that |U| = t and

|{C ∈ Hcurrent : U ⊆ C}| > max
{

2,
(n

r
) k

2−t
}

:

(a) Choose U satisfying the condition and let H(t)
s be a subset of {C ∈ Hcurrent :

U ⊆ C} of size max
{

2,
(n

r
) k

2−t
}

.

(b) Add all clauses inH(t)
s toH(t).

(c) Delete all clauses inH(t)
s toHcurrent.

(d) Increment s by 1.
3. Decrement t by 1. If t > 0, go back to step 2; otherwise take the remaining clauses

inHcurrent and add them toH(0).

First, observe that the largest subhypergraph H(i) in the partition produced by our
algorithm must have at least m

k hyperedges. Next, observe that i 6= 0 because if |H(0)| >
m/k, then there must be a j ∈ [n] such that

∣∣∣{C ∈ H(0) : j ∈ C}
∣∣∣ > m

nk � (n
r)

k/2−1, which

would have been added toH(1). Our goal in the rest of the proof is to find a small even
cover in H(i). The following observations articulate the properties of H(i) we need that
are guaranteed by the algorithm.

35

Observation 4.4.3.H(i) can be partitioned into H(i)
1 , . . . ,H(i)

p where for each j ∈ [p],

there is a set Uj of size i such that every C ∈ H(i)
j contains Uj, and |H(i)

j | >
(n

r
) k

2−i and

p 6 m ·
(r

n
) k

2−i.

Observation 4.4.4. For s > 1 and any U ⊆ [n] such that |U| = i + s, the number of

hyperedges in H(i) containing U is at most max
{

1,
(n

r
) k

2−s−i
}

, otherwise they would

have been added toH(i+s).

Reduction to even arity case when i > k+1
2 . In this case, by Observation 4.4.4, each

pair C 6= C′ in any H(i)
j must satisfy C ∩ C′ = Uj. The following makes the reduction

from finding even covers inH(i) if i > k+1
2 to the even arity case concrete.

Lemma 4.4.5. LetH be a k-uniform hypergraph on n vertices with no even cover of size r log2 n.
Fix 1 6 i 6 k − 1. Suppose H1, . . . ,Hp are disjoint subsets of H such that for each j ∈ [p],
|Hj| > 2 and all pairs of hyperedges C 6= C′ ∈ Hj satisfy C ∩ C′ = Uj for some Uj ⊆ [n] of
size i. Then,

p

∑
j=1
|Hj| 6 O(n log n)

(
2n
r

)k−i−1

.

In particular, when i > k+1
2 the above is at most O(n log n) ·

(n
r
)k/2−1.

Proof. Given such disjoint subsets H1, . . . ,Hp, we can construct a 2(k− i)-uniform hy-
pergraph Ĥ by the following: for each j ∈ [p], arbitrarily order the edges: Hj =

(C1, . . . , C|Hj|). Then, add the hyperedge Cs ⊕ Cs+1 to Ĥ for s = 1, . . . , |Hj| − 1. By

assumption |Cs ∩ Cs+1| = |Uj| = i, thus |Cs ⊕ Cs+1| = 2(k− i). The resulting Ĥ has

|Ĥ| =
p

∑
j=1
|Hj| − 1 >

1
2

p

∑
j=1
|Hj|

hyperedges, since |Hj| > 2 for all j ∈ [p].
We claim that Ĥ cannot have an even cover of size at most r

2 log2 n. First, if Ĥ has
repeated hyperedges, then there must exist j 6= j′ ∈ [p] and C1, C2 ∈ Hj, C′1, C′2 ∈ Hj′

such that C1 ⊕ C2 = C′1 ⊕ C′2, but then {C1, C2, C′1, C′2} would be an even cover of size
4 in H. Now, suppose Ĥ has no repeated edges but has an even cover of size `. Then,
for any Ĉ in the even cover, we can uniquely identify j ∈ [p] and s 6 |Hj| − 1 such that
Cs, Cs+1 ∈ Hj and Ĉ = Cs ⊕ Cs+1. Furthermore, by construction there must be at least
two Cs, Cs′ ∈ Hj that each occurs only once. Therefore, these edges must form an even
cover of size at most 2` inH.

36

Since 2(k− i) is even and Ĥ has no even cover of size r
2 log2 n, we can apply Theo-

rem 4.3.1 to show that

|Ĥ| 6 O(n log n)
(

2n
r

)k−i−1

.

This completes the proof.

Henceforth, we assume i 6 k−1
2 , which is the case we need an appropriate Kikuchi

graph for odd arity hypergraphs.

Kikuchi matrix for odd arity hypergraphs. The following is the same Kikuchi graph
defined in [GKM22, Definition 6.2].

Definition 4.4.6 (Colored Kikuchi graphs and subgraphs). Fix r ∈N and t ∈ {1, . . . , k−
1} such that 2k 6 r 6 n. Let H1, . . . ,Hp be p disjoint sets of hyperedges such that for
each i ∈ [p], all hyperedges in Hi have a common subset Ui ⊂ [n] where |Ui| = t. For
each C ∈ Hi, denote C̃ := C \Ui, and denote H̃i := {C̃ : C ∈ Hi} which can be viewed
as a (k− t)-uniform hypergraph. We define the colored Kikuchi graph Kr as follows.

The vertex set V(Kr) consists of subsets of [n]× [2] of size r, where S ∈ V is viewed
as (S(1), S(2)) where S(1), S(2) ⊆ [n] are colored green and blue respectively. For each
i ∈ [p] and each C 6= C′ ∈ Hi, let C̃(1) be C̃ colored green and C̃′(2) be C̃′ colored blue,

and we add an edge between S, T ∈ V, denoted S C,C′←−→ T, if S⊕ T = C̃(1) ⊕ C̃′(2) and if
one of the following holds,

• |C̃ ∩ S(1)| = |C̃′ ∩ T(2)| =
⌈

k−t
2

⌉
and |C̃′ ∩ S(2)| = |C̃ ∩ T(1)| =

⌊
k−t

2

⌋
, or

• |C̃ ∩ S(1)| = |C̃′ ∩ T(2)| =
⌊

k−t
2

⌋
and |C̃′ ∩ S(2)| = |C̃ ∩ T(1)| =

⌈
k−t

2

⌉
, or

Figure 4.1 shows an example of two edges C, C′ ∈ Hi forming an edge (S, T) in the
Kikuchi graph.

We say that the edge (S, T) is type-i, and for S ∈ V, we define the type-i degree as

dS,i := max
C∈Hi

∣∣∣∣{T ∈ V : S C,C′←−→ T for some C′ ∈ Hi

}∣∣∣∣ .

We call any subgraph of the colored Kikuchi graph as a colored Kikuchi subgraph.

Remark 4.4.7 (Purpose of coloring). The coloring in Definition 4.4.6 is needed because
C 6= C′ ∈ Hi may have intersection larger than t, meaning |C⊕ C′| = |C̃⊕ C̃′| < 2(k−
t), making the analysis complicated. Coloring C̃, C̃′ with different colors automatically
makes C̃(1), C̃′(2) disjoint, i.e. |S⊕ T| = |C̃(1) ⊕ C̃′(2)| = 2(k− t). Note also that a vertex
S ⊆ [n] × [2] may contain two copies of some element in [n] with different colors, as
shown in Figure 4.1.

37

1 2

3
4

5

6
7

8

C

C’

3

4

6

6

9

S

C, C’

5

6

7

8

9

T

Figure 4.1: An example of a colored Kikuchi graph (Definition 4.4.6) with k = 5 and
t = 2. On the left are two 5-uniform hyperedges in Hi with common intersection Ui =

{1, 2} and C̃ = {3, 4, 5}, C̃′ = {6, 7, 8}. On the right, S and T are vertices in the Kikuchi
graph where S(1) = {3, 4, 6}, T(1) = {5, 6} are colored green, and S(2) = {6, 9}, T(2) =

{7, 8, 9} are colored blue. C and C′ form an edge between S, T because |C̃ ∩ S(1)| = 2,
|C̃ ∩ T(1)| = 1, |C̃′ ∩ S(2)| = 1, and |C̃′ ∩ T(2)| = 2.

Observation 4.4.8 (Parameters of the Kikuchi graph). The Kikuchi graph (V, E) defined
in Definition 4.4.6 has |V| = (2n

r), and each distinct pair C, C′ ∈ Hi contributes a collec-
tion of edges EC,C′ in E, where

|EC,C′ | = αt :=
(

k−t
b k−t

2 c

)(
k−t
d k−t

2 e

)(
2n−2(k−t)

r−(k−t)

)
· 21(k− t is odd)

by first choosing C̃ ∩ S(1), C̃′ ∩ S(2) (or C̃ ∩ S(2), C̃′ ∩ S(1)) and completing S’s remaining
r − (k− t) elements. Thus, |E| = ∑

p
i=1

(
|Hi|

2

)
· αt, and standard calculations show that

when 2k 6 r 6 n/8, the average degree d = 2|E|
|V| satisfies(r

2n

)k−t p

∑
i=1

(
|Hi|

2

)
6 d 6 22k

(r
2n

)k−t p

∑
i=1

(
|Hi|

2

)
.

Our ideal hope is that the adjacency matrix A of the Kikuchi graph, constructed from
H(i) = (H(i)

1 , . . . ,H(i)
p), is bounded in the PSD order by some low-trace diagonal matrix

Q. To achieve this, we prove the following lemma analogous to Lemma 4.3.4, but with
the additional requirement that dS,i is small for all S ∈ V(Kr) and i ∈ [p]. The proof is
almost identical to the proof of Lemma 4.3.4 but the encoding for an “old hyperedge”
step is different.

Lemma 4.4.9. Let r > 2k. Given disjoint hyperedgesH1, . . . ,Hp, let Â be the adjacency matrix
of any colored Kikuchi subgraph K̂r as defined in Definition 4.4.6, and let Γ = D + dI where D
is the degree matrix and d is the average degree of G. Fix η ∈ R and let ` ∈N be even. Suppose
there is no even cover of size at most `, and suppose dS,i 6 η for all S ∈ V and i ∈ [p]. Then,∥∥∥Γ−1/2ÂΓ−1/2

∥∥∥
2
6 2nr/`

√
2η`

d
.

38

Proof. Let Ã = Γ−1/2ÂΓ−1/2. We again use the trace power method:∥∥Ã
∥∥`

2 6 tr(Ã`) = tr((Γ−1A)`) .

Note that each edge (S, T) in Â corresponds to two hyperedges of the same type (both
from someHi), one green and one blue, and since there is no even covers of size at most
`, any closed walk must contain an even number of each hyperedge.

We encode a closed walk S1 → S2 → · · · → S` → S1 as follows:

• Starting vertex S1 ∈ V.
• One bit bi ∈ {0, 1} at step i to encode whether this step uses two new hyperedges

or one (or more) old hyperedge.
If bi = 0 (two new hyperedges), select one of Si’s neighbors as Si+1.
If bi = 1 (old hyperedge), select an old green (or blue) hyperedge C from the
previous steps, and select a blue (or green) hyperedge C′ incident to Si.

Recall that for b ∈ {0, 1}, we write Nb(S) as the possible next steps in the walk from S.
Using the same analysis as the proof of Lemma 4.3.4, for b = 0,

∑
Si+1∈N0(Si)

1
dSi + d

6 1 ,

and for b = 1, suppose the old edge is of type j ∈ [p], then |N1(Si)| 6 2`dSi,j (one
previous step, 2 colors), thus

∑
Si+1∈Nb(Si)

1
dSi + d

6
2`dSi,j

dSi + d
6

2η`

d
.

We can assume that 2η` 6 d, otherwise we can simply treat all steps as new hyperedges.
There are (2n

r) 6 (2en
r)r 6 nr (since r > 2k and k > 3) choices to pick the starting

vertex S1. Furthermore, there can be at most `/2 steps that use two new hyperedges,
i.e. |b| > `/2, thus

tr((Γ−1Â)`) 6 nr ∑
b∈{0,1}`

(
2η`

d

)|b|
6 2`nr

(
2η`

d

)`/2

.

Taking the `-th root completes the proof.

Construction of colored Kikuchi subgraph. Unfortunately, the requirement for all dS,i
to be bounded by a small η prohibits us from obtaining a good bound on the adjacency
matrix of the full colored Kikuchi graph Kr using Lemma 4.4.9. This motivates dropping
a small number of edges from Kr, and bounding the adjacency matrix Â of the resulting
subgraph K̂r instead. Thus, we proceed with identifying a suitable colored Kikuchi
subgraph K̂r ofH(i) with adjacency matrix Â via the following edge deletion process:

39

Start with the colored Kikuchi graph Kr, and delete every edge {S, T} caused
by a pair of clauses C, C′ such that S or T has strictly more than 1 edge that
C or C′ participates in.

To obtain a handle on the average degree of K̂r, we first show that the number of edges
of Kr we delete to obtain K̂r is only a small fraction of the total number of edges, and
then the desired lower bound follows from a lower bound on |E(Kr)|.

Analyzing the edge deletion process. We find it convenient to think of the fraction of
deleted edges as the probability that a uniformly random edge in Kr is absent in K̂r. With
this probabilistic interpretation in hand, observe that a uniformly random edge in Kr

is the same as choosing a uniformly random pair of clauses (C, C′) such that C and
C′ both belong to the same H(i)

j and then choosing a random edge {S, T} in EC,C′ , the
collection of edges adorned by (C, C′). We will use the notation C′′ →C S to mean
|C̃′′ ∩ S| = |C̃ ∩ S|, where we recall from Definition 4.4.6 that C̃ := C \Uj with Uj being

the size-i common intersection ofH(i)
j . We then show the following.

Claim 4.4.10 (Deletion probability). For every pair of clauses (C, C′) such that C and C′

belong to the sameH(i)
j for some j ∈ [p],

Pr{S,T}∼EC,C′
[{S, T} deleted] 6 k · 4k+1

√
r
n

.

Proof. Recall that we defined C̃ = C \ Uj and C̃′ = C′ \ Uj. The distribution of S =

(S(1), S(2)) (the green and blue vertices) is uniform on all sets such that:

• |C̃ ∩ S(1)| =
⌈

k−i
2

⌉
, |C̃′ ∩ S(2)| =

⌊
k−i

2

⌋
, or

• |C̃ ∩ S(1)| =
⌈

k−i
2

⌉
, |C̃′ ∩ S(2)| =

⌊
k−i

2

⌋
.

Then, by union bound,

Pr{S,T}∼EC,C′
[{S, T} deleted] 6 Pr{S,T}∼EC,C′

[
∃C′′ →C S(1) : C′′ ∈ H(i)

j , C′′ 6= C
]

+ Pr{S,T}∼EC,C′

[
∃C′′ →C′ S(2) : C′′ ∈ H(i)

j , C′′ 6= C′
]

+ Pr{S,T}∼EC,C′

[
∃C′′ →C T(1) : C′′ ∈ H(i)

j , C′′ 6= C
]

+ Pr{S,T}∼EC,C′

[
∃C′′ →C′ T(2) : C′′ ∈ H(i)

j , C′′ 6= C′
]

= 4Pr{S,T}∼EC,C′

[
∃C′′ →C S(1) : C′′ ∈ H(i)

j , C′′ 6= C
]

40

then by Markov’s inequality,

6 4 E
{S,T}∼EC,C′

∣∣∣C′′ : C′′ →C S(1), C′′ ∈ H(i)
j , C′′ 6= C

∣∣∣
= 4 ∑

C′′ :C′′∈H(i)
j

C′′ 6=C

Pr{S,T}∼EC,C′

[
C′′ →C S(1)

]
. (4.3)

Once the intersection of S with C̃ and C̃′ is chosen, the remaining elements are selected
uniformly at random without replacement. For fixed C′′ 6= C ∈ H(i)

j , since they contain

Uj of size i, |C̃′′ ∩ C̃| = |C′′ ∩C| − i, and S must include b k−i
2 c− (|C′′ ∩C| − i) additional

elements from C̃′′ \ C̃ for C′′ →C S(1) to hold. Thus,

Pr{S,T}∼EC,C′

[
C′′ →C S(1)

]
6 2k

(r
n

)b k−i
2 c−|C′′∩C|+i

.

Thus, we can prove:

Eq. (4.3) 6 4 · 2k
k−1

∑
s=i

∑
U⊆C
|U|=s

∑
C′′ :C′′∈H(i)

j
C′′ 6=C

C′′∩C=U

(r
n

)b k−i
2 c−s+i

. (4.4)

By Observation 4.4.4, we can bound the above as

6 4 · 2k
k−1

∑
s=i

∑
U⊆C
|U|=s

(n
r

) k
2−s(r

n

) k−i
2 −

1[k−i odd]
2 −s+i

6 k · 4k+1
√

r
n

,

as i
2 −

1[k−i odd]
2 > 1

2 for all i > 1 when k is odd.

Lower bound on average degree in A. By choosing B large enough, the upper bound
on r, and Claim 4.4.10, the fraction of edges we delete from the original colored Kikuchi
graph Kr to obtain K̂r is at most .5 and hence d(K̂r) > .5d(Kr) where d(Kr) and d(K̂r) are
the average degrees in Kr and K̂r respectively. Thus, we know:

d(Kr) >
(r

2n

)k−i p

∑
j=1

(
|H(i)

j |
2

)
>
(r

2n

)k−i
· p ·

(
m/kp

2

)
>
(r

2n

)k−i
· m2

4k2p
,

where the first inequality uses Observation 4.4.8, and the second inequality is due to
Jensen’s inequality.

41

By the upper bound p 6 m ·
(r

n
) k

2−i as noted in Observation 4.4.3:

d(Kr) >
1

4k22k ·
(r

n

)k−i
·
(n

r

) k
2−i
·m =

1
4k22k ·

(r
n

) k
2 ·m .

As an upshot, we know:

Claim 4.4.11. d(K̂r) >
1

8k22k ·
(r

n

)k/2
·m.

Spectral double counting. With a lower bound on d(K̂r) in hand, we are now ready
to perform our weighted spectral double counting argument to complete the proof of
Theorem 4.4.1.

Proof of Theorem 4.4.1. Recall that our goal is to prove that there is a small even cover in
H(i), the largest piece obtained from the decomposition, and also recall that if i > k+1

2 ,
then we are done by Lemma 4.4.5. Hence, we assume i 6 k−1

2 for the rest of the proof.
Suppose there are no even covers inH of size ` = r log n, then there are also none in

H(i) from Lemma 4.4.9 we get:

∥∥∥Γ−1/2ÂΓ−1/2
∥∥∥

2
6 4

√
2`

d(K̂r)
.

Thus, Â � 4
√

2`
d(K̂r)

Γ, and by taking the quadratic form with the all-ones vector, we get:

2|E(K̂r)| = 1> Â1 6 4

√
2`

d(K̂r)
· tr(Γ) = 16

√
2`

d(K̂r)
· |E(K̂r)| ,

which implies
d(K̂r) 6 128` ,

and by our lower bound on d(K̂r) from Claim 4.4.11, we get

1
8k22k ·

(r
n

) k
2 ·m 6 128r log n ,

which we can rearrange as

m 6 Bkn log n ·
(n

r

)k/2−1
.

for some large enough constant B. Thus, if m is lower bounded as in the theorem state-
ment, there must be an even cover of size ` log n.

42

Chapter 5

Subgraph Density in Spectral Expanders

In this chapter, we prove Lemma 3.2.4 and Theorem 3.2.5, which we restate below.

Lemma (Restatement of Lemma 3.2.4). Let G = (L ∪ R, E) be a bipartite graph, and let the
left and right average degrees be d1 = |E|

|L| and d2 = |E|
|R| , respectively. Then,

(d1 − 1)(d2 − 1) 6 ρ(BG)
2 .

Theorem (Restatement of Theorem 3.2.5). Let ε ∈ (0, 0.1), and let 3 6 c 6 d be integers.
Let G = (L ∪ R, E) be a (c, d)-biregular graph and S ⊆ L ∪ R such that |S| 6 d−1/ε|L ∪ R|.
Then, for any t > 0 such that

ρ(BG[S]) 6
1
2

(√
λ2 − (

√
c− 1 +

√
d− 1)2 +

√
λ2 − (

√
c− 1−

√
d− 1)2

)
,

where λ = max(λ2(AG),
√

c− 1 +
√

d− 1) · (1 + O(ε)).

We will utilize the Ihara-Bass formula [Iha66, Bas92], which relates the spectral ra-
dius of the non-backtracking matrix to the positive definiteness of the Bethe Hessian. We
recall the following for convenience.

Fact (Restatement of Fact 2.2.2). For any graph G with n vertices and m edges, the following
identity on univariate polynomials is true:

det(I− BGt) = det(HG(t)) · (1− t2)m−n

where HG(t) := (DG − I)t2 − AGt + I is the Bethe Hessian of G.

Organization. We first prove Lemma 3.2.4 in Section 5.1. Then, we prove Theorem 3.2.5
in Section 5.2.

43

5.1 Average degree of bipartite graphs

The following is equivalent to Lemma 3.2.4.

Lemma 5.1.1 (Equivalent to Lemma 3.2.4). Let G = (L ∪ R, E) be a bipartite graph, and
let the left and right average degrees be d1 = |E|

|L| and d2 = |E|
|R| , respectively. Then, for any

t ∈ (−1, 1) \ {0} such that HG(t) � 0, we have

(d1 − 1)(d2 − 1) 6
1
t2 .

The equivalence to Lemma 3.2.4 is due to Lemma 2.2.3, which we restate below for
convenience.

Lemma (Restatement of Lemma 2.2.3). Let G be a graph and 0 < α < 1. Then, the spectral
radius ρ(BG) 6 1

α if and only if HG(t) � 0 for all t ∈ [0, α). As a result, if HG(
1
ρ) has a

non-positive eigenvalue for some ρ > 0, then ρ(BG) > ρ.

Proof of Lemma 5.1.1. We can assume that d1, d2 > 1, otherwise the statement holds triv-
ially with |t| < 1. Let x be the vector such that for u ∈ L ∪ R,

xu =

{
1 u ∈ L,

α u ∈ R,

where α ∈ R will be determined later. Recall that HG(t) = (DG − I)t2 − tAG + I.
Since |E| = d1|L| = d2|R|, we have x>DGx = d1|L| + α2d2|R| = (1 + α2)d1|L| and
x>AGx = 2α|E| = 2αd1|L|, and substituting |R| = d1

d2
|L| we get

x>HG(t)x = x>
(
(DG − I)t2 − tAG + I

)
x

= t2
(
(d1 − 1)|L|+ α2(d2 − 1)|R|

)
− t · 2αd1|L|+

(
|L|+ α2|R|

)
= |L|

(
(d1 − 1)t2 − 2tαd1 + 1

)
+ |R|

(
α2(d2 − 1)t2 + α2

)
= |L|

(
(d1 − 1)t2 + α2d1t2 − 2tαd1 + 1 +

d1

d2
· α2(1− t2)

)
.

Then, HG(t) � 0 and t ∈ (−1, 1) imply that

1
d2

>
1

1− t2

(
− (d1 − 1)t2 + 1

d1α2 +
2t
α
− t2

)
.

To maximize the right-hand side, we choose 1
α = d1t

(d1−1)t2+1 , which gives

1
d2

>
1

1− t2

(
d1t2

(d1 − 1)t2 + 1
− t2

)
=

1
1− t2 ·

t2(d1 − 1)(1− t2)

(d1 − 1)t2 + 1
=

1
1 + 1

(d1−1)t2

=⇒ d2 6 1 +
1

(d1 − 1)t2 .

44

Rearranging the above gives (d1 − 1)(d2 − 1) 6 1/t2.

5.2 Non-backtracking matrix of subgraphs in bipartite ex-
panders

The following is equivalent to Theorem 3.2.5.

Theorem 5.2.1 (Equivalent to Theorem 3.2.5). Let ε ∈ (0, 0.1), and let 3 6 c 6 d be integers.
Let G = (L ∪ R, E) be a (c, d)-biregular graph and S ⊆ L ∪ R such that |S| 6 d−1/ε|L ∪ R|.
Then, for any t > 0 such that

1
t
>

1
2

(√
λ̃2 − (

√
c− 1 +

√
d− 1)2 +

√
λ̃2 − (

√
c− 1−

√
d− 1)2

)
, (5.1)

where λ̃ = max(λ2(AG),
√

c− 1 +
√

d− 1) · (1 + O(ε)), we have

HG[S](t) � 0 .

5.2.1 Proof overview

We prove HG[S](t) � 0 by showing that 〈 f , HG[S](t) f 〉 > 0 for all f : S → R. The way
we prove 〈 f , HG[S](t) f 〉 > 0 is by relating it to a quadratic form of the matrix HG(t),
which we can control via the spectrum of G. In particular, we consider the depth-`
regular tree extension T of G[S], and for f we define an appropriate function extension
ft on the tree depending on t (Definition 5.2.3) such that 〈 f , HG[S](t) f 〉 = 〈 ft, HT(t) ft〉.
The function ft additionally has the property that its `2 mass on vertices r-far from G[S]
decays exponentially in r. At a high level, we use the tree extension as a proxy for the
`-step neighborhood of S in G, and this is made precise in Section 5.2.4 as we define a
natural folded function f̃t of ft into G (Definition 5.2.8).

This allows us to lower bound 〈 f , HG[S](t) f 〉 by 〈 f̃t, HG(t) f̃t〉 with some errors. The
errors can be bounded using the decay of ft from the definition, though this requires
t < ((c − 1)(d − 1))−1/4 (see Lemma 5.2.6). Ignoring those errors, the proof comes
down to showing that

1
t4 −

1
t2

(
λ2 − (c− 1)− (d− 1)

)
+ (c− 1)(d− 1) > 0 ,

and we solve the quadratic formula in Lemma 5.2.11 and show that the above gives rise
to Eq. (5.1). The full proof is presented in Section 5.2.5.

45

5.2.2 Tree extensions

We start with defining tree extensions of a graph.

Definition 5.2.2 (Tree extension). For a graph G = (V, E), we say that T = (V(T), E(T))
is a tree extension of G if T is obtained by attaching a tree Tr to each vertex r ∈ V, with r
being the root. Each vertex x ∈ T belongs to a unique tree Tr rooted at r. For any x ∈ T,
we write depth(x) to be the distance between x and the root of the tree containing x.

Fix a tree extension T of G, for functions f , g : V(T)→ R, define 〈 f , g〉 = ∑x∈T f (x)g(x)
and ‖ f ‖2

2 = ∑x∈T f (x)2.

Definition 5.2.3 (Function extension). Given a function f : V(G) → R, a tree extension
T of G, and parameter t ∈ R, we define ft : V(T)→ R to be the extension of f to T such
that for x ∈ T,

ft(x) = f (r) · tdepth(x), if x ∈ Tr . (5.2)

The following simple but crucial lemma establishes a relationship between HG and
HT, which also motivates the definition of ft.

Lemma 5.2.4. Let G be a graph and T be any tree extension of G. Then, for any t ∈ R and
f : V(G)→ R, the extension ft : V(T)→ R defined in Eq. (5.2) satisfies

(HT(t) · ft) (x) =

{
(HG(t) · f)(x) x ∈ V(G) ,

0 x /∈ V(G) .

Proof. Recall that HG(t) = (DG − I)t2 − AGt + I. For x /∈ V(G), let d(x) be its degree
and let r ∈ V(G) be the root of the tree containing x. Observe that x has 1 parent (with
value f (r)tdepth(x)−1) and d(x) − 1 children (with value f (r)tdepth(x)+1) in the tree Tr.
Thus,

(HT(t) · ft) (x) = ((d(x)− 1)t2 + 1) · f (r)tdepth(x)

− t · f (r)
(

tdepth(x)−1 + (d(x)− 1)tdepth(x)+1
)

= 0 .

For x ∈ V(G), let dG(x) be its degree in G and dT(x) be its degree in T. Then, x has
dT(x)− dG(x) children (with value t · f (x)) in the tree Tx.

(HT(t) · ft) (x) = ((dT(x)− 1)t2 + 1) · f (x)− t
(
(AG f)(x) + (dT(x)− dG(x)) · t f (x)

)
= ((dG(x)− 1)t2 + 1) · f (x)− t(AG f)(x)

= (HG(t) · f)(x) .

This completes the proof.

46

5.2.3 Regular tree extensions of subgraphs

For a subgraph G[S] in a regular (or biregular) graph, we consider its regular tree exten-
sion.

Definition 5.2.5 (Regular tree extension). Let G = (V, E) be a d-regular graph, S ⊆ V,
` ∈ N, and consider the induced subgraph G[S]. We define the depth-` regular tree
extension of G[S] to be the tree extension T of G[S] where depth-` trees are attached
to vertices in S such that the resulting graph is d-regular except for the leaves. Let
Leaves(T) denote the set of leaves.

Similarly, let G = (L ∪ R, E) be a (c, d)-biregular graph, S ⊆ L ∪ R, and ` ∈ N. The
depth-` regular tree extension of G[S] is the tree extension such that the resulting graph
is (c, d)-biregular except for the leaves.

We show that given a graph G = (V, E) and S ⊆ V, for any function f : S → R and
its extension ft to the depth-` regular tree extension of G[S], the contribution from the
leaves decays exponentially with ` when t < ((c− 1)(d− 1))−1/4.

Lemma 5.2.6 (Decay of ft). Let G = (L ∪ R, E) be a (c, d)-biregular graph with c 6 d, let
S ⊆ L∪ R, let ` ∈N be even, and let T be the depth-` regular tree extension of G[S]. Moreover,
let t ∈ R such that t2

√
(c− 1)(d− 1) = 1 − δ for some δ ∈ (0, 1). Given any function

f : S → R, let ft : V(T) → R be the function extension (as defined in Eq. (5.2)), and let f=`
t

be ft restricted to the leaves of T. Then,∥∥∥ f=`
t

∥∥∥2

2
6

2δ

eδ` − 1
· ‖ ft‖2

2 .

Since the function 2x
ex`−1 is monotone decreasing, we have for any δ′ > δ,

∥∥∥ f=`
t

∥∥∥2

2
6

2δ′

eδ′` − 1
· ‖ ft‖2

2 .

Proof. We will lower bound ‖ ft‖2
2 and upper bound the contribution from the leaves at

depth `. Fix a vertex r ∈ R (with degG(r) = d) and consider the tree Tr rooted at r. Let
degTr

(r) be the degree of r in Tr. The number of children of vertices in the tree alternates
between c− 1 and d− 1 as we go down the tree. Thus, for an even integer k 6 `, the
number of vertices in the k-th level is

degTr
(r)(c− 1) ((c− 1)(d− 1))

k
2−1 =

degTr
(r)

degG(r)− 1
((c− 1)(d− 1))

k
2 . (5.3)

The same argument shows that the above also holds for r ∈ L (with degG(r) = c).
Thus, the contribution of the tree Tr to ‖ ft‖2

2 can be lower bounded by the product of

47

the following two terms:

f (r)2 degTr
(r)

degG(r)− 1

∑
06k6`
k even

t2k((c− 1)(d− 1))
k
2 =

`/2

∑
i=0

(1− δ)2i =
1− (1− δ)`+2

1− (1− δ)2 >
1− (1− δ)`

2δ
.

Next, the contribution from the leaves of Tr to
∥∥ f=`

t
∥∥2

2 is also given by Eq. (5.3). Thus,
we have ∥∥ f=`

t
∥∥2

2

‖ ft‖2
2

6 (1− δ)`
2δ

1− (1− δ)`
6

2δ

eδ` − 1
,

using (1− δ)` 6 e−δ`, finishing the proof.

5.2.4 Folding regular tree extensions

Given a regular tree extension T of an induced subgraph G[S], there is a natural folding
into G via breadth-first search from S.

Definition 5.2.7 (Folding into G). Let G = (V, E) be a d-regular or (c, d)-biregular graph,
let S ⊆ V, and let T be the depth-` regular tree extension of G[S]. There is a natural
homomorphism σ : T → G such that

• σ(x) = x for all x ∈ S;
• degT(x) = degG(σ(x)) for all x ∈ V(T) \ Leaves(T);
• Two edges {x, y} and {y, z} in T sharing a vertex are not mapped to the same edge

in E, i.e., all edges in T that map to the same edge in E are vertex-disjoint.

Definition 5.2.8 (Folded function). Fix a map σ : T → G. Given any f : V(T) → R, we
associate each vertex v ∈ G with a function f v : V(T)→ R such that for x ∈ T,

f v(x) =

{
f (x) if σ(x) = v ,

0 otherwise .

We define the folded function f̃ : V(G)→ R to be

f̃ (v) = ‖ f v‖2 .

Observation 5.2.9. The f v’s have disjoint support, thus ‖ f̃ ‖2
2 = ∑v∈G‖ f v‖2

2 = ‖ f ‖2
2.

More generally, let Γ, Γ̃ be diagonal operators such that (Γ f)(x) = γ(degG(σ(x))) f (x)
for x ∈ T and (Γ̃g)(v) = γ(degG(v))g(v) for v ∈ G. Then, 〈 f̃ , Γ̃ f̃ 〉 = 〈 f , Γ f 〉.

48

We next prove the following useful lemma that relates the quadratic forms of f and
f̃ with AG.

Lemma 5.2.10. Let G = (V, E) be a d-regular or (c, d)-biregular graph, let S ⊆ V, and let T be
a regular tree extension of G[S]. For any f : V(T)→ R and its folded function f̃ : V(G)→ R,
we have

〈 f , AT f 〉 6
〈

f̃ , AG f̃
〉

.

Proof. Recall from Definition 5.2.7 that the map σ : T → G satisfies that if {x, y} is an
edge in T, then {σ(x), σ(y)} ∈ E. Then,

〈 f , AT f 〉 = 2 ∑
{x,y}∈E(T)

f (x) f (y)

= 2 ∑
{u,v}∈E(G)

∑
{x,y}∈E(T)

1(σ({x, y}) = {u, v}) · f σ(x)(x) f σ(y)(y) .

Moreover, all edges in T that map to the same edge are vertex-disjoint. Thus, for any
{u, v} ∈ E, ∑{x,y}∈E(T) 1(σ({x, y}) = {u, v}) · f σ(x)(x) f σ(y)(y) can be expressed as an
inner product between some permutations of f u and f v, which is upper bounded by
‖ f u‖2 · ‖ f v‖2 = f̃ (u) f̃ (v) by Cauchy-Schwarz. Thus, we have

〈 f , AT f 〉 6 2 ∑
{u,v}∈E(G)

f̃ (u) f̃ (v) =
〈

f̃ , AG f̃
〉

.

5.2.5 Proof of Theorem 3.2.5

Before we prove Theorem 3.2.5, we first prove the following lemma for convenience.

Lemma 5.2.11. Let 3 6 c 6 d ∈ N and ε ∈ (0, 1). Let λ >
√

c− 1 +
√

d− 1 and λ̃ =

λ(1 + ε). Then, for all x such that

x >
1
2

(√
λ̃2 − (

√
c− 1 +

√
d− 1)2 +

√
λ̃2 − (

√
c− 1−

√
d− 1)2

)
,

we have

x4 − x2(λ2(1 + ε)− (c + d− 2)) + (c− 1)(d− 1) > 0 .

Proof. Denote a := c − 1 and b := d − 1 for convenience. Then, to show that x4 −
x2(λ2(1 + ε)− a− b) + ab > 0, it suffices to verify that

x2 >
1
2

(
λ2(1 + ε)− a− b

)
+

1
2

√
(λ2(1 + ε)− a− b)2 − 4ab .

49

Squaring both sides of x > 1
2

(√
λ̃2 − (

√
a +
√

b)2 +
√

λ̃2 − (
√

a−
√

b)2
)

, we get

x2 >
1
2

(
λ̃2 − a− b

)
+

1
2

√
(λ̃2 − (

√
a +
√

b)2)(λ̃2 − (
√

a−
√

b)2)

=
1
2

(
λ̃2 − a− b

)
+

1
2

√
λ̃4 − 2(a + b)λ̃2 + (a− b)2

=
1
2

(
λ̃2 − a− b

)
+

1
2

√
(λ̃2 − a− b)2 − 4ab ,

which completes the proof with λ̃ = λ(1 + ε).

Proof of Theorem 3.2.5. We first verify that the assumption on t (Eq. (5.1)) implies that

t2 6
1− ε√

(c− 1)(d− 1)
. (5.4)

Indeed, as λ̃ = λ(1 + O(ε)) > (
√

c− 1 +
√

d− 1)(1 + ε), Eq. (5.1) implies that

1
t2 >

1
4

(
(
√

c− 1 +
√

d− 1)2(1 + ε)2 − (
√

c− 1−
√

d− 1)2
)

>
√
(c− 1)(d− 1) +

1
2
(
√

c− 1 +
√

d− 1)2ε

which implies Eq. (5.4).
We would like to show that 〈 f , HG[S](t) f 〉 > 0 for any function f : S → R. Let

` = d 1
2εe be an even integer and let T be the depth-` regular tree extension of G[S]

(Definition 5.2.5). Let ft : V(T)→ R be the function extension of f to T with parameter
t. By Lemma 5.2.4, we have〈

f , HG[S](t) f
〉
= 〈 ft, HT(t) ft〉 =

〈
ft, ((DT − I)t2 − tAT + I) ft

〉
.

Note that all internal vertices x ∈ T \ Leaves(T) have degree c or d while the leaves have
degree 1. Let D′T be the diagonal matrix such that the leaves have the “correct” degree,
i.e., for x ∈ Leaves(T) in the tree Tr rooted at r ∈ S, D′T[x, x] = degG(r) (since ` is even).
Then, by Eq. (5.4), Lemma 5.2.6 states that f=`

t decays with a factor 2ε
eε`−1 6 4ε, thus

〈 ft, (DT − I) ft〉 =
〈

ft, (D′T − I) ft
〉
−
〈

f=`
t , (D′T − I) f=`

t

〉
>
〈

ft, (D′T − I) ft
〉
(1− 4ε) .

Consider the folded function f̃t : V(G) → R as defined in Definition 5.2.8. By
Observation 5.2.9, we have 〈 ft, D′T ft〉 = 〈 f̃t, DG f̃t〉 and ‖ ft‖2

2 = ‖ f̃t‖2
2. Moreover, by

Lemma 5.2.10, 〈 ft, AT ft〉 6
〈

f̃t, AG f̃t

〉
. Thus,〈

f , HG[S](t) f
〉
> t2

〈
f̃t, (DG − I) f̃t

〉
(1− 4ε)− t

〈
f̃t, AG f̃t

〉
+
∥∥∥ f̃t

∥∥∥2

2

> (1− 4ε)
〈

f̃t,
(

t2(DG − I) + I
)

f̃t

〉
− t
〈

f̃t, AG f̃t

〉
. (5.5)

50

We would like to show that the above is non-negative. Denote ΓG := t2(DG − I) + I,
and γ1 := t2(c− 1)+ 1 and γ2 := t2(d− 1)+ 1. Note that γ2 > γ1 > 0 as we assume that
c 6 d. Since G is a (c, d)-biregular graph, ΓG and AG have the following block structure,

ΓG =

(
γ1I 0
0 γ2I

)
, AG =

(
0 AL,R

A>L,R 0

)
.

In particular,

(1− 4ε)ΓG − tAG = Γ1/2
G

(
(1− 4ε)I− t · Γ−1/2

G AGΓ−1/2
G

)
Γ1/2

G

= Γ1/2
G

(
(1− 4ε)I− t√

γ1γ2
AG

)
Γ1/2

G .

Then, denoting g := Γ1/2
G f̃t, we can write Eq. (5.5) as〈

f , HG[S](t) f
〉
>
〈

f̃t, ((1− 4ε)ΓG − tAG) f̃t

〉
= (1− 4ε) ‖g‖2

2−
t√

γ1γ2
〈g, AGg〉 . (5.6)

Next, we upper bound 〈g, AGg〉. For any (c, d)-biregular graph, the (normalized)
top eigenvector of AG is 1√

2|E|
D1/2

G
~1 with eigenvalue

√
cd. Thus,

〈g, AGg〉 6
√

cd
2|E|

〈
g, D1/2

G
~1
〉2

+ λ ‖g‖2
2 ,

where λ = max(λ2(AG),
√

c− 1 +
√

d− 1) is the second eigenvalue.
Since T has depth `, the support of f̃t (and g) must be contained in B := {v ∈ V(G) :

dist(v, S) 6 `}. We have |B| 6 |S|∑`
i=0 di 6 |S|d`+1. Thus, by Cauchy-Schwarz,

√
cd

2|E|

〈
g, D1/2

G
~1
〉2

6

√
cd

2|E| · d|B| · ‖g‖
2
2 6 d−1/4ε ‖g‖2

2 6 ε ‖g‖2
2 ,

since |S| 6 d−1/ε|L ∪ R|, ` = d 1
2εe, |E| = c|L| = d|R|, and ε 6 0.1 (note that d−1/4ε 6 ε

for all d > 3 and ε 6 0.1).
Thus, 〈g, AGg〉 6 (λ + ε) ‖g‖2

2 6 λ(1 + ε) ‖g‖2
2, and from Eq. (5.6),〈

f , HG[S](t) f
〉
>

1√
γ1γ2

((1− 4ε)
√

γ1γ2 − tλ(1 + ε)) .

As 1+ε
1−4ε 6 1 + 5ε, to prove that the above is positive, it suffices to prove that t2λ2(1 +

5ε) < γ1γ2 = (t2(c− 1) + 1)(t2(d− 1) + 1), or equivalently,

1
t4 −

1
t2

(
λ2(1 + 5ε)− (c− 1)− (d− 1)

)
+ (c− 1)(d− 1) > 0 .

With λ̃ = λ(1+ 5ε) and the assumption on t (Eq. (5.1)), the above holds via Lemma 5.2.11.

51

52

Part II

Algorithms

53

Chapter 6

Introduction

Spectral techniques have a long history in algorithm design. Many computational prob-
lems naturally involve matrices, either as explicit inputs or as representations of useful
underlying structures. Graph problems, for example, are natural applications for spec-
tral methods, as graphs can be represented by their adjacency matrices. Similarly, con-
straint satisfaction problems (CSPs), such as k-SAT or k-XOR, can be formulated in terms
of hypergraphs, where spectral techniques may also apply.

By now, we have a wide range of spectral techniques at our disposal — including ex-
pander decomposition, spectral sparsification, eigenspace enumeration, random matrix
concentration — which serve as powerful tools in algorithmic design.

We focus on three foundational problems where spectral techniques are key ingredi-
ents in the algorithms and analyses.

(1) Section 6.1 and Chapter 7: Algorithms for strongly refuting semirandom CSPs.
The same spectral techniques used to prove the hypergraph Moore bound (Chap-
ter 4) extend naturally to refutation algorithms for semirandom CSPs, achieving
the same improved bounds as in the hypergraph Moore bound. This chapter is
based on [HKM23].

(2) Section 6.2 and Chapter 8: Algorithms for solving semirandom planted CSPs.
We present an efficient algorithm for solving semirandom planted k-CSPs that re-
covers the planted assignment whenever the number of constraints exceeds Õ(nk).
This matches the threshold at which polynomial-time algorithms are known for
the refutation problem. This chapter is based on [GHKM23].

(3) Section 6.3 and Chapter 9: Finding large independent sets in expanders. We give
algorithms to find linear-sized independent sets in one-sided spectral expanders
that are 3-colorable or contain independent sets of size close to n/2. This chapter
is based on [BHK25].

55

6.1 Algorithms for strongly refuting semirandom CSPs

Over the past decades, complexity theory has established strong hardness results for
constraint satisfaction problems (CSPs) like k-SAT in the worst-case. Håstad’s inapprox-
imability theorem [Hås01] shows that sparse instances (i.e., has m = O(n) constraints
on n variables) cannot be approximated better than by picking a uniformly random
assignment (unless P = NP). For maximally dense instances (e.g., with m = Θ(nk) con-
straints for k-SAT), there are polynomial-time approximation schemes (PTAS) due to
[AKK95]. However, under the exponential time hypothesis [IP01], we can already rule
out polynomial-time algorithms for o(nk) dense instances and more generally, 2n1−δ

time
algorithms for any δ > 0 for o(nk−1) dense instances [FLP16].

In sharp contrast, in well-studied average-case settings, there appears to be significant
space for new algorithms and markedly better guarantees for CSPs. In this section, we
focus on the problem of refutation — efficiently outputting certificates of unsatisfiability
for instances drawn from distributions that are almost always unsatisfiable. The related
search problem for planted CSP models will be discussed in Section 6.2.

We first define the notion of a refutation algorithm formally:

Definition 6.1.1 (Refutation algorithm). A refutation algorithm takes a CSP instance ψ

as input and outputs a value alg-val(ψ) ∈ [0, 1] such that alg-val(ψ) > val(ψ) for all
instance ψ. Here, val(ψ) denotes the value of ψ — the maximum fraction of constraints
satisfied by any assignment.

For a distribution D over instances, we say that an algorithm achieves
• weak refutation if alg-val(ψ) < 1 with high probability over ψ ∼ D,
• strong refutation if alg-val(ψ) < 1− δ for some constant δ > 0 with high probability

over ψ ∼ D.

The refutation problem has been heavily investigated in the past two decades. For
fully random k-CSPs with uniformly random clause structure (i.e., which variables ap-
pear in each clause) and “literal pattern” (i.e., which variables appear negated in each
clause), there is a polynomial-time strong refutation algorithm when the number of
clauses m is at least Õ(nk/2) [GL03, CGL07, AOW15, BM16]. Note that this threshold is
far below the ∼ nk hardness threshold of [FLP16]. Furthermore, lower bounds in var-
ious restricted models [Fei02, BGMT12, OW14, MW16, BCK15, KMOW17, FPV18] pro-
vide some evidence that this threshold might be tight for polynomial-time algorithms.

Building on [AOW15, BM16], Raghavendra, Rao and Schramm [RRS17] showed a
smooth trade-off between m and the running time of the refutation algorithm. Specif-
ically, for a parameter r 6 n, there is a strong refutation algorithm that runs in time
nO(r) provided that m > Õ(n · (n

r)
k
2−1). Their result offers a fairly comprehensive un-

derstanding of the refutation problem for fully random k-CSPs.

56

Beyond the average-case: semirandom instances. Despite the phenomenal progress
in average-case algorithm design, like refuting random CSPs discussed above, there is
a nagging concern that the algorithms so developed rely too heavily on “brittle” prop-
erties of the specific random models. That is, our methods may have “overfitted” to
the specific setting, thus yielding algorithms that only apply in a limited setting. Un-
fortunately, this concern turns out to be well justified — natural spectral algorithms for
refuting random k-CSPs break down under minor perturbations, such as the addition
of a vanishingly small fraction of extra clauses.

Motivated by such concerns, Blum and Spencer [BS95] and later Feige and Kil-
ian [FK01, Fei07] introduced semirandom models for optimization problems. In semi-
random models, the instances are constructed by a combination of benign average-case
and adversarial worst-case choices. Algorithms that succeed for such models are natu-
rally “robust” to perturbations of the input instance.

For CSPs, a semirandom instance is generated by first choosing a “worst-case” clause
structure and then choosing the literal negation patterns in each clause via some suffi-
ciently random (and thus “benign”) process. Abascal, Guruswami and Kothari [AGK21]
gave algorithms that succeed in refuting semirandom instances at the same Õ(nk/2)

threshold as the fully random case. Later, Guruswami, Kothari and Manohar [GKM22],
building on the work of [WAM19] for even k, showed that the smooth runtime vs. den-
sity trade-off established by [RRS17] holds also for the semirandom case, up to an extra
log4k n factor.

We improve this trade-off to just one extra log n factor with a substantially simpler
and shorter proof. The following theorem is stated only for k-XOR. Combined with
Feige’s (now standard) “XOR principle” [Fei02, AOW15], we also obtain refutation al-
gorithms for all smoothed Boolean CSPs. For refutation, we will omit such reduction in
this thesis. For solving the planted problem (Section 6.2), we will need a more compli-
cated reduction from general CSPs to XOR, which is detailed in Section 8.2.

Theorem 6.1.2 (Semirandom k-XOR refutation; informal Theorem 7.0.1). Fix k ∈ N and
r 6 n, there is an nO(r)-time algorithm such that given a semirandom k-XOR instance ψ with
n variables and m > O(n(n

r)
k
2−1 · log n) constraints, it certifies that ψ is not (1

2 + 0.01)-
satisfiable with high probability.

A careful reader may notice that the term n(n
r)

k
2−1 coincides with the number of

hyperedges required in a k-uniform hypergraph to guarantee an even cover of size
O(r log n), as given by the hypergraph Moore bound (Theorem 3.1.6). In fact, the orig-
inal conjecture of Feige [Fei08] was directly motivated by the study of refuting k-SAT
formulas, and [GKM22] made the elegant observation that the same proof for refuting
semirandom k-XOR also yields the hypergraph Moore bound.

In Chapter 7, we prove Theorem 6.1.2. The proof is very similar to the proof of

57

Theorem 3.1.6 in Chapter 4, relying on the same core ideas — the use of a reweighted
Kikuchi matrix and an edge deletion step — that allow us to remove several involved
steps in [GKM22]’s analysis.

6.2 Efficient algorithms for semirandom planted CSPs

The search problem for planted models of CSPs has also received a fair bit of attention.
The setting naturally arises in the investigation of local one-way functions and pseudo-
random generators in cryptography. Indeed, the security of the well-known one-way
function proposed by Goldreich [Gol00] (also conjectured to be a pseudorandom gen-
erator [MST06, App16]) is equivalent to the hardness of recovering a satisfying assign-
ment planted (via a carefully chosen procedure) in a random CSP instance with an ap-
propriate predicate. This has led to significant research on solving fully random planted
CSPs [BHL+02, JMS07, BQ09, CCF10, FPV15]. Specifically, Feldman, Perkins and Vem-
pala [FPV15] showed that for fully random planted k-CSPs with planted assignment x∗,
there is a polynomial-time algorithm that, with high probability over the instance, re-
covers the planted assignment x∗ exactly, provided that the instance has at least Õ(nk/2)

constraints. That is, the refutation and search versions have the same clause threshold.
Given the results for refuting semirandom CSPs as discussed in Section 6.1, it is nat-

ural to wonder if the same thresholds hold also for the search variant of the problem.
We make the first step in this direction: we give an efficient algorithm for solving semi-
random planted CSPs that succeeds in finding the planted assignment whenever the
number of constraints exceeds Õ(nk/2) — the same threshold at which polynomial-time
algorithms exist for the refutation problem for random (and semirandom) instances.

Theorem 6.2.1 (Algorithm for planted CSPs; informal Theorem 8.0.3). There is an effi-
cient algorithm that takes as input a k-CSP Ψ and outputs an assignment x with the following
guarantee: if Ψ is a semirandom planted k-CSP with m > Õ(nk/2) constraints, then with high
probability over Ψ, the output x satisfies 1− o(1)-fraction of the constraints in Ψ.

See Definition 8.0.2 in Chapter 8 for the precise definition of a semirandom planted
k-ary Boolean CSP.

We note that in the semirandom setting, it is not possible to efficiently recover an
assignment that satisfies all of the constraints without being able to do so even when
m = O(n).1 This is because it is easy to construct a semirandom instance ψ that is the
“union” of two disjoint instances ψ1 and ψ2, where ψ1 and ψ2 use disjoint sets of n/2
variables, but ψ1 only has m1 ∼ O(n) clauses (and ψ2, therefore, contains almost all of

1Achieving this would break a hardness assumption for the search problem analogous to Feige’s ran-
dom 3-SAT hypothesis for the refutation problem [Fei02].

58

the m ∼ nk/2 clauses). Thus, the guarantee in Theorem 6.2.1 of satisfying a 1− o(1)-
fraction of constraints is qualitatively the best we can hope for.

Search vs. refutation. For average-case optimization problems, techniques for refut-
ing random instances can often be adapted to solving the search problem in the re-
lated planted model. This can be formalized in the proofs to algorithms paradigm [BS14,
FKP19] where spectral/SDP-based refutations can be transformed into “simple” (i.e.,
”captured” within the low-degree sum-of-squares proof system) efficient certificates of
near-uniqueness of optimal solution — that is, every optimal solution is close to the
planted assignment. Unfortunately, this intuition breaks down even in the simplest
setting of semirandom 2-XOR where there can be multiple maximally far-off solutions
that satisfy as many (or even more) constraints as the planted assignment. Such de-
parture from uniqueness also breaks algorithms for recovery [FPV15] that rely on the
top eigenvector of a certain matrix built from the instance being correlated with the
planted assignment. In the semirandom setting, one can build instances where the top
eigenspace of such matrices is the span of the multiple optimal solutions and has di-
mension ω(1) (searching for a Boolean vector close to the subspace is, in general, hard
in super-constant dimensional subspaces).

Noisy planted k-XOR. Similar to work on random planted CSPs [FPV15] and the refu-
tation setting [AOW15, RRS17, AGK21, GKM22, HKM23], our proof of Theorem 6.2.1
goes through a reduction to noisy k-XOR. Our algorithm achieves very strong guaran-
tees in the noisy k-XOR case, as we now explain. We define the noisy k-XOR model
below and then state our result.

Definition 6.2.2 (Noisy planted k-XOR). Let H ⊆
(

[n]
k

)
be a k-uniform hypergraph on

n vertices, let x∗ ∈ {±1}n, and let η ∈ [0, 1/2). Let ψ(H, x∗, η) denote the distribution
on k-XOR instances over n variables x1, . . . , xn ∈ {±1} obtained by, for each C ∈ H,
adding the constraint ∏i∈C xi = ∏i∈C x∗i with probability 1− η, and otherwise adding
the constraint ∏i∈C xi = −∏i∈C x∗i . In the latter case, we say that the constraint C is
corrupted or noisy.

We call ψ a noisy planted k-XOR instance if it is sampled from ψ(H, x∗, η), for someH,
x∗, and η; the hypergraphH is the constraint hypergraph, x∗ is the planted assignment,
and η is the noise parameter. Furthermore, we let Eψ ⊆ H denote the (unknown) set of
corrupted constraints.

Theorem 6.2.3 (Algorithm for noisy k-XOR). Let η ∈ [0, 1/2), let k, n ∈ N, and let ε ∈
(0, 1). Let m > cnk/2 · k4 log3 n

ε5(1−2η)4 for a universal constant c. There is a polynomial-time algorithm
A that takes as input a k-XOR instance ψ with constraint hypergraph H and outputs two
disjoint sets A1(H),A2(ψ) ⊆ H with the following guarantees: (1) for any instance ψ with
m constraints, |A1(H)| 6 εm and A1(H) only depends on H, and (2) for any x∗ ∈ {±1}n

59

and any k-uniform hypergraph H with at least m hyperedges, with probability at least 1 −
1/ poly(n) over ψ← ψ(H, x∗, η), it holds that A2(ψ) = Eψ ∩ (H \A1(H)).

In words, the algorithm discards a small number of constraints, and among the
constraints that are not discarded, correctly identifies all (and only) the corrupted con-
straints. In particular, the subinstance obtained by discarding the . (ε+ η)m constraints
A1(H) ∪ A2(ψ) is satisfiable (and a solution can be found by Gaussian elimination).
Thus, Theorem 6.2.3 immediately implies that for k-XOR, the NP-hard task of deciding
if ψ has value > 1− η or 6 1

2 + η is actually easy if ψ has ∼ nk/2 constraints (far below
the ∼ nk-hardness of [FLP16]), provided that the η-fraction of corrupted constraints in
the “yes” case are a randomly chosen subset of the otherwise arbitrary constraints.

Exact vs. approximate recovery. As alluded to above, the guarantees of Theorem 6.2.3
are much stronger: not only can we find a good assignment to ψ, we can break the
constraints into two parts, a small fraction, A1(H), where we are unable to determine
the corrupted constraints,2 and a large fraction, H \ A1(H), where we can determine
exactly all of the corrupted constraints, A2(ψ). Moreover, this partition depends only
on the hypergraph H and is independent of the noise. We remark that it is not immedi-
ately obvious that this guarantee is achievable even for exponential-time algorithms, as
x∗ may not be the globally optimal assignment with constant probability. This strong
guarantee of Theorem 6.2.3 is in fact required for the reduction from Theorem 6.2.1 to
Theorem 6.2.3; the weaker (and more intuitive) guarantee of approximate recovery —
obtaining an assignment of value 1− η − o(1) for the noisy XOR instance — is insuffi-
cient for the reduction.

One can view Theorem 6.2.3 as an algorithm that extracts almost all the information
about the planted assignment x∗ encoded by the instance ψ. Indeed, notice that even
if η = 0, the instance ψ only determines x∗ “up to a linear subspace.”3 Namely, if we
let y ∈ {±1}n be any solution to the system of constraints ∏i∈C yi = 1 for C ∈ H,
then y� x∗ is also a planted assignment for ψ: formally, ψ(H, x∗, η) = ψ(H, y� x∗, η)

as distributions. So, aside from the εm constraints that are discarded, with high prob-
ability over ψ the algorithm determines the uncorrupted right-hand sides ∏i∈C x∗i for
every remaining constraint, which is all the information about the planted assignment
x∗ encoded in the remaining constraints.

The importance of relative spectral approximation. As a key technical ingredient in
the algorithm, we uncover a deterministic condition — relative spectral approximation
of the Laplacian of a graph (associated with the input instance) by a certain correlated

2Note that discarding a small fraction of constraints is necessary in the semirandom setting, as ψ

may contain many disconnected constant-size subinstances where it is not possible, even information-
theoretically, to exactly identify the corrupted constraints with 1− o(1) probability.

3A k-XOR constraint xC1 · · · xCk = bC ∈ {±1} can be equivalently written as a linear equation x′C1
+

· · ·+ x′Ck
= b′C over F2, where we map +1 to 0 and −1 to 1.

60

random sample from it — which when satisfied implies uniqueness of the SDP solution
(Lemma 8.1.4). In Lemma 8.1.5 and Lemma 8.4.7, we establish such spectral approxi-
mation guarantees.

This spectral approximation property is the key ingredient in our certificate of unique
identifiability of the planted assignment in a noisy k-XOR instance (see Section 8.1.4 for
details). This property allows us to exactly recover the planted assignment for 2-XOR
instances where the constraint graph G is a weak spectral expander (i.e., spectral gap
� 1/ polylog n) (Lemma 8.1.4), and it forms the backbone of our final algorithm. We
note that our spectral approximation condition can be seen as an analog of (and is, in
fact, stronger than) the related spectral norm upper bound property that underlie the
refutation algorithm of [AGK21].

6.3 Finding large independent sets in expanders

Finding large independent sets is a notoriously hard problem in the worst case. The best
known algorithms can only find independent sets of size Õ(log2 n) in n-vertex graphs
with independent sets of near-linear size [Fei04]. In this paper, we are interested in the
important setting when the input graph contains an independent set of size cn for a large
constant c < 1/2.4 In this setting, the problem remains challenging and has served as a
benchmark for developing new techniques in approximation algorithm design over the
years. When c = 1/2− ε for tiny enough ε > 0, a generalization of the SDP rounding
of Karger, Motwani, and Sudan [KMS98] finds an independent set of size n1−O(ε) (see
Section 9.5). When c� 1/2, all known efficient algorithms [BH92, AK98] can only find
independent sets of size nδ(c) for some δ(c) < 1, and this is true even when the graph
is k-colorable (thus c > 1/k). Decades of research on coloring k-colorable graph has
progressively improved the constant appearing in the exponent, with the most recent
improvement being in 2024 [Wig83, Blu94, BK97, KMS98, ACC06, Chl09, KT17, KTY24].
To summarize, in the worst-case, even when c approaches 1/2, our best known efficient
algorithms can only find independent sets of size that is a polynomial factor smaller
than n.

There is evidence that the difficulties in improving the above algorithms might be
inherent. Assuming the Unique Games Conjecture (UGC), for any constant ε > 0, it is
NP-hard to find an independent set of size εn even when the input graph contains an
independent set of size (1/2− ε)n [KR08, BK09]. Similar hardness results suggest that
it may be hard to color 3-colorable graphs with any constant number of colors [DS05,
DMR06, DKPS10, KS12, GS20].

Given the above worst-case picture, a substantial effort over the past three decades

4The classical 2-approximation algorithm for vertex cover (complement of an independent set) implies
an algorithm to find an independent set of size 2εn when the input graph has one of size (1/2 + ε)n.

61

has explored algorithms that work under natural structural assumptions on the input
graphs. One line of work studies planted average-case models for independent set [Kar72,
Jer92, Kuč95] and coloring [BS95, AK97]. A related body of research has focused on
graphs that satisfy natural, deterministic assumptions, such as expansion, with the goal
of isolating simple and concrete properties of random instances that enable efficient al-
gorithms. This approach has been explored for Unique Games [Tre08, AKK+08, MM11,
ABS15, BBKSS21] and UG-hard problems like Max-Cut and Sparsest Cut [DHV16, RV17],
and has been instrumental in making progress even for worst-case instances; for exam-
ple, the works on unique games on expanders eventually led to a subexponential al-
gorithm for arbitrary UG instances [ABS15]. Over the past decade, such assumptions
have also been investigated for independent set and coloring [AG11, DF16, KLT18]. In
particular, a recent work of David and Feige [DF16] gave polynomial-time algorithms
for finding large independent sets in planted k-colorable expander graphs. We discuss
these works in more detail next.

Prior works and one-sided vs two-sided expansion. There is a crucial difference be-
tween the expansion assumptions in prior works on coloring vs other problems. A
d-regular graph whose normalized adjacency matrix 1

d A (a.k.a., the uniform random
walk matrix) has eigenvalues 1 = λ1 > λ2 > · · · > λn is called a one-sided spectral
expander if for some λ < 1 (λ is called the spectral gap), λ2 6 λ, and a two-sided spec-
tral expander, max{λ2, |λn|} 6 λ. Most algorithms for problems (e.g., Unique Games
and other constraint satisfaction problems) on expanders only need one-sided spectral
expansion, as they primarily rely on the conductance, or the fraction of edges leaving
any subset of vertices in the graph, a combinatorial property closely related to λ2 via
Cheeger’s inequality. In contrast, previous algorithms for finding independent sets in
expanders with a planted k-coloring rely on two-sided spectral expansion (i.e., control
of even the negative end of the spectrum).

This is not just a technical quirk; the main observation underlying such algorithms
(due to Alon and Kahale [AK97], following Hoffman [Hof70]) is that a random graph is
a two-sided spectral expander (thus, has no large negative eigenvalues) and that plant-
ing a k-coloring in it introduces negative eigenvalues of large magnitude, whose corre-
sponding eigenvectors are correlated with indicator vectors of the color classes. This
allows using the bottom eigenvectors of the graph to obtain a coarse spectral clustering.
All the works above, including those on deterministic expander graphs [DF16], build
on this basic observation for their algorithmic guarantees.

This basic idea becomes inapplicable if we are working with one-sided spectral ex-
panders that behave markedly differently in the context of graph coloring. To illustrate
this point, we observe the following proposition with a simple proof (see Section 9.4)
which implies that there is likely no efficient algorithm to find an Ω(n)-sized indepen-
dent set in an ε-almost 4-colorable graph (i.e., 4-colorable if one removes ε fraction of

62

vertices), even when promised to have nearly perfect one-sided spectral expansion with
λ2 6 on(1)!

Proposition 6.3.1 (See Proposition 9.4.2). Assuming the Unique Games Conjecture, for any
constants ε, γ > 0, it is NP-hard to find an independent set of size γn in an n-vertex regular
graph that is ε-almost 4-colorable and has normalized 2nd eigenvalue λ2 6 on(1).

This is in sharp contrast to David and Feige’s algorithm [DF16] which shows how
to find a planted k-coloring in a sufficiently strong two-sided spectral expander for any
constant k.5

We prove Proposition 6.3.1 by a reduction from the UG-hardness of finding linear-
sized independent sets in ε-almost 2-colorable graphs [BK09] and guaranteeing one-
sided expansion in addition at the cost of obtaining an almost 4-colorable graph. A
similar reduction allows us to show hardness of finding linear-sized independent sets
in exactly 6-colorable (ε = 0) one-sided spectral expanders (see Proposition 9.4.6).

We are thus led to the main question:

Can polynomial-time algorithms find a large independent set in a 3-colorable one-sided spectral
expander?

Proposition 6.3.1 injects a fair amount of intrigue into this question, but our motiva-
tions for studying it go further. In light of the above discussion, an affirmative answer
would necessarily require developing a new algorithmic approach that departs from
previous spectral clustering methods based on bottom eigenvectors since such tech-
niques do not distinguish between 3 vs 4-colorable graphs.

Let us spoil the intrigue: we develop new algorithms for finding large independent
sets via rounding sum-of-squares (SoS) relaxations. Our polynomial-time algorithms
succeed in finding linear-sized independent sets in almost 3-colorable graphs that sat-
isfy one-sided spectral expansion. Given the UG-hardness (i.e., Proposition 6.3.1) of
finding linear-sized independent sets in an almost 4-colorable one-sided expander, we
obtain a stark and surprising difference between almost 3-colorable and almost 4-colorable
one-sided expander graphs.

Theorem 6.3.2 (Informal Theorem 9.3.1). There is a polynomial-time algorithm that, given
an n-vertex regular 10−4-almost 3-colorable graph with normalized 2nd eigenvalue λ2 6 10−4,
finds an independent set of size > 10−4n.

Our techniques succeed without the 3-colorability assumption if the input graph
has an independent set of size (1/2− ε)n, and satisfies a weaker quantitative one-sided

5[DF16] focused on finding a partial or full coloring, which requires the planted coloring to be roughly
balanced. Their spectral clustering technique can likely find a large independent set even when the col-
oring is not balanced.

63

spectral expansion.

Theorem 6.3.3. For every positive ε 6 0.001, there is a polynomial-time algorithm that, given
an n-vertex regular graph that contains an independent set of size (1

2 − ε)n and has normalized
2nd eigenvalue λ2 6 1− 40ε, outputs an independent set of size at least 10−3n.

Note that we get an algorithm for ε-almost 2-colorable one-sided expanders as an
immediate corollary. Before this work, no algorithm that beat the worst-case guarantee
of outputting a n1−O(ε)-sized independent set [KMS98] was known in this setting.

Follow-up work. In a follow-up work [Hsi25] that is not included in this thesis, we
improve Theorem 6.3.2 to 3-colorable graphs with small (one-sided) threshold rank.
Specifically, given an n-vertex 3-colorable graph whose uniform random walk matrix
has at most r eigenvalues larger than ε, our algorithm finds a proper 3-coloring on at
least (1

2 −O(ε))n vertices in time nO(r/ε2).
Furthermore, in another work [BHSV25], Buhai, Hua, Steurer, and Vári-Kakas showed

that it is UG-hard to properly 3-color more than (1
2 + ε)n vertices even assuming one-

sided expansion, thus establishing the tightness of the result in [Hsi25]. On the flip side,
[BHSV25] also showed an algorithm that properly 3-colors almost all vertices if all color
classes have size bounded away from 1/2.

64

Chapter 7

Algorithms for Strongly Refuting
Semirandom CSPs

In this chapter, we prove Theorem 6.1.2. As discussed in Section 6.1, our improved
proof for the hypergraph Moore bound (Theorem 3.1.6) extends to strong refutation
algorithms for semirandom k-XOR, losing only a single log n factor in the density.

Theorem 7.0.1 (Semirandom k-XOR refutation; formal statement of Theorem 6.1.2). Fix
k ∈ N. There is an algorithm with parameter r ∈ N, 2k 6 r 6 n/8 that takes as input a
semirandom k-XOR instance

ψ(x) =
1
m ∑

C∈H
bCxC

where H is a k-uniform hypergraph with n vertices and m hyperedges, and each bC ∈ {±1}
is chosen uniformly at random. The algorithm has the following guarantee: there is a universal
constant C such that if m > Ckn log n · (n

r)
k
2−1ε−4 for ε ∈ (0, 1/2), then with probability over

1− 1
poly(n) over {bC}C∈H, the algorithm runs in time nO(r) and certifies that ψ(x) 6 ε.

Combined with Feige’s “XOR principle” [Fei02, AOW15], we also obtain refutation
algorithms for all smoothed Boolean CSPs. We will omit such reduction in this work and
direct the reader to [GKM22] for a detailed exposition.

Remark 7.0.2 (Refutation strength: dependence on ε). For the even arity case, we actu-
ally obtain a stronger guarantee (weaker requirement) of m > O(n log n) · (n

r)
k
2−1ε−2.

For the odd arity case however, our analysis incurs a (likely suboptimal) dependence of
1/ε4 on the refutation strength (i.e., the upper bound on the value of the input k-XOR in-
stance), though improving the 1/ε5 dependence of [GKM22, Theorem 5.1]. In contrast,
a 1/ε2 dependence is known to hold for fully random k-XOR instances [RRS17]. Apart
from a somewhat unsatisfying deficiency, this suboptimality turns out to be consequen-
tial – in particular, it changes the threshold at which efficient FKO refutation witnesses

65

exist for semirandom k-SAT (and other CSPs) by a polynomial factor in n. Finding the
“right” dependence of 1/ε2 (for the odd case) is an interesting open problem.

Our refutation algorithm will utilize the same Kikuchi graphs from Definition 4.3.2
and Definition 4.4.6 but with signs added to the edges in the natural way.

Definition 7.0.3 (Signed Kikuchi graph). Let H be a k-uniform hypergraph associated
with {±1} signs {bC}C∈H. For the even arity case, let Ab be the signed adjacency matrix

of the Kikuchi graph from Definition 4.3.2 where each edge S C←→ T has a sign bC. For
the odd arity case, let Ab be the signed adjacency matrix of the Kikuchi graph from

Definition 4.4.6 where each edge S C,C′←−→ T has a sign bCbC′ .

7.1 Refuting semirandom even arity XOR

In this section, we prove Theorem 7.0.1 when k is even. As we will see in the short proof,
our idea of the reweighted Kikuchi matrix from the hypergraph Moore bound naturally
applies here, and in fact, we obtain the “right” 1/ε2 dependence in this case, i.e., we can
certify that ψ(x) 6 ε when m > O(n log n) · (n

r)
k
2−1ε−2.

Recall that in the Kikuchi graph (V, E), each C ∈ H contributes α := 1
2

(k
k/2
)(n−k

r−k/2

)
edges in E, hence |E| = 1

2 |V|d = mα. Thus, it is clear that

ψ(x) =
1
m
· 1

α ∑
(S,T)∈E

bS⊕TxS⊕T =
1

(n
r)d

(x�r)>Abx�r (7.1)

where x�r ∈ {±1}(
n
r) and the S-entry of x�r is xS for S ⊆ [n], |S| = r.

We now follow the same reweighting strategy: with Γ = D + dI, we bound the spec-
tral norm of the reweighted Kikuchi matrix

∥∥Γ−1/2AbΓ−1/2
∥∥

2 with an almost identical
proof as Lemma 4.3.4.

Lemma 7.1.1. Let k be even and r ∈N. Let Ab be the signed Kikuchi graph with random {±1}
coefficients {bC}C∈H, and let Γ = D + dI where D is the degree matrix and d is the average
degree of the Kikuchi graph. Then, with probability at least 1− 1

poly(n) over the randomness of
{bC}C∈H, ∥∥∥Γ−1/2AbΓ−1/2

∥∥∥
2
6 O

(√
r log n

d

)
.

Proof. Let Ãb = Γ−1/2AbΓ−1/2. We again use the trace power method ‖Ãb‖`2 6 tr((Γ−1Ab)
`)

where we choose an even ` = 2dr log2 ne. Observe that in expectation, Eb tr((Γ−1Ab)
`)

counts the closed walks that use each hyperedge an even number of times. This is ex-
actly the same as Lemma 4.3.4 where we count closed walks in an unsigned Kikuchi

66

graph assuming there is no even cover of size 6 `. Thus, Lemma 4.3.4 shows that

Eb tr((Γ−1Ab)
`) 6 2`nr

(
`

d

)`/2

6 O
(
`

d

)`/2

when ` > r log2 n. Then, by Markov’s inequality, for any λ > 0,

Prb

[
‖Ãb‖2 > λ

]
= Prb

[
‖Ãb‖`2 > λ`

]
6 λ−` ·Eb tr((Γ−1Ab)

`) 6 O
(

`

λ2d

)`/2

Choosing λ = O(
√
`/d) completes the proof.

We can complete the proof of Theorem 7.0.1 for even k.

Proof of Theorem 7.0.1 for even k. Let Ab be the signed Kikuchi graph with signs {bC}C∈H,
let Γ = D + dI where D is the degree matrix and d is the average degree of the Kikuchi
graph, and let Ãb = Γ−1/2AbΓ−1/2. The certification algorithm is simply to compute
‖Ãb‖2. Since Ab � ‖Ãb‖2 · Γ, and tr(Γ) = 2(n

r)d, by Lemma 7.1.1,

ψ(x) = Eq. (7.1) 6
1

(n
r)d
‖Ãb‖2 · tr(Γ) 6 O

(√
r log n

d

)

using the fact that x�r ∈ {±1}(
n
r) and (x�r)>Γx�r = tr(Γ). There is some constant C

such that when m > Cn log n · (n
r)

k
2−1ε−2, by Eq. (4.2) the average degree d > 1

2(
r
n)

k/2m =
C
2 r log n · ε−2, thus giving us ψ(x) 6 ε. This completes the proof.

7.2 Refuting semirandom odd arity XOR

Our proof of Theorem 7.0.1 for the odd arity case closely mimics the steps taken in prov-
ing the hypergraph Moore bound for odd arity hypergraphs (Theorem 4.4.1). Given a
semirandom k-XOR instance ψ on hypergraph H with random signs {bC}C∈H, we first
apply the following hypergraph decomposition algorithm (a variant of Algorithm 4.4.2)
to decompose the hypergraph into subhypergraphs H(1), . . . ,H(k−1). The main differ-
ence compared to Algorithm 4.4.2 is that in the final step, we add the “leftover” hyper-
edges toH(1) instead of an extraH(0).

Algorithm 7.2.1 (Hypergraph decomposition). Given a k-uniform hypergraph H on n
vertices and m hyperedges, and thresholds τ1, . . . , τk−1 > 2, we partition H into hyper-
graphsH(1), . . . ,H(k−1) via the following algorithm.

1. Set t = k− 1 andHcurrent := H.

67

2. Set counter s = 1. While there is T ⊆ [n] such that |T| = t and |{C ∈ Hcurrent : T ⊆ C}| >
τt:
(a) Choose T satisfying the condition and let H(t)

s be a subset of {C ∈ Hcurrent :
T ⊆ C} of size τt.

(b) Add all clauses inH(t)
s toH(t).

(c) Delete all clauses inH(t)
s toHcurrent.

(d) Increment s by 1.
3. Decrement t by 1. If t > 0, go back to step 2; otherwise take the remaining clauses

in Hcurrent and partition them into n parts F1, . . . , Fn where each clause C goes to
some Fi such that i ∈ C. Add F1, . . . , Fn toH(1) and terminate.

Notations and parameters. Throughout this section we will use the following nota-
tions.

• In Algorithm 7.2.1, we set thresholds τt = max
{

1,
(n

r
) k

2−t
}
· 4kε−2.

• In the decomposition, each H(t) contains pt groups H(t)
1 , . . . ,H(t)

pt where group

H(t)
i has a center T(t)

i of size t, and for each C ∈ H(t)
i , we write C̃ = C \ T(t)

i .

• Each |H(t)
i | = τt, with the exception that |H(1)

i | 6 τ1 may have different sizes (the

leftover hyperedges in Algorithm 7.2.1). Let mt := ∑
pt
i=1 |H

(t)
i | be the total number

of hyperedges inH(t).

• When t = 1 and m > Ckn log n · (n
r)

k
2−1ε−4 for a large enough constant C, we have

m > nτ1, hence p1 6
m
τ1
+ n 6 2m

τ1
. Thus, we will use ptτt 6 2m for all t ∈ [k− 1].

• For each t ∈ [k − 1], the colored Kikuchi graph (V, E) obtained from H(t) =

(H(t)
1 , . . . ,H(t)

pt) (from Definition 4.4.6) has edges |E| = αt ∑
pt
i=1

(
|H(t)

i |
2

)
6 1

2 αtmtτt,

where αt ≈ (2n
r)

r−(k−t) is the number of edges contributed by each distinct pair
C, C′ ∈ Hi (see Observation 4.4.8).

With these notations and parameters in mind, we can write ψ(x) as

ψ(x) =
1
m

k−1

∑
t=1

∑
C∈H(t)

bCxC =
1
k

k−1

∑
t=1

ψt(x)

where ψt(x) :=
k
m

pt

∑
i=1

∑
C∈H(t)

i

bCxC =
k
m

pt

∑
i=1

xTi ∑
C∈H(t)

i

bCxC̃ . (7.2)

Essentially, each ψt is the sub-instance of ψ restricted to the partition H(t). Recall that
for the purpose of showing existence of even covers, we only need to focus on oneH(t).
For refutation however, we need to certify a bound on ψt(x) for all t ∈ [k− 1].

68

Lemma 7.2.2 (Refuting each ψt). Fix an odd k ∈N, t ∈ [k− 1], and let 2k 6 r 6 n/8. There
is a constant C such that given a semirandom k-XOR instance ψ with n variables and m >

Ckn log n(n
r)

k
2−1ε−4 clauses for ε ∈ (0, 1/2), and suppose ψt is the subinstance from Eq. (7.2)

obtained by the hypergraph decomposition algorithm (Algorithm 7.2.1), then with probability
1− 1

poly(n) over the random signs, we can certify that ψt(x) 6 ε in nO(r) time.

Lemma 7.2.2 immediately completes the proof of Theorem 7.0.1 for odd k.

Proof of Theorem 7.0.1 by Lemma 7.2.2. Given the hypergraphH, we apply the hypergraph
decomposition algorithm (Algorithm 7.2.1) with thresholds τ1, . . . , τk−1 and obtain subin-
stances ψ1, . . . , ψk−1 as in Eq. (7.2). For each t ∈ [k − 1], we can certify that ψt(x) 6 ε

by Lemma 7.2.2 with high probability, which immediately implies the desired bound
ψ(x) 6 ε.

Edge deletion process. The proof of Lemma 7.2.2 requires deleting the “bad” edges
from the signed Kikuchi matrix A(t)

b via a similar deletion process as the one used in the
proof of Theorem 4.4.1, but with some parameter η > 1 instead of 1 and an additional
equalizing step:

Start with the colored Kikuchi graph, and delete every edge {S, T} caused
by a pair of clauses C, C′ ∈ H(t)

i such that S or T has more than η edges that
C or C′ participates in.

Suppose ρ < 1 is the maximum fraction of edges deleted among all pairs
of clauses. Then, for every i ∈ [pt] and every distinct pair C, C′ ∈ H(t)

i ,
we delete (additional) edges caused by C, C′ arbitrarily such that exactly ρ

fraction of edges are deleted.

Observation 7.2.3 (Uniform deletion). The final step in the above edge deletion process
ensures that every pair C, C′ contributes the same number of edges ((1− ρ)αt to be exact)
in the Kikuchi graph.

Mirroring the proof of Claim 4.4.10 yields the following generalization.

Lemma 7.2.4 (Deletion rate). Suppose a subhypergraph H(i) satisfies that for any s > i and
any T ⊆ [n] with |T| = s, the number of hyperedges in H(i) containing T is at most τs, then
the deletion process with parameter η > 1 satisfies

Pr{S,T}∼EC,C′
[{S, T} deleted] 6

4k

η
·
b k+i

2 c

∑
s=i

τs

(r
n

)b k+i
2 c−s

.

Proof. The proof is identical to the proof of Claim 4.4.10. Eq. (4.3) holds with an addi-
tional 1/η factor due to Markov’s inequality. The lemma statement then follows imme-
diately from Eq. (4.4).

69

Proof of Lemma 7.2.2 via the Cauchy-Schwarz trick and the deletion process.

Proof of Lemma 7.2.2. We apply the Cauchy-Schwarz trick to ψt from Eq. (7.2):

ψt(x)2 6
k

m2

pt

∑
i=1

x2
Ti
·

pt

∑
i=1

 ∑
C∈H(t)

i

bCxC̃


2

6
kpt

m2

pt

∑
i=1

∑
C,C′∈H(t)

i

bCbC′xC̃xC̃′

6
kptmt

m2 +
kpt

m2

pt

∑
i=1

∑
C 6=C′∈H(t)

i

bCbC′xC⊕C′ (7.3)

since x ∈ {±1}n, bC ∈ {±1} and ∑
pt
i=1 |H

(t)
i | = mt. For the first term, since for all

t ∈ [k− 1], we set τt > 4kε−2 and pt 6 2m/τt 6 mε2

2k , thus

kptmt

m2 6
ε2

2
. (7.4)

We can now focus our attention on the second term in Eq. (7.3).

Given H(t) and its partitions H(t)
1 , . . . ,H(t)

pt of size τt, and signs {bC}C∈H(t) , let A(t)
b

be the signed Kikuchi matrix defined in Definition 7.0.3, which is the signed version of
the colored Kikuchi graph (V, E) from Definition 4.4.6. Recall from Observation 4.4.8
that each distinct pair C, C′ ∈ H(t)

i contributes αt ≈ (2n
r)

r−(k−t) edges in the graph.
Thus, similar to Eq. (7.1) in the even case, we can write the second term of Eq. (7.3) as a
quadratic form:

ft(x) :=
kpt

m2

pt

∑
i=1

∑
C 6=C′∈H(t)

i

bCbC′xC⊕C′ =
kpt

2αtm2 (x�r)>A(t)
b x�r (7.5)

where x�r ∈ {±1}(2n
r) such that for S ∈ [n]× [2] with S = (S(1), S(2)) (green and blue

elements), the S-entry of x�r is xS(1)⊕S(2) .
We proceed to certify an upper bound on ft(x). Given the signed Kikuchi matrix

A(t)
b , we first apply the deletion process with parameter η = Bkε−2 for some large

enough constant B. With the chosen thresholds τs, Lemma 7.2.4 states that the dele-
tion probability ρ is at most

ρ 6
4k

η
·
b k+t

2 c

∑
s=t

4kε−2 ·max

{
1,
(n

r

) k
2−s
}
·
(r

n

)b k+t
2 c−s

6
1
2

,

since s 6 b k+t
2 c in the summation and b k+t

2 c >
k+1

2 for all t > 1.

70

Let Â(t)
b be the Kikuchi matrix after the deletion process. By Observation 7.2.3, each

distinct pair C, C′ ∈ H(t)
i contributes exactly (1− ρ) fraction of the original edges. Thus,

we have
(x�r)> Â(t)

b x�r = (1− ρ) · (x�r)>A(t)
b x�r . (7.6)

Next, we follow the same argument as the proof of Lemma 7.1.1 to analyze Â(t)
b ,

using the norm bound of Lemma 4.4.9. Let Γ = D + dI where D is the degree matrix
and d is the average degree, and let Ãb = Γ−1/2Â(t)

b Γ−1/2. To bound ‖Ãb‖2, we again

use the trace power method ‖Ãb‖`2 6 tr((Γ−1Â(t)
b)`) where we choose an even ` =

2dr log2 ne. Observe that in expectation, Eb tr((Γ−1Ab)
`) counts the closed walks that

use each hyperedge an even number of times. This is exactly the same as Lemma 4.4.9
where we count closed walks in an unsigned Kikuchi graph assuming there is no even
cover of size 6 `. Furthermore, dS,i 6 η is automatically satisfied after the deletion
process. Thus, we can directly apply Lemma 4.4.9 and show that

Eb tr
(
(Γ−1Â(t)

b)`
)
6 2`nr

(
2η`

d

)`/2

6 O
(

η`

d

)`/2

when ` > r log2 n. Then, by Markov’s inequality, we have that Prb

[
‖Ãb‖2 > O

(√
η`
d

)]
6

1
poly(n) .

Thus, with high probability we have Â(t)
b � O

(√
η`
d

)
· Γ, then since tr(Γ) = 4|E|,

(x�r)> Â(t)
b x�r 6 O

(√
η`

d

)
· tr(Γ) = O

(√
η`

d

)
· |E| .

Next, let f̂t(x) = kpt
2αtm2 (x�r)> Â(t)

b x�r. By Observation 4.4.8, we have

d > (
r

2n
)k−t

pt

∑
i=1

(
|H(t)

i |
2

)
when 2k 6 r 6 n/8. Plugging in parameters |E| = αt ∑

pt
i=1

(
|H(t)

i |
2

)
, ptτt 6 2m, η =

Bkε−2, and ` = 2dr log2 ne, standard calculations show that

f̂t(x) 6 O(1)
kpt

αtm2

√
η`

d
|E| 6 O(1)

kpt

m2

√√√√η`

(
2n
r

)k−t pt

∑
i=1

(
|H(t)

i
2

)

6 O(1)

√
ηr log n

mτt

(
2n
r

)k−t
.

Suppose m > Ckn log n · (n
r)

k
2−1ε−4 for some large enough constant C. We split into

cases:

71

1. For t 6 k−1
2 , we set τt = (n

r)
k
2−t · 4kε−2, thus f̂t(x) 6 ε2

4 .

2. For t > k+1
2 , we set τt = 4kε−2, thus f̂t(x) 6 ε2

4 (
n
r)

k
4−

t
2 < ε2

4 .

Therefore, by calculating ‖Ãb‖2, which can be done in nO(r) time, we can certify that
f̂t(x) 6 ε2

4 . Combined with Eq. (7.6) and the bound of ρ 6 1/2, we can certify that

ft(x) 6
1

1− ρ
· f̂t(x) 6

ε2

2
,

and with Eq. (7.4), we can certify an upper bound on Eq. (7.3):

ψt(x)2 6 (7.4) + (7.5) 6
ε2

2
+ ft(x) 6 ε2 ,

completing the proof.

72

Chapter 8

Efficient Algorithms for Semirandom
Planted CSPs

In this chapter, we prove Theorem 6.2.1. We first define the semirandom planted CSP
model that we work with and explain some of the subtleties in the definition. Our model
is the natural one that arises if we wish to enforce independent randomness (for each
clause) in the literal negations, while still fixing a particular satisfying assignment.

Definition 8.0.1 (k-ary Boolean CSPs). A CSP instance Ψ with a k-ary predicate P : {±1}k →
{0, 1} is a set of m constraints on variables x1, . . . , xn of the form

P
(
`(~C)1x~C1

, `(~C)2x~C2
, . . . , `(~C)kx~Ck

)
= 1 .

Here, ~C ranges over a collection ~H of scopes1 (a.k.a. clause structure) of k-tuples of n
variables and `(~C) ∈ {±1}k are “literal negations”, one for each ~C in ~H. We let valΨ(x)
denote the fraction of constraints satisfied by an assignment x ∈ {±1}n, and we define
the value of Ψ, val(Ψ), to be maxx∈{±1}n valΨ(x).

Definition 8.0.2 (Semirandom planted k-ary Boolean CSPs). Let P : {±1}k → {0, 1} be
a predicate. We say that a distribution Q over {±1}k is a planting distribution for P if
Pry←Q[P(y) = 1] = 1.

We say that an instance Ψ with predicate P is a semirandom planted instance with
planting distribution Q if it is sampled from a distribution Ψ(~H, x∗, Q) where

(1) the scopes ~H ⊆ [n]k and planted assignment x∗ ∈ {±1}n are arbitrary, and
(2) Ψ(~H, x∗, Q) is defined as follows: for each ~C ∈ ~H, sample literal negations `(~C)←

Q(`(~C)� x∗~C), where “�” denotes the element-wise product of two vectors. That

1We additionally allow ~H to be a multiset, i.e., that multiple clauses can contain the same ordered set
of variables.

73

is, Pr[`(~C) = `] = Q(` � x∗~C) for each ` ∈ {±1}k. Then, add the constraint

P(`(~C)1x~C1
, `(~C)2x~C2

, . . . , `(~C)kx~Ck
) = 1 to Ψ.

Notice that because Q is supported only on satisfying assignments to P, it follows that
if Ψ← Ψ(~H, x∗, Q), then x∗ satisfies Ψ with probability 1.

A (fully) random planted CSP, e.g., as defined in [FPV15], is generated by first sam-
pling ~H ← [n]k uniformly at random, and then sampling Ψ ← Ψ(~H, x∗, Q). The differ-
ence in the semirandom planted model is that we allow ~H to be worst case.

Notice that in Definition 8.0.2, there are some choices of Q for which the planted
instance becomes easy to solve. In the case of, e.g., 3-SAT, one could set the planting
distribution Q to be uniform over all 7 satisfying assignments, which results in the literal
negations in each clause being chosen uniformly conditioned on x∗ satisfying the clause.
However, by simply counting how many times the variable xi appears negated versus
not negated and taking the majority vote, we recover x∗ with high probability [BHL+02,
JMS07].

Unlike in the case of random planted CSPs, we cannot hope to recover the planted
assignment x∗ exactly in the semirandom setting. Indeed, the scopes ~H may not use
some variable xi at all, and so we cannot hope to recover x∗i ! Thus, our goal is instead
to recover an assignment x that has nontrivially large value, ideally value 1− ε for arbi-
trarily small ε. Our main result, stated formally below, gives an algorithm to accomplish
this task.

Theorem 8.0.3 (Formal Theorem 6.2.1). Let k ∈ N be constant. There is a polynomial-
time algorithm that takes as input a k-CSP Ψ and outputs an assignment x with the following

guarantee. If Ψ is a semirandom planted k-CSP with m > cknk/2 · log3 n
ε9 constraints drawn

from Ψ(~H, x∗, Q), then with probability 1− 1/ poly(n) over Ψ, the output x of the algorithm
has valΨ(x) > 1− ε. Here, c is a universal constant.

In particular, setting ε = 1/ polylog(n), if m > Õ(nk/2), then with high probability over
Ψ← Ψ(~H, x∗, Q), the algorithm outputs x with valΨ(x) > 1− o(1).

Similar to random planted CSPs [FPV15] and the refutation setting [AOW15, RRS17,
AGK21, GKM22, HKM23], our proof of Theorem 8.0.3 goes through a reduction to noisy
k-XOR. Here, we restate our result for solving noisy k-XOR.

Theorem (Restatement of Theorem 6.2.3). Let η ∈ [0, 1/2), let k, n ∈N, and let ε ∈ (0, 1).

Let m > cnk/2 · k4 log3 n
ε5(1−2η)4 for a universal constant c. There is a polynomial-time algorithmA that

takes as input a k-XOR instance ψ with constraint hypergraphH and outputs two disjoint sets
A1(H),A2(ψ) ⊆ H with the following guarantees: (1) for any instance ψ with m constraints,
|A1(H)| 6 εm and A1(H) only depends on H, and (2) for any x∗ ∈ {±1}n and any k-
uniform hypergraph H with at least m hyperedges, with probability at least 1 − 1/ poly(n)

74

over ψ← ψ(H, x∗, η), it holds that A2(ψ) = Eψ ∩ (H \A1(H)).

Organization. The rest of the chapter is organized as follows. First, in Section 8.1,
we give an overview of our algorithm for noisy planted k-XOR. In Section 8.2, we prove
Theorem 8.0.3 from Theorem 6.2.3 by reducing semirandom planted CSPs to noisy XOR.
In Sections 8.3 and 8.4, we prove Theorem 6.2.3; Section 8.3 handles the reduction from
k-XOR to “bipartite k-XOR”, and then Section 8.4 gives the algorithm for the bipartite
k-XOR case.

As we will see in Section 8.1, we will encounter various notions of relative graph
approximations, including cut, SDP, and spectral approximation. These are discussed
in Section 8.5, and we also show a separation between SDP and spectral approximation.

8.1 Technical overview

In this section, we give an overview of the proof of Theorem 6.2.3 and our algorithm
for noisy planted k-XOR. We defer discussion of the reduction from general k-CSPs to k-
XOR used to obtain Theorem 8.0.3 to Section 8.2. There, we explain the additional chal-
lenges encountered in the semirandom case as compared to the random case [FPV15,
Section 4]. Somewhat surprisingly, the reduction is complicated and quite different
from the random planted case or even the semirandom refutation setting, where the
reduction to XOR is straightforward.

We now explain Theorem 6.2.3. As is typical in algorithm design for k-XOR, the case
when k is even is considerably simpler than when k is odd. For the purpose of this
overview, we will focus mostly on the even case, and only briefly discuss the additional
techniques for odd k in Section 8.1.5.

Notation. Given a k-XOR instance ψ on hypergraph H ⊆
(

[n]
k

)
with m = |H| and

right-hand sides {bC}C∈H, we define ψ(x) := ∑C∈H bC ∏i∈C xi to be a degree-k polyno-
mial mapping {±1}n → [−m, m]. We note that valψ(x) = 1

2 + 1
2m ψ(x) ∈ [0, 1] is the

fraction of constraints in ψ satisfied by x. Moreover, we will write xC := ∏i∈C xi.

Unless otherwise stated, we will use φ to denote a 2-XOR instance and ψ to denote a
k-XOR instance for any k > 2.

We note that for even arity k-XOR, we have valψ(x) = valψ(−x), and so it is only
possible for the optimal solution to be unique up to a global sign. We will abuse termi-
nology and say that x∗ is the unique optimal assignment if ±x∗ are the only optimal
assignments, and we will say that we have recovered x∗ exactly if we obtain one of±x∗.

75

8.1.1 Approximate recovery for 2-XOR from refutation

First, let us focus on the case of k = 2, the simplest case, and let us furthermore suppose
that we only want to achieve the weaker goal of recovering an assignment of value
1− η − o(1). (Note that we do need the stronger guarantee of Theorem 6.2.3 to solve
general planted CSPs in Theorem 8.0.3.)

For 2-XOR, this goal is actually quite straightforward to achieve using 2-XOR refu-
tation as a blackbox. Let us represent the 2-XOR instance φ as a graph G on n ver-
tices, along with right-hand sides bij for each edge (i, j) ∈ E. Recall that we have
bij = x∗i x∗j with probability 1 − η, and bij = −x∗i x∗j otherwise. Note that by concen-
tration, valφ(x∗) = 1− η ± o(1) with high probability.

We now make the following observation. Let us suppose that we sample the noise in
two steps: first, we add each (i, j) ∈ E to a set E′with probability 2η independently; then
for each (i, j) ∈ E′ we set bij to be uniformly random from {±1}. Using known results
for semirandom 2-XOR refutation, it is possible to certify, via an SDP relaxation, that no
assignment x can satisfy (or violate) more than 1

2 + o(1) fraction of the constraints in E′.
Thus, we can simply solve the SDP relaxation for φ and obtain a degree-2 pseudo-

expectation Ẽ in the variables x1, . . . , xn over {±1}n that maximizes φ(x). Let φE′ be
the subinstance containing only the constraints in E′, and let φE\E′ be the subinstance
containing only the constraints in E \ E′, which are uncorrupted. We have Ẽ[valφ(x)] >
1− η − o(1), and the guarantee of refutation implies that Ẽ[valφE′ (x)] 6 1

2 + o(1). As
valφ(x) = (1− 2η) · valφE\E′ (x) + 2η · valφE′ (x), we therefore have that Ẽ[valφE\E′ (x)] >

1− o(1), i.e., Ẽ satisfies 1− o(1) fraction of the constraints in E \ E′. Then, applying
the standard Gaussian rounding, we obtain an x that satisfies 1−

√
o(1) fraction of the

constraints in E \ E′ and thus has value valφ(x) > 1− η − o(1) (as any x must satisfy at
least 1

2 − o(1) fraction of the constraints in E′, with high probability over the noise).
One interesting observation is that in the above discussion, we can additionally al-

low E′ to be an arbitrary subset of E of size 2ηm. Indeed, this is because the rounding
only “remembers” that Ẽ[valφE\E′ (x)] has value 1− o(1). As we shall see shortly, this is
the key reason that the reduction breaks down for k-XOR.

8.1.2 The challenges for k-XOR and our strategy

Unfortunately, the natural blackbox reduction to refutation given in Section 8.1.1 does
not generalize to k-XOR for k > 3. Following the approach described in the previous
section, given a k-XOR instance ψ, one can solve a sum-of-squares SDP and obtain a
pseudo-expectation Ẽ where Ẽ[valψ(x)] > 1− η − δ and Ẽ[valψE\E′ (x)] > 1− δ as be-

fore, where δ ∼ 1/ polylog(n) when m & nk/2, due to the guarantees of refutation
algorithms [AGK21]. However, unlike 2-XOR where we have Gaussian rounding, for
k-XOR there is no known rounding algorithm that takes a pseudo-expectation Ẽ with

76

Ẽ[valψE\E′ (x)] > 1− δ and outputs an assignment x such that valψE\E′ (x) > 1− f (δ), for
some f (·) such that f (δ) → 0 as δ → 0. In fact, if we only “remember” that ψE\E′ has
value 1− δ, then it is NP-hard to find an x with value > 1/2 + δ even when δ = n−c for
some constant c > 0, assuming a variant of the Sliding Scale Conjecture [BGLR93]2 (see
e.g. [MR10, Mos15] for more details).

As we have seen, while semirandom k-XOR refutation allows us to efficiently ap-
proximate and certify the value of the planted instance, the challenge lies in the rounding
of the SDP, where the goal is to recover an assignment x. This is a technical challenge
that does not arise in the context of CSP refutation, as there we are merely trying to
bound the value of the instance. As a result, new ideas are required to address this
challenge.

Reduction from k-XOR to 2-XOR for even k. One could still consider the following
natural approach. For simplicity, let k = 4. Given a 4-XOR instance ψ, we can write
down a natural and related 2-XOR instance φ, as follows.

Definition 8.1.1 (Reduction to 2-XOR). Let ψ be a 4-XOR instance, and let φ be the 2-
XOR defined as follows. The variables of φ are y{i,j} and correspond to pairs of variables
{xi, xj}, and for each constraint xixjxi′xj′ = bi,j,i′,j′ in ψ, we split {i, j, i′, j′} into {i, j}
and {i′, j′} arbitrarily and add a constraint y{i,j}y{i′,j′} = bi,j,i′,j′ to φ. See Fig. 8.1 for an
example. This reduction easily generalizes to k-XOR for any even k.

321 654

1

2

87

3

4

5

6

2

3

+1

7

8

+1 –1 –1

–1

–1

Figure 8.1: An example of the 2-XOR instance φ from a 4-XOR instance ψ.

By following the approach for 2-XOR described in Section 8.1.1, we can recover an
assignment y that satisfies 1− η − o(1) fraction of the constraints in φ. However, we
need to recover an assignment x to the original k-XOR ψ, and it is quite possible that
while y is a good assignment to φ, it is not close to x⊗2 for any x ∈ {±1}n. If this
happens, we will be unable to recover a good assignment to the 4-XOR instance ψ.

2Note that we do need the Sliding Scale Conjecture, as the hardness shown in [MR10] is not strong
enough; it only proves hardness for δ > (log log n)−c, whereas we have δ ∼ 1/ polylog(n).

77

The key reason that this simple idea fails is because, unlike for random noisy XOR,
the assignment y recovered is not necessarily unique, and we cannot hope for it to be in
the semirandom setting! For random noisy XOR, one can argue that with high proba-
bility, y will be equal to x∗⊗2, and then we can immediately decode and recover x∗ up
to a global sign, i.e., we recover ±x∗. But for semirandom instances, the situation can
be far more complex.

Approximate 2-XOR recovery does not suffice for 4-XOR. When constructing the 2-
XOR instance φ from the 4-XOR ψ (Definition 8.1.1), it may be the case that φ can be
partitioned into multiple disconnected clusters (or have very few edges across different
clusters), even when the hypergraph H of ψ is connected; see Fig. 8.1 for example. By
the algorithm described in Section 8.1.1, we can get an assignment y that satisfies 1−
η − o(1) fraction of the constraints within each cluster.

The main challenge is to combine the information gathered from each cluster to re-
cover an assignment x for the original 4-XOR ψ. Unfortunately, we do not know of
a way to obtain a good assignment x based solely on the guarantee that y satisfies
1− η − o(1) fraction of constraints in each cluster. The issue occurs because the same
variable i ∈ [n] can appear in different clusters, e.g., y{1,2} and y{2,3} lie in different
clusters in Fig. 8.1, and the recovered assignments in each cluster may implicitly choose
different values for xi because of the noise. Indeed, even if the local optimum is con-
sistent with x∗, there can still be multiple “good” assignments that achieve 1− η − o(1)
value on the subinstance restricted to a cluster. So, unless the SDP can certify unique
optimality of x∗, standard rounding techniques such as Gaussian rounding will merely
output a “good” y, which may be inconsistent with x∗ and thus can choose inconsistent
values of xi across the different clusters.

Exact 2-XOR recovery implies exact 4-XOR recovery. This leads to our main insight:
if the subinstance of φ admits a unique local optimal assignment y∗ (restricted to the
cluster) that matches the planted assignment up to a sign, i.e., y∗{i,j} = ±x∗i x∗j , then for
each edge in the cluster we know y∗{i,j}y

∗
{i′,j′} = x∗i x∗j x∗i′x

∗
j′ , and so the local constraints

that are violated must be exactly the corrupted ones. Moreover, if the SDP can certify
the uniqueness of the local optimal assignment for a cluster, then the SDP solution will
be a rank 1 matrix y∗y∗>, and so we can precisely identify which constraints in φ are
corrupted. By repeating this for every cluster, we can identify all corrupted constraints
in the original 4-XOR ψ (except for the small number of “cross cluster” edges), and thus
achieve the guarantee stated in Theorem 6.2.3.

The general algorithmic strategy. The above discussion suggests that given a k-XOR
instance ψ, we should first construct the 2-XOR φ, and then decompose the constraint
graph G of φ into pieces in some particular way so that the induced local instances have
unique solutions. Namely, the examples suggest the following algorithmic strategy.

78

Strategy 1 (Algorithm Blueprint for even k). Given a noisy k-XOR instance ψ with
planted assignment x∗ and m constraints, we do the following:

(1) Construct the 2-XOR instance φ described in Definition 8.1.1, which is a noisy
2-XOR on nk/2 variables with planted assignment y∗. Moreover, there is a
one-to-one mapping between constraints in φ and ψ.

(2) Let G be the constraint graph of φ. Decompose G into subgraphs G1, . . . , GT
while only discarding a o(1)-fraction of edges such that each subgraph Gi sat-
isfies “some property”. For each subgraph Gi, we define φi to be the subin-
stance of φ corresponding to the constraints in Gi. The goal is to identify a
local property that the Gi’s satisfy so that (1) we can perform the decompo-
sition efficiently, and (2) for each subinstance φi, we can “recover y∗ locally”,
i.e., we can find an assignment y(i) to the 2-XOR instance φi that is consistent
with the planted assignment y∗.

(3) As each y(i) is consistent with y∗, the constraints in φi violated by y(i) must be
precisely the corrupted constraints in φi. Hence, for the constraints that appear
in one of the φi’s, we have determined exactly which ones are corrupted.

(4) We have thus determined, for all but o(m) constraints, precisely which ones
are corrupted in the original k-XOR instance ψ. (Note that this is the stronger
guarantee that we achieve in Theorem 6.2.3.) By discarding the corrupted con-
straints along with the o(m) constraints where we “give up”, we thus obtain
a system of k-sparse linear equations with m(1− η − o(1)) equations that has
at least one solution (namely x∗), and so by solving it we obtain an x with
valψ(x) > 1− η − o(1).

8.1.3 Information-theoretic exact recovery from relative cut approxi-
mation

Following Strategy 1, the first technical question to now ask is: given a noisy 2-XOR
instance φ with n variables, m� n constraints, and planted assignment x∗, what condi-
tions do we need to impose on the constraint graph G so that we can recover x∗ (up to
a sign) exactly? As a natural first step, we investigate what conditions are required so
that we can accomplish this information-theoretically.

Fact 8.1.2. Let G = (V, EG) be an n-vertex graph, and let H = (V, EH) be a subgraph of G
where EH ⊆ EG. Let LG, LH be the unnormalized Laplacians of G and H. Consider a noisy
planted 2-XOR instance φ on G with planted assignment x∗ ∈ {±1}n (Definition 6.2.2), and
suppose EH is the set of corrupted edges. Suppose that for every x ∈ {±1}n \ {~1,−~1}, it holds
that x>LHx < 1

2 x>LGx. Then, x∗ and −x∗ are the only two optimal assignments to φ.

79

Note that the condition x>LHx < 1
2 x>LGx for x /∈ {~1,−~1} implies that G is con-

nected, as otherwise LG has a kernel of dimension > 2, which would contradict this
assumption.

Proof. Let x ∈ {±1}n be any assignment. We wish to show that φ(x) is uniquely maxi-
mized when x = x∗,−x∗. We observe that

φ(x) = ∑
(i,j)∈EG

xixjbij = ∑
(i,j)∈EG

xixjx∗i x∗j − 2 ∑
(i,j)∈EH

xixjx∗i x∗j .

Hence, by replacing x with x� x∗, without loss of generality we can assume that x∗ =~1.
Now, let DG, DH and AG, AH be the degree and adjacency matrices of G and H, so that
LG = DG − AG and LH = DH − AH. We thus have that

2φ(x) = x>AGx− 2x>AHx = x>(DG − 2DH)x− x>(LG − 2LH)x

= 2(|EG| − 2|EH|)− x>(LG − 2LH)x .

By assumption, if x ∈ {±1}n and x 6= ~1,−~1, then we have that x>(LG − 2LH)x > 0,
which implies that φ(x) < φ(~1), and finishes the proof.

Fact 8.1.2 shows that if we can argue that x>LHx < 1
2 x>LGx for every x ∈ {±1}n \

{~1,−~1}, then at least information-theoretically we can uniquely determine x∗. Observe
that if we view x as the signed indicator vector of a subset S ⊆ [n], then x>LGx =

EG(S, S̄), the number of edges in G crossing the cut defined by S, and similarly for
x>LHx. So, one can view the condition in Fact 8.1.2 as saying that the subgraph H
needs to be a (one-sided) cut sparsifier of G, i.e., it needs to roughly preserve the size of
all cuts in G. The following relative cut approximation result of Karger [Kar94] shows
that this will hold with high probability when H is a randomly chosen subset of G,
provided that the minimum cut in G is not too small.

Lemma 8.1.3 (Relative cut approximation [Kar94]). Let η ∈ (0, 1). Suppose an n-vertex
graph G has min-cut cmin > 12 log n

η , and suppose H is a subgraph of G by selecting each edge
with probability η. Then, with probability 1− o(1),

(1− δ)x>LGx 6
1
η
· x>LHx 6 (1 + δ)x>LGx , for all x ∈ {±1}n

for δ =
√

12 log n
ηcmin

.

With Lemma 8.1.3 and Fact 8.1.2 in hand, we now have at least an information-
theoretic algorithm with the same guarantees as in Theorem 6.2.3. We follow the strat-
egy highlighted in Strategy 1. To decompose the graph G, we recursively find a min cut
and split if it is below the threshold in Lemma 8.1.3. Notice that this discards at most

80

O(n log n) = o(m) constraints (for m � n log n), and these are precisely the constraints
that we “give up” on and do not determine which ones are corrupted. Then, with high
probability the local optimal assignment is consistent with x∗, and so locally we have
learned exactly which constraints are corrupted. Hence, we have produced two sets
of constraints: E1, the o(1)-fraction of edges discarded during the decomposition, and
E2 = (G \ E1) ∩ Eφ, which is exactly the set of corrupted constraints after discarding E1.
We note that it is a priori not obvious that this is achievable even for an exponential-time
algorithm, as even though the 2n-time brute force algorithm will find the best assign-
ment x to φ, it may not necessarily be x∗, and so the set of constraints violated by the
globally optimal assignment might not be Eφ.

8.1.4 Efficient exact recovery from relative spectral approximation

Information-theoretic uniqueness implies that the planted assignment x∗ is the unique
optimal assignment. But can we efficiently recover x∗? One natural approach is to sim-
ply solve the basic SDP relaxation of φ: for X ∈ Rn×n, maximize φ(X) := ∑(i,j)∈G Xijbij

subject to X � 0, X = X>, and diag(X) = I. If the optimal SDP solution is simply
X = x∗x∗>, then we trivially recover x∗ from the SDP solution. We thus ask: does the
min cut condition of Fact 8.1.2 and Lemma 8.1.3 imply that x∗x∗> is the unique optimal
solution to the SDP? Namely, is the min cut condition sufficient for the SDP to certify
that x∗ is the unique optimal assignment?

Unfortunately, it turns out that this is not the case, and we give a counterexample
in Section 8.5. We thus require a stronger condition than the min cut one in order to
obtain efficient algorithms. Nonetheless, an analogue of Fact 8.1.2 continues to hold,
although now we require a stronger version that holds for all SDP solutions X, not just
x ∈ {±1}n. This stronger statement shows the SDP can certify that x∗ is the unique
optimal assignment if and only if a certain relative spectral approximation guarantee
holds for the corrupted edges.

Lemma 8.1.4 (SDP-certified uniqueness from relative spectral approximation). Let G =

(V, EG) be an n-vertex connected graph, and let H = (V, EH) be a subgraph of G where EH ⊆
EG. Let LG, LH be the unnormalized Laplacians of G and H. Consider a noisy planted 2-XOR
instance φ on G with planted assignment x∗ ∈ {±1}n (Definition 6.2.2), and suppose EH is
the set of corrupted edges.

The SDP relaxation of φ satisfies

max
X�0, X=X>, diag(X)=I

φ(X) = φ(x∗) = |EG| − 2|EH| ,

where X = x∗x∗> is the unique optimum if and only if G and H satisfy

〈X, LH〉 <
1
2
〈X, LG〉 , ∀X � 0, X = X>, diag(X) = I, X 6=~1~1> .

81

Proof. Recall that each e = {i, j} ∈ E corresponds to a constraint xixj = be where be =

x∗i x∗j if e ∈ EG \ EH and be = −x∗i x∗j if e ∈ EH, meaning that φ(X) = ∑{i,j}∈G\E Xijx∗i x∗j −
∑{i,j}∈E Xijx∗i x∗j . Without loss of generality, we can assume that x∗ =~1 and that φ(X) =
1
2〈X, AG − 2AH〉, where AG, AH are the adjacency matrices of G and H.

Note that LG = DG − AG and LH = DH − AH, and tr(DG) = 2|EG|, tr(DH) = 2|EH|.
For any X � 0 with diag(X) = I,

〈X, AG − 2AH〉 = 〈X, (DG − LG)− 2(DH − LH)〉 = 2(|EG| − 2|EH|) + 〈X, 2LH − LG〉 .

Suppose 〈X, LH〉 < 1
2〈X, LG〉 for all X 6= ~1~1>. Since 〈~1~1>, LG〉 = 〈~1~1>, LH〉 = 0, we

have that the maximum of 1
2〈X, AG − 2AH〉 is |EG| − 2|EH| and X = ~1~1> is the unique

maximum.
For the other direction, suppose there is an X 6= ~1~1> such that 〈X, LH〉 > 1

2〈X, LG〉.
Then, φ(X) > |EG| − 2|EH| = φ(~1~1>), meaning that~1~1> is not the unique optimum.

Relative spectral approximation from uniform subsamples. We now come to a key
technical observation. Suppose that H is a spectral sparsifier of G, so that v>(1

η LH)v is

(1± δ)v>LGv for any v ∈ Rn. Then clearly 〈X, LH〉 < 1
2〈X, LG〉 if η < 1/2 and δ = o(1),

as we can write X = ∑n
i=1 λiviv>i , and

〈X, LH〉 =
n

∑
i=1

λiv>i LHvi 6 η(1 + δ)
n

∑
i=1

λiv>i LGvi = η(1 + δ) · 〈X, LG〉 <
1
2
〈X, LG〉 .

Furthermore, note that above we only required that LH � η(1 + δ)LG, i.e., we only use
the upper part of the spectral approximation.

We are now ready to state the key relative spectral approximation lemma. We ob-
serve that when H is a uniformly random subsample of G and G has a spectral gap and
minimum degree polylog(n), then with high probability LH � η(1 + δ)LG. We note
that, while we do not provide a formal proof, the same argument using the lower tail of
Matrix Chernoff can also establish a lower bound on LH, which proves that H is indeed
a spectral sparsifier of G.

Lemma 8.1.5 (Relative spectral approximation from uniform subsamples). Let η ∈ (0, 1).
Suppose G = (V, E) is an n-vertex graph with minimum degree dmin (self-loops allowed) and
spectral gap λ2(L̃G) = λ such that dminλ > 18

η log n, where L̃G := D−1/2
G LGD−1/2

G is the nor-
malized Laplacian. Let H be a subgraph of G obtained by selecting each edge with probability
η. Then, with probability at least 1−O(n−2),

LH � η(1 + δ) · LG

for δ =
√

18 log n
ηdminλ .

82

Proof. First, note that~1 lies in the kernel of both LG and LH, and because of the spectral
gap of G, dim(ker(LG)) = 1. Therefore, recalling that LG = D1/2

G L̃GD1/2
G , it suffices to

prove that ∥∥∥(L̃†
G)

1/2D−1/2
G LHD−1/2

G (L̃†
G)

1/2
∥∥∥

2
6 η(1 + δ) .

Here L̃†
G is the pseudo-inverse of L̃G, and ‖L̃†

G‖2 6 1/λ because G has spectral gap λ.
We will write X := (L̃†

G)
1/2D−1/2

G LHD−1/2
G (L̃†

G)
1/2 for convenience.

Note that LG = ∑e∈E Le, where Le � 0 is the Laplacian of a single edge e and ‖Le‖2 =

2. Let Xe = (L̃†
G)

1/2D−1/2
G LeD−1/2

G (L̃†
G)

1/2 if e is chosen in H and 0 otherwise. Then,
X = ∑e∈E Xe and ‖E[X]‖2 = η. Moreover, each Xe satisfies Xe � 0 and ‖Xe‖2 6
‖L̃†

G‖2 · ‖D−1
G ‖2 · ‖Le‖2 6 2

dminλ . Thus, by Matrix Chernoff (Fact 2.4.2),

Pr [‖X‖2 > η(1 + δ)] 6 n · exp
(
−δ2η

3
· dminλ

2

)
6 O(n−2)

as long as 18 log n
ηdminλ 6 δ2 6 1.

Finishing the algorithm. By Lemmas 8.1.4 and 8.1.5, we can thus recover x∗ exactly if
the constraint graph G of φ has a nontrivial spectral gap and minimum degree dmin >
polylog(n). To finish the implementation of Strategy 1, we thus need to explain how
to algorithmically decompose any graph G into subgraphs G1, . . . , GT, each with rea-
sonable min degree and nontrivial spectral gap, while only discarding a o(1)-fraction of
the edges in G. This is the well-studied task of expander decomposition, for which we
appeal to known results [KVV04, ST11, Wul17, SW19].

This completes the high-level description of the algorithm in the even k case. Below,
we summarize the steps of the final algorithm.

Algorithm 8.1.6 (Algorithm for k-XOR for even k).
Input: k-XOR instance ψ on n variables with m constraints and constraint hyper-

graphH.
Output: Disjoint sets of constraints A1,A2 ⊆ H such that |A1| 6 o(m) and only

depends onH, and A2 = (H \A1) ∩ Eψ.
Operation:

1. Construct the 2-XOR instance φ with constraint graph G, as described in
Definition 8.1.1.

2. Remove small-degree vertices and run expander decomposition on G to
produce expanders G1, . . . , GT. Set A1 to be the set of discarded con-
straints of size o(m).

3. For each i ∈ [T], solve the basic SDP on the subinstance φi defined by

83

the constraints Gi. Let A(i)
2 denote the set of constraints violated by the

optimal local SDP solution.

4. Output A1 and A2 =
⋃T

i=1A
(i)
2 .

8.1.5 The case of odd k

We are now ready to briefly explain the differences in the case when k is odd. For the
purposes of this overview, we will focus only on the case of k = 3. Recall that we are
given a 3-XOR instance ψ, specified by a 3-uniform hypergraph H ⊆

(
[n]
3

)
, as well as

the right-hand sides bC ∈ {±1} for C ∈ H, where bC = x∗C with probability 1− η and
bC = −x∗C otherwise and x∗ ∈ {±1}n is the planted assignment.

We now produce a 4-XOR instance using the well-known “Cauchy-Schwarz trick”
from CSP refutation [CGL07]. The general idea is to, for any pair of clauses (C, C′) that
intersect, add the “derived constraint” xCxC′ = bCbC′ to the 4-XOR instance. Notice that
if, e.g., C = {u, i, j} and C′ = {u, i′, j′}, then xu appears twice on the left-hand side,
and thus the constraint is xixjxi′xj′ = bCbC′ . Given this 4-XOR, we produce a 2-XOR
following a similar strategy as in Definition 8.1.1. The above description omits many
technical details, which we handle in Sections 8.3 and 8.4; we remark here that these
are the same issues that arise in the CSP refutation case, and we handle them using the
techniques in [GKM22].

We have thus produced a 2-XOR instance φ that is noisy but not in the sense of Defi-
nition 6.2.2. Indeed, each edge e in φ is “labeled” by a pair (C, C′) of constraints in ψ, and
e is noisy if and only if exactly one of (C, C′) is, and so the noise is not independent across
constraints. Nonetheless, we can still follow the general strategy as in Algorithm 8.1.6.
The main technical challenge is to argue that the relative spectral approximation guar-
antee of Lemma 8.1.5 holds even when the noise has the aforementioned correlations,
and we do this in Lemma 8.4.7. This allows us to recover, for most intersecting pairs
(C, C′), the quantity ξ(C)ξ(C′), where ξ(C) = −1 if C is corrupted, and is 1 otherwise,
i.e., bC = x∗Cξ(C); we do not determine ξ(C)ξ(C′) if and only if the pair (C, C′) corre-
sponds to an edge e that was discarded during the expander decomposition.

However, we are not quite done, as we would like to recover ξ(C) for most C, but we
only know ξ(C)ξ(C′) for most intersecting pairs (C, C′). Let us proceed by assuming
that we know ξ(C)ξ(C′) for all intersecting pairs (C, C′), and then we will explain how
to do a similar decoding process when we only know most pairs. Let us fix a vertex
u, and let Hu denote the set of C ∈ H containing u. Now, we know ξ(C)ξ(C′) for all
C, C′ ∈ Hu, and so by Gaussian elimination we can determine ξ(C) for all C ∈ Hu up
to a global sign. Now, we know that the vector {ξ(C)}C∈Hu should have roughly η|Hu|
entries that are −1. So, choosing the global sign that results in fewer −1’s, we thus
correctly determine ξ(C) for all C ∈ Hu. We can then repeat this process for each choice

84

of u to decode ξ(C) for all C.
Of course, we only actually know ξ(C)ξ(C′) for most intersecting pairs (C, C′). This

implies that for most choices of u, the graph Gu with vertices Hu and edges (C, C′) if
we know ξ(C)ξ(C′) is obtained from the complete graph on vertices Hu and deleting
some o(1)-fraction of edges. This implies that Gu has a connected component of size
(1− o(1))|Hu|, and again via Gaussian elimination and picking the proper global sign,
we can determine ξ(C) on this large connected component. By repeating this process
for each choice of u, we thus recover ξ(C) for most u.

8.2 From planted CSPs to noisy XOR

In this section, we show how to use Theorem 6.2.3 to prove Theorem 8.0.3. Before we
delve into the formal proof, we will first explain the reduction given in [FPV15]. We
begin with some definitions.

Setup. Let Ψ be sampled from Ψ(~H, x∗, Q), where x∗ ∈ {±1}n, ~H ⊆ [n]k, and Q is a
planting distribution for the predicate P. Let Q(y) = ∑S⊆[k] Q̂(S)∏i∈S yi be the Fourier
decomposition of Q, where Q̂(S) = 1

2k ∑y∈{±1}k Q(y)∏i∈S yi ∈ [−2−k, 2−k]. Recall (Def-

inition 8.0.2) that Ψ is specified by a collection ~H ⊆ [n]k of scopes, along with a vector
`(~C) ∈ {±1}k for each ~C ∈ ~H of literal negations.

Definition 8.2.1. Let S ⊆ [k] be nonempty. Let ψ(S,+) be the |S|-XOR instance obtained
by, for each constraint ~C in Ψ, adding the constraint ∏i∈S x~Ci

= ∏i∈S `(~C)i. Similarly,

let ψ(S,−) have constraints ∏i∈S x~Ci
= −∏i∈S `(~C)i.

We make use of the following simple claim.

Claim 8.2.2. For each nonempty S ⊆ [k], ψ(S,+) is a noisy |S|-XOR instance (Definition 6.2.2)
with planted assignment x∗ and noise η = 1

2(1− 2kQ̂(S)). Similarly, ψ(S,−) is a noisy |S|-
XOR instance with planted assignment x∗ and noise η = 1

2(1 + 2kQ̂(S)).

Proof. For each ~C, the literal negation `(~C) is sampled such that Pr[`(~C) = `] = Q(`�
x∗~C), where � denotes the element-wise product. This is equivalent to sampling y ← Q

and setting `(~C) = y � x∗~C. It thus follows that the probability that the constraint ~C

produces a corrupted constraint in ψ(S,+) is

Pry←Q

[
∏
i∈S

yi = −1

]
=

1
2

(
1−Ey←Q

[
∏
i∈S

yi

])
=

1
2
(1− 2kQ̂(S)) ,

and is independent for each ~C. A similar calculation handles the case of ψ(S,−).

85

With the above observations in hand, we can now describe the reduction in [FPV15].
First, their reduction requires the algorithm to have a description of the distribution
Q. Given Q, the algorithm then finds the smallest S such that Q̂(S) is nonzero. Since
they know the exact value of Q̂(S), they can determine its sign correctly. Suppose that
Q̂(S) > 0 (the other case is similar). Then, by solving the |S|-XOR instance ψ(S,+),
they recover the planted assignment of ψ(S,+) exactly.3 But this planted assignment is
precisely x∗, and so they have also recovered the planted assignment of ψ.

The aforementioned reduction clearly does not generalize to the semirandom set-
ting, as in general the subinstances ψ(S,±) will not uniquely determine x∗. Furthermore,
their reduction additionally requires knowing Q, and while it is not too unreasonable to
assume this for random planted CSPs (as it is perhaps natural for the algorithm to know
the distribution), in the semirandom setting this assumption is a bit strange because we
want to view semirandom CSPs as “moving towards” worst case ones.

We now prove Theorem 8.0.3 from Theorem 6.2.3.

Proof of Theorem 8.0.3 from Theorem 6.2.3. We will present the proof in three steps. First,
like [FPV15], we will assume that the algorithm is given a description of Q and we
will assume that each |Q̂(S)| is either 0 or at least 2−kε > 0.4 Then, we will remove
this assumption provided that Q(y) > 2ε for all y with Q(y) > 0, i.e., the every y
in the support of Q has some minimum probability. Finally, we will remove the last
assumption.

Step 1: the proof when we are given Q. For each S where Q̂(S) 6= 0, we construct the
instance ψ(S,+) (if Q̂(S) > 0) or ψ(S,−) (if Q̂(S) < 0). We then apply5 Theorem 6.2.3
to each such instance. Note that by Claim 8.2.2, the instance has noise η = 1

2(1 −
2k|Q̂(S)|) 6 1

2(1− ε) (because we picked the correct sign when choosing between ψ(S,+)

and ψ(S,−), and we assume |Q̂(S)| > 2−kε). Then, since m > cknk/2 · log3 n
ε9 and |S| 6 k,

by applying Theorem 6.2.3 with noise η and parameter ε′ := 2−kε, we obtain sets ~H(S,1)

(the discarded set) and ~H(S,2) (the corrupted constraints) where | ~H(S,1)| 6 ε′m and
~H(S,2) = (~H \ ~H(S,1)) ∩ Eψ(S) . Hence, for every constraint ~C ∈ ~H \ ~H(S,1), it follows
that we have learned ∏i∈S x∗~Ci

, where x∗ is the planted assignment for Ψ. By setting
~H′ := ~H \ ∪S:Q̂(S) 6=0

~H(S,1), it follows that we know ∏i∈S x∗~Ci
for all ~C ∈ ~H′ and S with

Q̂(S) 6= 0, where | ~H′| > (1− 2kε′)m = (1− ε)m.
We now solve the system of linear equations given by ∏i∈S x∗~Ci

for all ~C ∈ ~H′ and S

with Q̂(S) 6= 0 to obtain some assignment x ∈ {±1}n. As x∗ is a valid solution to these
equations, such an x exists, although it may not be x∗.

3Here, they also treat |Q̂(S)| as constant, since if |Q̂(S)| � 1/n, say, then their algorithm would not
succeed in recovering the planted assignment on the XOR instance.

4This assumption is implicit in [FPV15]; see the previous footnote.
5Note that Theorem 6.2.3 only applies when |S| > 2. When |S| = 1, there is a trivial algorithm.

86

The final step is to argue that for every ~C ∈ ~H′, x satisfies the constraint ~C, namely
that P(`(~C)1x~C1

, `(~C)2x~C2
, . . . , `(~C)kx~Ck

) = 1. Indeed, if this is true then we are done,
as x satisfies at least (1 − ε)m constraints in Ψ, and so we have obtained the desired
assignment.

Let ~C ∈ ~H′. We know that for every S with Q̂(S) 6= 0, we have that ∏i∈S x~Ci
=

∏i∈S x∗~Ci
. Hence, it follows that

Q(`(~C)� x) = ∑
S⊆[k]

Q̂(S)∏
i∈S

`(~C)ix~Ci
= ∑

S⊆[k]
Q̂(S)∏

i∈S
`(~C)ix∗~Ci

= Q(`(~C)� x∗) > 0 ,

where the last inequality is because `(~C) was sampled from the distribution Q(`(~C)�
x∗), and so it must be sampled with nonzero probability. As Q is supported only on
satisfying assignments to the predicate P, it follows that `(~C)� x∗ must also satisfy P.

Step 2: removing the dependence on Q assuming a lower bound on Q(y). First, we
observe that because k is constant, we can, for each S, guess a symbol {0,+,−}, where
0 denotes, informally, the belief that |Q̂(S)| < 2−kε, + denotes that Q̂(S) > 2−kε, and
− denotes that Q̂(S) 6 −2−kε. For each of the 32k

choices of guesses, i.e., functions
f : {S ⊆ [k]} → {0,+,−}, we run algorithm mentioned in the previous step. Namely,
for each S: (1) if f (S) = 0, then we ignore S, (2) if f (S) = +, then we run Theorem 6.2.3
on ψ(S,+) to obtain ~H(S,1) and ~H(S,2), and (3) if f (S) = −, then we run Theorem 6.2.3 on
ψ(S,+) to obtain ~H(S,1) and ~H(S,2). As before, we solve the system of linear equations to
obtain some assignment x(f) ∈ {±1}n. By enumerating over all possible choices of f ,
we obtain a list of at most 32k

= O(1) assignments. We then try all of them and output
the best one.

It thus remains to show that at least one of the assignments in the list has high
value. As one may expect, this will be the assignment x(f ∗), where f ∗ is the correct
label function. Indeed, when f = f ∗, then we are precisely running the algorithm in
Step 1, and as observed, after solving the linear system of equations we obtain an as-
signment x := x(f ∗) with the following property. For every ~C ∈ ~H′ and every S with
|Q̂(S)| > 2−kε, we have that ∏i∈S x~Ci

= ∏i∈S x∗~Ci
, where ~H′ ⊆ ~H has size > (1− ε)m.

Finally, we show that for every ~C ∈ ~H′, x satisfies the constraint ~C. Namely, we have
P(`(~C)1x~C1

, `(~C)2x~C2
, . . . , `(~C)kx~Ck

) = 1. Let ~C ∈ ~H′. We know that for every S with

87

|Q̂(S)| > 2−kε, we have that ∏i∈S x~Ci
= ∏i∈S x∗~Ci

. Hence, it follows that

∣∣∣Q(`(~C)� x)−Q(`(~C)� x∗)
∣∣∣ =

∣∣∣∣∣∣ ∑
S⊆[k]

Q̂(S)∏
i∈S

`(~C)ix~Ci
− ∑

S⊆[k]
Q̂(S)∏

i∈S
`(~C)ix∗~Ci

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
S⊆[k]:|Q̂(S)|<2−kε

Q̂(S)

(
∏
i∈S

`(~C)ix~Ci
−∏

i∈S
`(~C)ix∗~Ci

)∣∣∣∣∣∣
6 2k · 2−k+1ε .

Now, if we assume that Q(y) > 2ε for every y ∈ {±1}k with Q(y) > 0, then we have
Q(`(~C)� x) > 0, and so x satisfies the constraint P(`(~C)1x~C1

, . . . , `(~C)kx~Ck
) = 1.

Step 3: removing the lower bound on Q(y). In Step 2, we assumed that Q(y) > 2ε for
all y ∈ {±1}k with Q(y) > 0. However, we only used this fact in the final step, when we
argue that Q(`(~C)� x) > 0 by observing that Q(`(~C)� x) > Q(`(~C)� x∗)− 2ε > 0. To
remove the assumption, we will show that for at most 2k+2ε constraints ~C ∈ ~H, it holds
that Q(`(~C) � x∗) 6 2ε. This then implies that x satisfies at least (1− ε − 2k+2ε)m =

(1−O(ε))m constraints, which finishes the proof.
Let S denote the set of ~C ∈ ~Hwhere Q(`(~C)� x∗) 6 2ε. Observe that the probability,

over the choice of `(~C), that ~C ∈ S is at most 2k · 2ε = 2k+1ε, and moreover this is
independent for each ~C ∈ ~H. Thus, by a Chernoff bound, it follows that with probability
> 1− exp(−O(εm)) > 1− 1/ poly(n), we have |S| 6 2 · 2k+1ε, and so we are done.

Remark 8.2.3 (Tolerating fewer constraints for structured Q’s). We have shown that
the above algorithm succeeds in finding an assignment x that satisfies at least (1 −
O(ε))m constraints when m > nk/2 · poly(log n, 1/ε). However, if the distribution Q
has |Q̂(S)| < 2−kε for all S with |S| > r, then we only need nr/2 · poly(log n, 1/ε) con-
straints. (If r = 0, then for small enough constant ε, Q will be supported on all of {±1}k,
and so any assignment satisfies all constraints. If r = 1, we require O(n · log n

ε) con-
straints; see Section C of [GHKM23].) Indeed, this follows because for such Q, the true
label function f ∗ will have f ∗(S) = 0 for any S with |S| > r. Hence, for this choice
of f ∗, we only call Theorem 6.2.3 on noisy t-XOR instances for t 6 r, and so we have
enough constraints. It therefore follows that the assignment x(f ∗) that we obtain for
the label function f ∗ will be, with high probability an assignment that satisfies at least
(1−O(ε))m constraints.

An example where this gives an improvement is the well-studied NAE-3-SAT (not-
all-equal-3SAT) predicate [AE98, ACIM01, DSS14]. Suppose Q is the uniform distribu-
tion over satisfying assignments to NAE-3-SAT: Q(x1, x2, x3) =

1
6 ·

1
4(3− x1x2 − x2x3 −

x1x3). Then, we only need m > Õ(n) constraints, even though it is a 3-CSP (k = 3).

88

8.3 From k-XOR to spread bipartite k-XOR

In this section, we begin the proof of Theorem 6.2.3. See Definition 6.2.2 for a reminder
of our semirandom planted k-XOR model ψ(H, x∗, η) given a k-uniform hypergraphH,
assignment x∗ ∈ {±1}n, and noise parameter η ∈ (0, 1/2). Recall also that Eψ denotes
the set of corrupted hyperedges.

We think ofA1(H) as the small set of edges that we discard (or give up on), and this
will only depend on the hypergraph H. For the rest of the graph, the algorithm will
correctly identify which edges are corrupted.

Our proof of Theorem 6.2.3 goes via a reduction to spread bipartite t-XOR instances
for t = 2, . . . , k, which are t-XOR instances with some additional desired structure.
Such instances were introduced in [GKM22] to study the refutation of semirandom k-
XOR instances. The reduction here is nearly identical to the corresponding reduction in
[GKM22, Section 4].

Definition 8.3.1 (Spread bipartite k-XOR). A p-bipartite k-XOR instance ψ on n vari-
ables with m constraints is defined by a collection of (k− 1)-uniform hypergraphsH =

{Hu}u∈[p] on the vertex set [n], as well as “right-hand sides” bu,C for each u ∈ [p] and
C ∈ Hu. There are two sets of variables of ψ: the “normal” variables x1, . . . , xn, and the
“special” variables y1, . . . , yp. The constraints of ψ are yu ∏i∈C xi = bu,C for each u ∈ [p],
C ∈ Hu.

We furthermore say that ψ is τ-spread if it has the following additional properties:
(1) |Hu| = m

p > 2b 1
2τ2 c and m

p is even for each u ∈ [p],

(2) For each u ∈ [p] and set Q ⊆ [n], degu(Q) 6 1
τ2 max(1, n

k
2−1−|Q|).

Analogously to Definition 6.2.2, we call ψ a semirandom planted instance with planted
assignment (x∗, y∗) and noise parameter η if the right-hand sides bu,C are generated by
setting bu,C = y∗u ∏i∈C x∗i with probability 1 − η and bu,C = −y∗u ∏i∈C x∗i otherwise,
independently for each choice of u, C. For a choice of x∗, y∗, H = {Hu}u∈[p], and η,
we call this distribution ψ({Hu}u∈[p], x∗, y∗, η). As before, if an edge (u, C) has bu,C =

−y∗u ∏i∈C x∗i , we call (u, C) a corrupted hyperedge, and we denote the set of corrupted
hyperedges in ψ by Eψ.

The main technical result of the paper is the following lemma, which gives an algo-
rithm to find the noisy constraints in a semirandom planted τ-spread bipartite k-XOR
instance.

Lemma 8.3.2 (Algorithm for τ-spread bipartite k-XOR). Let k > 2, n, p ∈ N, ε ∈ (0, 1),

η ∈ [0, 1/2), and let γ := 1− 2η > 0. Let τ 6 cγ√
k log n

, and let m > Cn
k−1

2
√

p · (k log n)3/2

τγ2ε3/2 for

some universal constants c, C. There is a polynomial-time algorithmA that takes as input an τ-
spread p-bipartite k-XOR instance ψ with constraint hypergraph H = {Hu}u∈[p] and outputs

89

two disjoint sets A1(H),A2(ψ) ⊆ H with the following guarantee: (1) for any instance ψ

with m constraints, |A1(H)| 6 εm and A1(H) only depends on H, and (2) for any x∗ ∈
{±1}n, y∗ ∈ {±1}p and any H = {Hu}u∈[p] with |H| := ∑u∈[p]|Hu| > m, with probability
1− 1

poly(n) over ψ← ψ({Hu}u∈[p], x∗, y∗, η), it holds that A2(ψ) = Eψ ∩ (H \A1(H)).

Note that as η → 1
2 , γ = 1− 2η → 0 and τ → 0, which blows up m. This is the

expected behavior since when η = 1
2 , it is impossible to recover the planted assignment

since the signs of the constraints are uniformly random.

8.3.1 Proof of Theorem 6.2.3 from Lemma 8.3.2

With Lemma 8.3.2, we can finish the proof of Theorem 6.2.3. The high-level idea of this
proof is very simple. First, we decompose the k-XOR instance ψ into subinstances ψ(t)

for each t = 2, . . . , k, using a hypergraph decomposition algorithm very similar to the
one used to prove the hypergraph Moore bound (Algorithm 4.4.2).

Algorithm 8.3.3.
Given: A semirandom (with noise η) k-XOR instance ψ with constraint hypergraph

H over n vertices, and a spread parameter τ ∈ (0, 1).
Output: For each t = 2, . . . , k, a semirandom (with noise η) planted τ-spread p(t)-

bipartite t-XOR instance ψ(t) with constraint hypergraph {H(t)
u }u∈[p(t)], along

with “discarded” hyperedgesH(1).
Operation:

1. Initialize: ψ(t) to the empty instance, and p(t) = 0 for t = 2, . . . , k.
2. Fix violations greedily:

(a) Find a maximal nonempty violating Q. That is, find Q ⊆ [n] of
size 1 6 |Q| 6 k − 1 such that deg(Q) = |{C ∈ H : Q ⊆ C}| >
1
τ2 max(1, n

k
2−|Q|), and deg(Q′) 6 1

τ2 max(1, n
k
2−|Q′|) for all Q′) Q.

(b) Let q = |Q|. Let u = 1 + p(k+1−q) be a new “label”, and define
H(k+1−q)

u to be an arbitrary subset of {C \ Q : C ∈ H, Q ⊆ C} of
size exactly 2 · b 1

2τ2 max(1, n
k
2−q)c.

(c) Set p(k+1−q) ← 1 + p(k+1−q), andH ← H \H(k+1−q)
u .

3. If no such Q exists, then put the remaining hyperedges inH(1).

Then, we run the algorithm in Lemma 8.3.2 to identify a set of corrupted constraints
and a small set of discarded constraints within each subinstance ψ(t). We then take the
union of these outputs to be the final output of the algorithm.

Proof of Theorem 6.2.3. We begin with the decomposition of ψ into ψ(2), . . . , ψ(k) along
with a set of “discarded” hyperedges H(1), which is done using Algorithm 8.3.3 with

90

spread parameter τ := c(1−2η)√
k log n

where c is the constant in Lemma 8.3.2. For each t =

2, . . . , k, ψ(t) is a semirandom (with noise η) planted τ-spread p(t)-bipartite t-XOR in-
stance specified by (t− 1)-uniform hypergraphs {H(t)

u }u∈[p(t)].

Let m(t) := ∑u∈[p(t)]|H
(t)
u |. Algorithm 8.3.3 has the following guarantees:

(1) The runtime is nO(k),
(2) For each t ∈ {2, . . . , k} and u ∈ [p(t)], |H(t)

u | = m(t)

p(t)
= 2b 1

2τ2 max(1, nt− k
2−1)c; in

particular, |H(t)
u | is even and is at least 2b 1

2τ2 c,
(3) For each t = 2, . . . , k, the instance ψ(t) is τ-spread,

(4) The number of “discarded” hyperedges is m(1) := |H(1)| 6 1
kτ2 n

k
2 ,

(5) For t ∈ {2, . . . , k}, each C ∈ H(t)
u is obtained by removing k − (t − 1) vertices

from an edge in the original hypergraph H. Thus, there is a one-to-one map
Decomp : H → H(1) ∪ ⋃k

t=2{H
(t)
u }u∈[p(t)], such that an edge C ∈ H is corrupted

if and only if the edge Decomp(C) is corrupted in the instance ψ(t) that it lies in.

For convenience, we denote γ := 1− 2η and β := 4C · (k log n)3/2

τγ2ε3/2 = 4C
c ·

k2 log2 n
γ3ε3/2 where

C, c are the constants in Lemma 8.3.2. The algorithm in Theorem 6.2.3 works as follows.
First, it runs Algorithm 8.3.3 to produce the instances ψ(2), . . . , ψ(k). Then, for each t =

2, . . . , k, if m(t) > n
t−1

2

√
p(t) · β, we run Lemma 8.3.2 on ψ(t) and obtain, with probability

1− 1/ poly(n), a set A(t)
1 where |A(t)

1 | 6
ε
2 m(t) and A(t)

2 = Eψ(t) \ A(t)
1 . Otherwise, if

m(t) < n
t−1

2

√
p(t) · β, we set A(t)

1 = H(t) and A(t)
2 = ∅. Finally, we output A1 := H(1) ∪⋃k

t=2 Decomp−1(A(t)
1) and A2 :=

⋃k
t=2 Decomp−1(A(t)

2), where Decomp is the mapping in
property (5) of Algorithm 8.3.3.

Note that m(t) = p(t)|H(t)
u | > p(t) · 1

2τ2 nt− k
2−1, which means p(t) 6 2τ2n

k
2−t+1m(t),

and since ∑t

√
m(t) 6

√
k ∑t m(t) 6

√
km by Cauchy-Schwarz, we have

k

∑
t=2

n
t−1

2

√
p(t) · β 6 O(τ) · n k

4
√

km · β 6 o(ε)m

as long as m � n
k
2 · kτ2β2/ε2. Moreover, m(1) 6 1

kτ2 n
k
2 =

log n
c2γ2 n

k
2 6 o(ε)m. One can

verify, by plugging in β, that the lower bound on m in Theorem 6.2.3 suffices.
By union bound over t, it thus follows that

|A1| 6 m(1) +
k

∑
t=2

ε

2
m(t) +

k

∑
t=2

n
t−1

2

√
p(t)β 6 εm ,

and A2 = Eψ \ A1. Moreover, by Lemma 8.3.2, A1 only depends on the hypergraph H.
This completes the proof.

91

8.4 Identifying noisy constraints in spread bipartite k-XOR

In this section, we prove Lemma 8.3.2. The proof will be decomposed into the following
steps. First, we take the semirandom planted bipartite k-XOR instance ψ and transform
it into a 2-XOR instance φ. Second, we decompose the constraint graph of φ into ex-
panders. For each expander in the decomposition, we argue that the SDP solution to
this subinstance is rank 1, and moreover agrees exactly with the planted assignment.
This allows us to identify, for each expanding subinstance, exactly which edges in φ are
errors. Finally, we use this information to identify the set of corrupted constraints in the
original instance ψ, which finishes the proof.

8.4.1 Setup and key notation

We now introduce the key notation that shall be used throughout this section. Let ψ

be the semirandom τ-spread p-bipartite k-XOR instance (recall Definition 8.3.1) with m
constraints given as the input to the algorithm. Recall that the instance ψ is specified
by a collection of p hypergraphs {Hu}u∈[p], where each Hu is a (k− 1)-uniform hyper-
graph on n vertices and |Hu| = m/p. Each constraint in ψ is specified by a pair (u, C)
where u ∈ [p], C ∈ Hu, and has a right-hand side bu,C ∈ {±1}, and the constraints are
yu ∏i∈C xi = bu,C, where {yu}u∈[p] and {xi}i∈[n] are variables. Because the instance ψ

is semirandom with noise parameter η and planted assignment (x∗, y∗), for each con-
straint (u, C) we have, with probability 1 − η independently, bu,C = y∗u ∏i∈C x∗i , and
otherwise bu,C = −y∗u ∏i∈C x∗i . Our goal is to output, in nO(k)-time, a set A1(H) of size
6 τm to discard, and then for the rest of the instance, identify exactly the corrupted
constraints, i.e., those for which bu,C = −y∗u ∏i∈C x∗i .

We now define the 2-XOR instance φ from ψ. An example is shown in Fig. 8.2.

Definition 8.4.1 (2-XOR instance φ from bipartite k-XOR ψ). For every u ∈ [p] and Hu,
we partitionHu arbitrarily into two setsH(L)

u andH(R)
u of equal size.

• If k is odd, then there are
(

n
k−1

2

)2
variables in φ, one variable z(S1,S2) for each pair

of sets S1, S2 ⊆ [n] where |S1| = |S2| = k−1
2 .

• If k is even, then there are 2
(

n
d k−1

2 e

)(
n
b k−1

2 c

)
variables in φ, one variable z(S1,S2)

for each pair of sets S1, S2 ⊆ [n] where either |S1| = d k−1
2 e and |S2| = b k−1

2 c or
|S1| = b k−1

2 c and |S2| = d k−1
2 e.

For each u ∈ [p], C ∈ H(L)
u and C′ ∈ H(R)

u , we arbitrarily partition C into sets S1 ∪ S2

and C′ into sets S′1 ∪ S′2, where |S1| = |S′1| = d
k−1

2 e and |S2| = |S′2| = b k−1
2 c. We then

add the constraint z(S1,S′2)
z(S2,S′1)

= bu,Cbu,C′ to φ.

It is intuitive to think of clauses from H(L)
u and H(R)

u as having different colors, and

92

each variable z(S1,S′2)
contains roughly k/2 of each color. See Fig. 8.2 for an example of a

2-XOR φ constructed from a bipartite k-XOR ψ.

Observation 8.4.2 (Size of φ). The number of variables in φ is at most nk−1 (for both
even and odd k). Since each |Hu| = m/p, |H(L)

u | = |H
(R)
u | = m

2p , and the number

of constraints in φ is exactly p · (m
2p)

2 = m2

4p . In particular, when m > n
k−1

2
√

p · β for

β = poly(log n) as assumed in Lemma 8.3.2, the average degree of φ is at least 1
4 β2.

Remark 8.4.3 (Corrupted constraints in φ). A constraint z(S1,S′2)
z(S2,S′1)

= bu,Cbu,C′ in φ is
corrupted if exactly one of bu,C and bu,C′ is corrupted in ψ. Thus, if each constraint in ψ

is corrupted with probability η ∈ (0, 1/2), then each constraint in φ is corrupted with
probability 2η(1− η) < 1/2. Note, however, that the constraints in φ are not corrupted
independently.

We need some more definitions about the constraint graph of φ.

Definition 8.4.4 (Constraint graph of φ). Let G(φ) = (V, E) be the constraint graph
of φ. Notice that each edge e ∈ E uniquely identifies u(e) ∈ [p] and CL(e) ∈ H

(L)
u(e),

CR(e) ∈ H
(R)
u(e). For each u ∈ [p], C ∈ H(L)

u , define G(L)
u,C(φ) to be the subgraph of G that

C participates in, i.e., with edge set {e ∈ E : u(e) = u, CL(e) = C}. We similarly define
G(R)

u,C′(φ) for C′ ∈ H(R)
u .

We next make the important observation that the degree of a vertex in G(L)
u,C(φ) is

upper bounded by the number of C′ ∈ H(R)
u sharing at least b k−1

2 c vertices. See Fig. 8.2
also for an illustration. Therefore, assuming that ψ is τ-spread, we have a maximum
degree bound on G(L)

u,C(φ) and G(R)
u,C′(φ) for all u ∈ [p], C ∈ H(L)

u and C′ ∈ H(R)
u .

Lemma 8.4.5 (Degree bounds for G(L)
u,C, G(R)

u,C′). Let ψ be an τ-spread p-bipartite k-XOR in-

stance. Then, for any u ∈ [p], C ∈ H(L)
u and C′ ∈ H(R)

u , the maximum degree of G(L)
u,C(φ),

G(R)
u,C′(φ) is at most 1/τ2.

Proof. Consider any C ∈ H(L)
u and two adjacent edges {z(S1,S′2)

, z(S2,S′1)
} and {z(S1,S′′2)

, z(S2,S′′1)
}

in G(L)
u,C(φ) formed by joining C = S1 ∪ S2 with C′ = S′1 ∪ S′2 and C′′ = S′′1 ∪ S′′2 ∈ H

(R)
u .

As the edges are adjacent, it must be the case that either S′1 = S′′1 or S′2 = S′′2 , which
means that |C′ ∩C′′| > b k−1

2 c. Thus, the degree of a vertex z(S1,S′2)
in G is upper bounded

by the maximum number of C′ ∈ H(R)
u that all share the same b k−1

2 c variables.

Suppose ψ is τ-spread, meaning that degu(Q) 6 1
τ2 max(1, n

k
2−1−|Q|) for Q ⊆ [n].

Since k
2 − 1− b k−1

2 c 6 0, we have that G(L)
u,c (φ) has maximum degree 6 1/τ2.

93

u
1

6
7

3
2

1

8
9

6
5

4

1

2

1

3

6

7

3

8

9

4

5

1

6

6

7

6

8

9

+1
–1

–1 +1

–1

–1+1

+1

Figure 8.2: An example of the 2-XOR instance φ from a bipartite 4-XOR ψ (Defini-
tion 8.4.1). On the left, H(L)

u consists of C1 = {1, 2, 3} and C2 = {4, 5, 6} (with green
vertices), and H(R)

u consists of C′1 = {1, 6, 7} and C′2 = {1, 8, 9} (with blue vertices). On
the right, the constraint graph G(φ) has vertices zS1,S2 where either |S1| = 2, |S2| = 1 or
|S1| = 1, |S2| = 2 (we can view S1, S2 as having green, blue vertices). Each edge corre-
sponds to two clauses in ψ; for example, the edge

{
z{1,2},{1}, z{3},{6,7}

}
comes from the

clauses C1 and C′1.
Corruptions. In the figure, we label a clause −1 if it is corrupted and +1 otherwise. An
edge in G is corrupted if exactly one of the two corresponding clauses in ψ is corrupted.
Degree of G(L)

u,C(φ). For C1 ∈ H
(L)
u , the subgraph G(L)

u,C1
(φ) corresponds to the edges

colored red, i.e., all edges that C1 participates in. The vertex z{1,2},{1} has degree 2 in

G(L)
u,C1

(φ) because |C′1 ∩ C′2| = 1.

8.4.2 Proof outline

With the setup in Section 8.4.1 in hand, our proof now proceeds in three conceptual
steps.

Step 1: graph pruning and expander decomposition. Suppose the instance φ has av-
erage degree d. We first prune the instance using Lemma 2.3.1 such that the resulting
constraint graph has minimum degree > εd while only removing ε fraction of the con-
straints, where ε = o(1). We further apply expander decomposition (Fact 2.3.2) to the
pruned instance to obtain subinstances φ1, . . . , φT while discarding only a ε fraction of
the constraints of φ such that the constraint graph of each φi has spectral gap Ω̃(ε2).

Step 2: relative spectral approximation and recovery of corrupted pairs. We show
that for each expanding subinstance φi, the basic SDP for the 2-XOR instance φi is equal
to x∗(x∗)>, where x∗ is the planted assignment for φ. That is, the SDP solution is rank
1 and agrees with the planted assignment for φ. We show this by arguing that, for each
φi, the Laplacian of the corrupted constraints in φi is a spectral sparsifier of the Laplacian
of the constraint graph of φi (see Lemma 8.1.4). Here, we crucially use that each such
constraint graph has large minimum degree and spectral gap.

94

From this, it is trivial to identify the corrupted edges in each φi, as they are the
ones violated by the SDP solution. We are not quite done yet, however, because each
constraint in φ corresponds to a pair of constraints in the original instance ψ.

Step 3: recovery of corrupted constraints from corrupted pairs. The previous step
shows that for all but a ε fraction of tuples (u, C, C′) where u ∈ [p], C ∈ H(L)

u , and
C′ ∈ H(R)

u , we can recover the product ξu(C)ξu(C′), where ξu(C) = −1 if (u, C) is noisy
in ψ, and is +1 otherwise. Because ε is small, it must be the case that for most u ∈ [p],
we know the product ξu(C)ξu(C′) (from Step 2) for most pairs (C, C′) with C ∈ H(L)

u

and C′ ∈ H(R)
u .

Suppose we knew ξu(C)ξu(C′) for all (C, C′) ∈ H(L)
u ×H(R)

u . Then, it is trivial to
decode ξu(C) up to a global sign. Formally, we could obtain z ∈ {±1}Hu where zC =

αξu(C) for some α ∈ {±1}. From this, it is easy to obtain ξu(C), as the fraction of C ∈ Hu

for which ξu(C) = −1 should be roughly η < 1
2 ; so, if z has < 1

2 -fraction of −1’s, then

z = ξu(C), and otherwise −z = ξu(C). This, however, requires |Hu| > Ω
(

log n
(1−2η)2

)
for

a high-probability result.

Additionally, we do not quite know ξu(C)ξu(C′) for all (C, C′) ∈ H(L)
u ×H(R)

u : we
only know this for all but a εu-fraction of the pairs. By forming a graph Gu where
we have an edge (C, C′) if (C, C′) is a pair where we know ξu(C)ξu(C′), we can thus
obtain such a z for all C in the largest connected component of Gu. Because Gu is ob-
tained by taking a complete biclique and deleting only a εu-fraction of all edges, the largest
connected component has size (1− εu)|Hu|, and so we can recover ξu(C) for all but a
εu-fraction of constraints inHu. We do this for each partition u, which finishes the proof.

8.4.3 Graph pruning and expander decomposition

This step is a simple combination of graph pruning and expander decomposition.

Lemma 8.4.6. Fix ε ∈ (0, 1). There is a polynomial-time algorithm such that, given a 2-XOR
instance φ whose constraint graph has m edges and average degree d, outputs subinstances
φ1, . . . , φT on disjoint variables with the following guarantees: φ1, . . . , φT contain at least 1− ε

fraction of the constraints in φ, and for each i ∈ [T], the constraint graph Gi of φi, after adding
some self-loops, has minimum degree at least 1

3 εd and λ2(L̃Gi) > Ω(ε2/ log2 m).

The self-loops in Lemma 8.4.6 are only for the analysis of L̃Gi and do not correspond
to actual constraints in φi. Observe that adding self-loops to a graph G does not change
the unnormalized Laplacian LG, but as DG (the degree matrix) increases, the spectral
gap of the normalized Laplacian, i.e. λ2(L̃G) = λ2(D−1/2

G LGD−1/2
G), may decrease. The

expander decomposition algorithm (Fact 2.3.2) guarantees that each piece, even after
adding self-loops to preserve degrees, has large spectral gap. This does not change the

95

subinstances φ1, . . . , φT, but in the next section, it is crucial that we use this stronger
guarantee to ensure a lower bound on the minimum degree.

Proof of Lemma 8.4.6. We first apply the graph pruning algorithm (Lemma 2.3.1) such
that the resulting instance has minimum degree > ε

3 d and at least (1− 2
3 ε)m constraints.

Then, we apply expander decomposition (Fact 2.3.2) that partitions the vertices of the
pruned graph G′ into V1, . . . , VT such that the number of edges across partitions is
at most ε

3 m, and for each i ∈ [T], the normalized Laplacian satisfies λ2(L̃G′{Vi}) >

Ω(ε2/ log2 m). Here we recall that G′{Vi} is the induced subgraph of G′ with self-loops
such that the vertices in G′{Vi} have the same degrees as in G′.

In total, we have removed at most εm edges. This completes the proof.

8.4.4 Rank-1 SDP solution from expansion and relative spectral ap-
proximation

We next show that for each subinstance φi obtained from Lemma 8.4.6, its constraint
graph G and the subgraph of corrupted edges H satisfy LH ≺ 1

2 LG. Recall from Lem-
mas 8.1.4 and 8.1.5 that this implies the basic SDP for the 2-XOR φi is rank 1 and agrees
with the planted assignment of φ.

The next lemma is analogous to Lemma 8.1.5 but differs in an important way: a con-
straint in φ is corrupted if and only if exactly one of the two corresponding constraints
in ψ is corrupted; thus, the corruptions in φ are correlated. This is why each constraint in
φ is obtained from one clause inH(L)

u and one clause inH(R)
u (recall Definition 8.4.1), so

that in the proof below we have independent randomness to perform a “2-step sparsifi-
cation” proof. It is also worth noting that the following lemma requires not just a lower
bound on the minimum degree and spectral gap of G but also that the original bipartite
k-XOR instance ψ is well-spread, which allows us to apply Lemma 8.4.5.

Same as Lemma 8.1.5, the following lemma is a purely graph-theoretic statement.

Lemma 8.4.7 (Relative spectral approximation with correlated subsamples). Suppose G =

(V, E) is an n-vertex graph with minimum degree dmin (self-loops and parallel edges allowed)
and spectral gap λ2(L̃G) = λ > 0. Let m1, m2 ∈N, η ∈ [0, 1/2), and let ξ

(1)
1 , . . . , ξ

(1)
m1 , ξ

(2)
1 , . . . , ξ

(2)
m2

be i.i.d. random variables that take value−1 with probability η and +1 otherwise. Suppose there
is an injective map that maps each edge e 7→ (c1(e), c2(e)) ∈ [m1]× [m2], and for each i ∈ [m1]

(resp. j ∈ [m2]) define G(1)
i (resp. G(2)

j) be the subgraph of G with edge set {e ∈ E : c1(e) = i}
(resp. {e ∈ E : c2(e) = j}). Moreover, suppose G(1)

i and G(2)
j have maximum degree 6 ∆ for

all i ∈ [m1], j ∈ [m2].

Let H be the subgraph of G with edge set
{

e ∈ E : ξ
(1)
c1(e)

ξ
(2)
c2(e)

= −1
}

. There is a universal

96

constant B > 0 such that if dminλ > B∆ log n, then with probability 1−O(n−2),

LH � max
(
(1 + δ) · 2η(1− η),

1
3

)
· LG

for δ =
√

B∆ log n
dminλ .

Let γ := 1− 2η > 0 since η < 1
2 . Notice that 2η(1− η) = 1

2(1− γ2), which ap-
proaches 1

2 as η → 1
2 . Thus, if δ 6 γ2, then (1+ δ) · 2η(1− η) 6 (1+ γ2) · 1

2(1− γ2) < 1
2 ,

and LH ≺ 1
2 LG suffices to conclude via Lemma 8.1.4 that the SDP relaxation on the ex-

panding subinstance is rank 1 and recovers the planted assignment, which also gives us
the set of corrupted constraints.

Proof of Lemma 8.4.7. First, note that by the definition of Laplacian and the spectral gap
of LG, span(~1) is exactly the null space of LG and is contained in the null space of LH.
Therefore, recalling that LG = D1/2

G L̃GD1/2
G , it suffices to prove that∥∥∥(L̃†

G)
1/2D−1/2

G LHD−1/2
G (L̃†

G)
1/2
∥∥∥

2
6 max

(
(1 + δ) · 2η(1− η),

1
3

)
. (8.1)

Here L̃†
G is the pseudo-inverse of L̃G, and ‖L̃†

G‖2 6 1/λ. For simplicity, for any graph
G′, we will write L̂G′ := (L̃†

G)
1/2D−1/2

G LG′D
−1/2
G (L̃†

G)
1/2. Thus,

L̂H = ∑
e∈E

1
(

ξ
(1)
c1(e)

ξ
(2)
c2(e)

= −1
)
· L̂e , and E[L̂H] = 2η(1− η) ∑

e∈E
L̂e .

Note that ∑e∈E L̂e = L̂G, a projection matrix, thus
∥∥∑e∈E L̂e

∥∥
2 = 1.

For each i ∈ [m1], we further define G(1)
i,+ and G(1)

i,− to be (random) edge-disjoint

subgraphs of G(1)
i where G(1)

i,+ has edge set
{

e ∈ E : c1(e) = i, ξ
(2)
c2(e)

= +1
}

and G(1)
i,−

has edge set
{

e ∈ E : c1(e) = i, ξ
(2)
c2(e)

= −1
}

. Note that G(1)
i,+, G(1)

i,− are independent of

ξ(1) = (ξ
(1)
1 , . . . , ξ

(1)
m1). By the maximum degree bound on G(1)

i , we have that
∥∥L

G(1)
i,+

∥∥
2

and
∥∥L

G(1)
i,−

∥∥
2 6

∥∥L
G(1)

i

∥∥
2 6 2∆. Thus,

∥∥∥L̂
G(1)

i,+

∥∥∥
2
,
∥∥∥L̂

G(1)
i,−

∥∥∥
2
6
∥∥∥L̂

G(1)
i

∥∥∥
2
6 2∆ ·

∥∥∥L̃†
G

∥∥∥
2
·
∥∥∥D−1

G

∥∥∥
2
6

2∆
dminλ

. (8.2)

Similarly, for j ∈ [m2], G(2)
j,+ and G(2)

j,− are (random) edge-disjoint subgraphs of G(2)
j inde-

pendent of ξ(2) = (ξ
(2)
1 , . . . , ξ

(2)
m2) such that

∥∥L̂
G(2)

j,+

∥∥
2 and

∥∥L̂
G(2)

j,−

∥∥
2 6

2∆
dminλ .

Now, we first fix ξ(2) ∈ {±1}m2 . Observe that we can write L̂H as

L̂H = ∑
i∈[m1]

1(ξ
(1)
i = +1) · L̂

G(1)
i,−

+ 1(ξ
(1)
i = −1) · L̂

G(1)
i,+

, (8.3)

97

and
E[L̂H|ξ(2)] = (1− η) ∑

i∈[m1]

L̂
G(1)

i,−
+ η ∑

i∈[m1]

L̂
G(1)

i,+

= ∑
e∈E

(
(1− η) · 1(ξ(2)c2(e)

= −1) + η · 1(ξ(2)c2(e)
= +1)

)
· L̂e

:= ∑
e∈E

wc2(e) · L̂e .

(8.4)

Here wc2(e) ∈ {η, 1− η}, thus
∥∥E[L̂H|ξ(2)]

∥∥
2 > η

∥∥∑e∈E L̂e
∥∥

2 = η.
We now split the analysis into two cases. Let η0 := 1/12.

Case 1: η > η0.
In light of Eq. (8.3), we define Xi := 1(ξ

(1)
i = +1) · L̂

G(1)
i,−

+ 1(ξ
(1)
i = −1) · L̂

G(1)
i,+

such

that L̂H = ∑i∈[m1]
Xi. Moreover, we have that Xi � 0 and ‖X‖2 6 2∆

dminλ almost surely
from Eq. (8.2). Thus, applying matrix Chernoff (Fact 2.4.2), we get

Prξ(1)

[∥∥∥L̂H

∥∥∥
2
> (1 + δ)

∥∥∥E[L̂H|ξ(2)]
∥∥∥

2

]
6 n · exp

(
−1

3
δ2
∥∥∥E[L̂H|ξ(2)]

∥∥∥
2
· dminλ

2∆

)
6 n · exp

(
−δ2ηdminλ

6∆

)
,

(8.5)

which is at most O(n−2) as long as δ2 > B1∆ log n
dminλ for a large enough constant B1.

Next, we similarly prove concentration for
∥∥E[L̂H|ξ(2)]

∥∥
2 over ξ(2). Recalling Eq. (8.4),

E[L̂H|ξ(2)] = ∑
e∈E

wc2(e) · L̂e = ∑
j∈[m2]

wj ∑
e∈G(2)

j

L̂e = ∑
j∈[m2]

wj · L̂G(2)
j

.

E[wj] = 2η(1− η), and
∥∥Eξ(2)E[L̂H|ξ(2)]

∥∥
2 = 2η(1− η)

∥∥∑e∈E L̂e
∥∥

2 = 2η(1− η). Since∥∥wj L̂G(2)
j

∥∥
2 6

2(1−η)∆
dminλ , we can apply matrix Chernoff again:

Prξ(2)

[∥∥∥E[L̂H|ξ(2)]
∥∥∥

2
> (1 + δ′) · 2η(1− η)

]
6 n · exp

(
−1

3
δ′2 · 2η(1− η) · dminλ

2(1− η)∆

)
(8.6)

which is at most O(n−2) as long as δ′2 > B2∆ log n
dminλ for a large enough constant B2. Com-

bining both tail bounds, by the union bound, we have that with probability at least
1−O(n−2),

∥∥L̂H
∥∥

2 6 (1 + δ) · 2η(1− η) as long as δ2 > B∆ log n
dminλ for a large enough B.

This establishes Eq. (8.1), proving the lemma for this case.

Case 2: η < η0. To handle this case, observe that the exact same analysis goes through
for H̃ = {e ∈ E : ξ

(1)
c1(e)

= −1 or ξ
(2)
c2(e)

= −1} ⊇ H. Indeed, similar to Eq. (8.3) and (8.4),

we have L̂H̃ = ∑i∈[m1]
X̃i where X̃i = 1(ξ

(1)
i = +1) · L̂

G(1)
i,−

+ 1(ξ
(1)
i = −1) · L̂

G(1)
i

(notice

98

the 2nd term is G(1)
i instead of G(1)

i,+), and

E[L̂H̃|ξ
(2)] = (1− η) ∑

i∈[m1]

L̂
G(1)

i,−
+ η ∑

i∈[m1]

L̂
G(1)

i
= ∑

e∈E
w̃c2(e) · L̂e = ∑

j∈[m2]

w̃j · L̂G(2)
j

,

where w̃j = 1 if ξ
(2)
j = −1 and η if ξ

(2)
j = +1, hence E[w̃j] = η + η(1− η) = η(2− η).

Moreover,
∥∥Eξ(2)E[L̂H̃|ξ

(2)]
∥∥

2 = η(2− η)
∥∥∑e∈E L̂e

∥∥
2 = η(2− η).

First, set η = η0, and let H̃0 be the random subgraph as defined above. Similar to
Eq. (8.5) and (8.6), we apply matrix Chernoff (Fact 2.4.2) and get that with probability

1 − O(n−2),
∥∥L̂H̃0

∥∥
2 6 (1 + δ) · η0(2 − η0) for δ =

√
B∆ log n

dminλ 6 1. In particular, this

means that LH̃0
� 2η0(2− η0)LG � 1

3 LG when η0 = 1/12.
Now, fix any η < η0. We can obtain a coupling between this case and the case when

η = η0 by randomly changing ξ
(1)
i and ξ

(2)
j from +1 to −1 (while not flipping the ones

with−1). Notice that H̃ is monotone increasing as we change any +1 to−1 (whereas H
is not!), thus we must have H̃ ⊆ H̃0 in this coupling. Then, as H ⊆ H̃, we have

LH � LH̃ � LH̃0
� 1

3
LG

with probability 1−O(n−2). This finishes the proof of Lemma 8.4.7.

8.4.5 Recovery of corrupted constraints from corrupted pairs

We have thus shown that, with probability > 1− 1/ poly(n), we can exactly recover the
set of corrupted constraints within each expanding subinstance φ1, . . . , φT. Recall that
after pruning and expander decomposition (Lemma 8.4.6), the expanding subinstances
contain a (1− ε)-fraction of all edges in the instance φ, and the set of edges removed
only depends on the constraint graph and not the right-hand sides of φ. As stated in
Observation 8.4.2, the instance φ has exactly m2/4p edges, and they correspond exactly
to the set {(u, C, C′) : u ∈ [p], C ∈ H(L)

u , C′ ∈ H(R)
u }, and moreover an edge e in φ is

corrupted if and only if exactly one of the two constraints (u, C), (u, C′) is corrupted in
the original instance ψ, where e corresponds to (u, C, C′). For each u ∈ [p] and C ∈ Hu =

H(L)
u ∪H(R)

u , let ξu(C) = −1 if (u, C) is corrupted in ψ, and 1 otherwise. It thus follows
that we have learned, for 1− ε fraction of all {(u, C, C′) : u ∈ [p], C ∈ H(L)

u , C′ ∈ H(R)
u },

the product ξu(C) · ξu(C′).
It now remains to show how to recover ξu(C) for most u ∈ [p], C ∈ Hu. For each

u ∈ [p], let Pu ⊆ {(C, C′) : C ∈ H(L)
u , C′ ∈ H(R)

u } such that we have determined
ξu(C) · ξu(C′), and let P = ∪u∈[p]Pu. We know that |P| > (1− ε)m2

4p . Let εu be chosen so

that |Pu| = (1− εu)
m2

4p2 , i.e., εu is the fraction of pairs in H(L)
u ×H(R)

u that were deleted

99

in Lemma 8.4.6. Notice that we have

(1− ε)
m2

4p
6 |P| = ∑

u∈[p]
|Pu| =

m2

4p2 ∑
u∈[p]

(1− εu)

=⇒ 1
p ∑

u∈[p]
εu 6 ε .

(8.7)

One can think of this problem as a collection of disjoint satisfiable (noiseless) 2-XOR
instances on Pu, where each Pu is a biclique (m

2p vertices on each side) with εu fraction of
edges are removed.

Algorithm 8.4.8 (Recover corrupted constraints from corrupted pairs).

Given: For each u ∈ [p], a set Pu ⊆ H(L)
u ×H(R)

u such that |Pu| = (1− εu)
m2

4p2 for
εu ∈ [0, 1], along with “right-hand sides” ξu(C) · ξu(C′) for each (C, C′) ∈ Pu.

Output: For each u ∈ [p], disjoint subsets A(1)
u ,A(2)

u ⊆ Hu.
Operation:

1. Initialize: A(1)
u ,A(2)

u = ∅ for each u ∈ [p].
2. For each u ∈ [p]:

(a) If εu > 1/3, set A(1)
u = Hu and A(2)

u = ∅.
(b) Else if εu < 1/3, let Gu be the graph with vertex setHu = H(L)

u ∪H
(R)
u

with edges given by Pu, and let Su be the size of the largest connected
component in Gu.

(c) As Su is connected in Gu, and we know ξu(C)ξu(C′) for each edge
(C, C′) in Gu, by solving a linear system of equations we obtain z ∈
{±1}Hu such that either zC = ξu(C) for all C ∈ Su, or zC = −ξu(C)
for all C ∈ Su. That is, zC = ξu(C) up to a global sign.

(d) Pick the global sign to minimize the number of C ∈ Su for which
zC = −1. Set A(1)

u = Hu \ Su and A(2)
u = {C ∈ Su : zC = −1}.

3. Output {A(1)
u }u∈[p], {A

(2)
u }u∈[p].

We now analyze Algorithm 8.4.8 via the following lemma.

Lemma 8.4.9. Let η ∈ [0, 1/2), and let |Hu| = m
p > 24k

(1−2η)2 log n and |Pu| = (1− εu)
m2

4p2

with εu ∈ [0, 1] for each u ∈ [p], and 1
p ∑u∈[p] εu 6 ε. The outputs of Algorithm 8.4.8

satisfy the following: (1) ∑u∈[p] |A
(1)
u | 6 4εm, and (2) with probability 1− n−k over the noise

{ξu(C)}u∈[p],C∈Hu , for every u ∈ [p] we have that A(2)
u = {C ∈ Hu : ξu(C) = −1} \ A(1)

u .

Proof. Suppose that εu < 1/3. Observe that Gu is a graph obtained by taking a biclique
with left vertices H(L)

u and right vertices H(R)
u , i.e., with m/2p left vertices and m/2p

100

right vertices. The following lemma shows that the largest connected component Su in
Gu has size at least m

p (1− εu).

Claim 8.4.10. Let Kn,n be the complete bipartite graph with n left vertices L and n right vertices
R. Let G be a graph obtained by deleting εn2 edges from Kn,n. Then, the largest connected
component in G has size > 2n(1− ε).

We postpone the proof of Claim 8.4.10 to the end of the section, and continue with
the proof of Lemma 8.4.9.

We now argue that we can efficiently obtain the vector z in Step (2c) of Algorithm 8.4.8.
Indeed, this is done as follows. First, pick one C0 ∈ Su arbitrarily, and set zC0 = 1. Then,
we propagate in a breadth-first search manner: for any edge (C, C′) in Su where zC is
determined, set zC′ = zC · ξu(C)ξu(C′). We repeat this process until we have labeled all
of Su. Notice that as Su is a connected component, fixing zC0 for any C0 ∈ Su uniquely
determines the assignment of all Su, thus we have obtained zC = ξu(C) up to a global
sign.

Now, we observe that Su does not depend on the noise in ψ. Indeed, this is because
the pruning and expander decomposition (and thus the graph Gu) depends solely on the
constraint graph G of the instance φ, and not on the right-hand sides of the constraints.
The following lemma thus shows that with high probability over the noise, the number
of C ∈ Su where ξu(C) = −1 is strictly less than 1/2|Su|. Hence, in Step (2d), by picking
the assignment ±z that minimizes the number of C ∈ Su with ξu(C) = −1, we see that
A(2)

u = {C ∈ Su : zC = −1} = {C ∈ Su : ξu(C) = −1}.

Claim 8.4.11. Let η ∈ (0, 1/2) be the corruption probability, and assume that p 6 nk and
m
p > 24k

(1−2η)2 log n. With probability 1− n−k over the noise in ψ, it holds that for each u ∈ [p]

with εu < 1/3, |{C ∈ Su : ξu(C) = −1}| < 1
2 |Su|.

We postpone the proof of Claim 8.4.11, and finish the proof of Lemma 8.4.9. We next
bound ∑u∈[p] |A

(1)
u |. By Eq. (8.7) we have that 1

p ∑u εu 6 ε. Thus,

∑
u:εu>1/3

|Hu| 6
m
p ∑

u:εu>1/3
3εu 6 3εm .

Moreover, by Claim 8.4.10 we have |Su| > (1− εu)|Hu| = (1− εu)
m
p . Thus,

∑
u:εu<1/3

|Hu \ Su| 6 ∑
u:εu<1/3

εu ·
m
p
6 εm .

Therefore, combining the two,

∑
u∈[p]
|A(1)

u | = ∑
u:εu<1/3

|Hu \ Su|+ ∑
u:εu>1/3

|Hu| 6 4εm ,

which finishes the proof of Lemma 8.4.9.

101

In the following, we prove Claims 8.4.10 and 8.4.11.

Proof of Claim 8.4.10. Let S1, . . . , St be the connected components of G. Let `i = |Si ∩ L|
and ri = |Si ∩ R|. The number of edges in G is at most ∑t

i=1 `iri.
Now, suppose that the largest connected component of G has size at most M. Then,

we have that `i + ri 6 M for all i ∈ [t]. Notice that the number of edges deleted from
Kn,n to produce G must be at least n2 − ∑t

i=1 `iri, and this is at most εn2. Hence, by
maximizing the quantity ∑t

i=1 `iri subject to `i + ri 6 M for all i ∈ [t] and ∑t
i=1 `i + ri =

2n, we can obtain a lower bound on the number of edges deleted from Kn,n in order for
the largest connected component of G to have size at most M. We have that

t

∑
i=1

`iri 6
t

∑
i=1

(
`i + ri

2

)2

6
M
2
·

t

∑
i=1

`i + ri

2
=

nM
2

,

where the first inequality is by the AM-GM inequality. Thus,

εn2 > n2 − nM
2

=⇒ M > 2n(1− ε) ,

which finishes the proof.

Proof of Claim 8.4.11. Let u be such that εu < 1/3, and let Su be the largest connected
component in Gu. Observe that Su is determined solely by the constraint graph of φ, and
in particular does not depend on the noise in φ (and hence on the noise in ψ). As p 6 nk

by assumption, it thus suffices to show that for each u ∈ [p], with probability 1− n−2k

it holds that |{C ∈ Su : ξu(C) = −1}| < 1
2 |Su|. Notice that |{C ∈ Su : ξu(C) = −1}|

is simply the sum of |Su| Bernoulli(η) random variables. By Hoeffding’s inequality,
with probability > 1− exp(−2δ2|Su|) it holds that |{C ∈ Su : ξu(C) = −1}| 6 (η +

δ)|Su|. We choose δ = 1
2(

1
2 − η) such that η + δ < 1

2 for η ∈ (0, 1
2). Then, by noting

that 2δ2|Su| > 2δ2(1− εu)|Hu| > 1
2(

1
2 − η)2 · 2

3 ·
m
p > 2k log n since m

p > 24k
(1−2η)2 log n,

Claim 8.4.11 follows.

8.4.6 Finishing the proof of Lemma 8.3.2

Proof of Lemma 8.3.2. We are given an τ-spread p-bipartite k-XOR instance ψ with con-
straint graph H = {Hu}u∈[p], where we recall from Definition 8.3.1 that (1) m = |H|
and each |Hu| = m

p > 2b 1
2τ2 c and m

p is even, and (2) for any Q ⊆ [n], degu(Q) 6

1
τ2 max(1, n

k
2−1−|Q|). For convenience, let m > n

k−1
2
√

p · β where β := C · (k log n)3/2

τγ2ε3/2 and

γ := 1− 2η ∈ (0, 1] since η ∈ [0, 1
2).

First, we construct the 2-XOR instance φ defined in Definition 8.4.1. As stated in Ob-
servation 8.4.2, the average degree is at least d := 1

4 β2, and furthermore, by Lemma 8.4.5,

102

the maximum degree of G(L)
u,C(φ) and G(R)

u,C′(φ) for any u ∈ [p], C ∈ H(L)
u and C′ ∈ H(R)

u

is bounded by ∆ := 1/τ2. The algorithm then follows the steps outlined in Section 8.4.2.

Step 1. We apply graph pruning and expander decomposition (Lemma 8.4.6) with
parameter ε′ := 1

4 ε, which decomposes φ into φ1, . . . , φT such that they contain 1− ε′

fraction of the constraints in φ, and their constraint graphs (after adding some self-
loops due to expander decomposition) have minimum degree dmin > 1

3 ε′d = 1
48 εβ2 and

spectral gap λ > Ω(ε′2/ log2 m) = Ω(ε2/(k2 log2 n)).

Step 2. We solve the SDP relaxation for each subinstance φi. Let G be the constraint
graph of φi (with at most N 6 nk−1 vertices) and H be the corrupted edges of G. We
apply the relative spectral approximation result (Lemma 8.4.7) with ξ

(1)
1 , . . . , ξ

(1)
m/2p (resp.

ξ
(2)
1 , . . . , ξ

(2)
m/2p) being {±1} random variables indicating whether each C ∈ H(L)

u (resp.

C′ ∈ H(R)
u) is corrupted. Moreover, the subgraphs G(1)

i and G(2)
j in Lemma 8.4.7 (which

are simply subgraphs of G(L)
u,C(φ) and G(R)

u,C′(φ)) have maximum degree 6 ∆ = 1/τ2.
Thus, we have that with probability 1−O(N−2),

LH � max
(
(1 + δ) · 2η(1− η),

1
3

)
· LG

where δ =
√

B∆ log N
dminλ 6 O

(√
k3 log3 n
τ2ε3β2

)
. Plugging in β (for large enough C), we get that

δ 6 γ2 = 1− 4η(1− η). Therefore, we have (1 + δ) · 2η(1− η) 6 (1 + γ2) · 1
2(1− γ2) <

1
2 , hence LH ≺ 1

2 LG. By union bound over all T 6 N subinstances, this holds for all
subinstances φi with probability 1− 1

poly(n) over the randomness of the noise.

Then, by Lemma 8.1.4, the SDP relaxation has a unique optimum which is the planted
assignment. Thus, we can identify the set of corrupted edges in each φi.

Step 3. So far we have identified, for > 1− ε′ fraction of all {(u, C, C′) : u ∈ [p], C ∈
H(L)

u , C′ ∈ H(R)
u }, the product ξu(C) · ξu(C′), where ξu(C) = −1 if (u, C) is corrupted in

ψ, and +1 otherwise. Let Pu ⊆ {(C, C′) : C ∈ H(L)
u , C′ ∈ H(R)

u } be such pairs for each
u ∈ [p], and let P = ∪u∈[p]Pu. Note that |P| > (1− ε′)m2

4p and P depends only on H and
not on the noise.

We then run Algorithm 8.4.8. By the assumption that τ 6 cγ√
k log n

for a small

enough c, we have |Hu| = m
p > 2b 1

2τ2 c > 24k
(1−2η)2 , which is the condition we need

in Lemma 8.4.9. Thus, with probability 1− n−k, Algorithm 8.4.8 outputs (1) A1 ⊆ H
which only depends on H and such that |A1| 6 4ε′m = εm, and (2) A2 ⊆ H, the set of
corrupted constraints inH \A1. This completes the proof of Lemma 8.3.2.

103

8.5 Notions of relative approximation

We have encountered several notions of relative graph approximations. Let G be an n-
vertex graph, and let H be a random subgraph of G by selecting each edge with a fixed
probability η ∈ (0, 1). We are interested in the sufficient conditions on G for each of the
following to hold with probability 1− o(1) (for some δ = o(1)):

(1) Relative cut approximation: x>LHx 6 (1 + δ)η · x>LGx for all x ∈ {±1}n.

(2) Relative SDP approximation: 〈X, LH〉 6 (1 + δ)η · 〈X, LG〉 for all symmetric ma-
trices X � 0 with diag(X) = I.

(3) Relative spectral approximation: LH � (1 + δ)η · LG.
Here, we only state one-sided inequalities, as solving noisy XOR requires only an up-
per bound on LH. Note also that the above is in increasing order: relative spectral
approximation implies relative SDP approximation, which in turn implies relative cut
approximation.

Recall from Lemma 8.1.3 that a lower bound on the min-cut of G suffices for cut
approximation to hold, while Lemma 8.1.5 shows that lower bounds on the minimum
degree and spectral gap of G suffice for spectral approximation to hold. It is natural
to wonder whether a min-cut lower bound is sufficient for SDP approximation as well,
since it allows us to efficiently recover the planted assignment in a noisy planted 2-XOR
via solving an SDP relaxation (see Lemma 8.1.4). Unfortunately, there is a counterexam-
ple.

Separation of cut and SDP approximation. The example is the same graph that sep-
arates cut and spectral approximation described in [ST11]. Let n be even and k = k(n).
Define G = (V, E) be a graph on N = nk vertices where V = {0, 1, . . . , n − 1} ×
{1, . . . , k} and (u, i), (v, j) ∈ V are connected if v = u ± 1 mod n. Moreover, there
is one additional edge e∗ between (0, 1) and (n/2, 1). In other words, G consists of n
clusters of vertices of size k, where the clusters form a ring with a complete bipartite
graph between adjacent clusters, along with a special edge e∗ in the middle.

Clearly, the minimum cut of G is 2k, which means that cut approximation holds.
Essentially, the special edge e∗ does not play a role here.

However, we will show that e∗ breaks SDP approximation. Define vector x0 ∈ RV

such that the (u, i) entry is
x0(u, i) = min(u, n− u) ,

and vectors x1, . . . , xn−1 to be cyclic shifts of x0: for w ∈ {0, 1, . . . , n− 1},

xw(u, i) = x0(u− w (mod n), i) .

We note that x0 is the vector shown in [ST11] that breaks spectral approximation. We
now show that X = ∑n−1

w=0 xwx>w (scaled so that X has all 1s on the diagonal) breaks SDP
approximation.

104

First, it is easy to see that the diagonal entries of X are all equal due to symmetry.
Thus, for some scaling c, cX � 0 and diag(cX) = I.

Observe that for w 6 n
2 − 1, xw(0, 1) = w and xw(

n
2 , 1) = n

2 − w. For w > n
2 ,

xw(0, 1) = n− w and xw(
n
2 , 1) = w− n

2 . Thus, as x>w Le∗xw =
(
xw(0, 1)− xw(

n
2 , 1)

)2,

〈X, Le∗〉 =
n−1

∑
w=0

x>w Le∗xw =

n
2−1

∑
w=0

(n
2
− 2w

)2
+

n−1

∑
w= n

2

(
3n
2
− 2w

)2

= Θ(n3) .

On the other hand, x>w LG\e∗xw = nk2 for any w, thus 〈X, LG\e∗〉 = n2k2. This is o(n3),
i.e. dominated by 〈X, Le∗〉, when k = o(

√
n). Since e∗ is selected in H with probability

η, we have that with probability η,

〈X, LH〉 > 〈X, Le∗〉 > (1− o(1)) · 〈X, LG〉 ,

which violates the desired SDP approximation.

105

106

Chapter 9

Rounding Large Independent Sets on
Expanders

In this chapter, we prove Theorems 6.3.2 and 6.3.3, which we restate below.

Theorem (Restatement of Theorem 6.3.2). There is a polynomial-time algorithm that, given
an n-vertex regular 10−4-almost 3-colorable graph with normalized 2nd eigenvalue λ2 6 10−4,
finds an independent set of size > 10−4n.

Theorem (Restatement of Theorem 6.3.3). For every positive ε 6 0.001, there is a polynomial-
time algorithm that, given an n-vertex regular graph that contains an independent set of size
(1

2 − ε)n and has normalized 2nd eigenvalue λ2 6 1− 40ε, outputs an independent set of size
at least 10−3n.

We also prove the following hardness result for almost 4-colorable expanders.

Proposition (Restatement of Proposition 6.3.1). Assuming the Unique Games Conjecture,
for any constants ε, γ > 0, it is NP-hard to find an independent set of size γn in an n-vertex
regular graph that is ε-almost 4-colorable and has normalized 2nd eigenvalue λ2 6 on(1).

Organization. In Section 9.1, we give a technical overview of our algorithmic results.
More specifically, we give full proofs of our combinatorial clustering results about in-
dependent sets and colorings in expanders (Lemmas 9.1.2 and 9.1.6) in Sections 9.1.2
and 9.1.3, as well as an overview of how they lead to our rounding algorithms.

In Section 9.2, we prove the algorithmic result for graphs containing (1
2 − ε)n-sized

independent sets (Theorem 6.3.3). Then, in Section 9.3, we prove the result for almost
3-colorable graphs (Theorem 6.3.2).

On the hardness side, in Section 9.4, we prove Proposition 6.3.1 and also similar
hardness results for exactly k-colorable expanders (as opposed to almost k-colorable),
assuming a variant of the 2-to-1 conjecture [Kho02, DMR06].

107

Finally, in Section 9.5, we give a proof of a folklore result: given a graph containing
an independent set of size (1

2 − ε)n, one can find an independent set of size at least
(εn)1−O(ε). The algorithm is a variant of the rounding algorithm by Karger, Motwani
and Sudan [KMS98].

Notation. In this chapter, we will use λ2(G) to denote the normalized 2nd eigenvalue
λ2(ÃG), where ÃG is the normalized adjacency matrix of the graph G.

9.1 Technical overview

We provide a brief overview of our rounding framework and analysis in this section. In
Section 9.1.1, we briefly discuss the clustering property and how it leads to our round-
ing algorithm for one-sided spectral expanders. Then, we describe the proof of the
clustering property of independent sets in Section 9.1.2 and the clustering property
of 3-colorings in Section 9.1.3. The rounding for 3-colorable graphs follows a similar
rounding framework, and we refer the reader to Section 9.3 for details.

Polynomial Formulation and SoS Relaxation. Our algorithm rounds a constant-degree
sum-of-squares relaxations (see Section 2.5 for background) of the following system of
polynomial inequalities that encode independent sets of size > (1/2− ε)n in the input
graph on G(V, E).

1
n ∑

u∈V
xu >

1
2
− ε,

x2
u = xu , ∀u ∈ V ,

xuxv = 0 , ∀{u, v} ∈ E.

(9.1)

The relaxation outputs a pseudo-distribution over solutions to (9.1). For a reader unfamil-
iar with the sum-of-squares method for algorithm design, it is helpful to think of µ as
constant-degree moments (i.e., expectations under µ of any constant-degree polynomial
of x) of a probability distribution over x ∈ {0, 1}n satisfying (9.1).

We will repeatedly use the following simple fact.

Fact 9.1.1. For a graph G = (V, E), let µ be a pseudo-distribution of degree at least 2 that
satisfies the independent set constraints, i.e., x2

u = xu for all u ∈ V and xuxv = 0 for all
{u, v} ∈ E. Then, the set of vertices {u ∈ V : Ẽµ[xu] >

1
2} forms an independent set in G.

Proof. For all {u, v} ∈ E, from the independent set constraints we can derive that (xu +

xv)2 = x2
u + 2xuxv + x2

v = xu + xv, i.e., (xu + xv) satisfies the Booleanity constraint, thus
xu + xv 6 1. Thus, we have Ẽµ[xu + xv] 6 1, which means that u, v cannot both be in
the set {u ∈ V : Ẽµ[xu] >

1
2}.

108

9.1.1 Rounding large independent sets on one-sided spectral expanders

Let G be any regular one-sided spectral expander with λ2(G) 6 1−O(ε) containing an
independent set of size (1/2− ε)n. Our approach can be summarized as follows:

(1) An extremal clustering property of independent sets: We show (in Lemma 9.1.2)
that there are only two essentially distinct (1/2− ε)n-sized independent sets in G.
Specifically, given any three independent sets x(1), x(2), x(3), at least two of them
have a non-trivially large intersection1 i.e., Eu[x

(i)
u x(j)

u] > 1/2− ν for some ν ≈ 0
and i 6= j ∈ [3].

(2) Recasting large intersection as a polynomial inequality: Given any three (1/2−
ε)n-sized independent sets, x := (x(1), x(2), x(3)), we define Φ(x) := Eu[x

(1)
u x(2)u]2 +

Eu[x
(2)
u x(3)u]2 + Eu[x

(1)
u x(3)u]2 which is at least (1/2 − ν)2 > 1/4 − ν as a conse-

quence of (1). Here, Eu is the average with respect to a uniformly random u ∈ [n]
and thus Φ(x) measures the (squared) average pairwise intersections between
x(1), x(2), x(3).

(3) A low-degree sum-of-squares proof of largeness of Φ(x): We show how the
above property can be “SoS-ized”. That is, Φ(x) is large in expectation over
x(1), x(2), x(3) drawn independently from any pseudo-distribution µ satisfying the
independent set constraints in Eq. (9.1), i.e., Φ(µ) := Ẽx∼µ⊗3 [Φ(x)] > 1/4− ν.

(4) Rounding: We give a simple rounding algorithm for µ with analysis relying on
(3) to obtain a large independent set in G.

Our rounding analysis actually works as long as the intersection in (1) is non-trivially
larger than expected, i.e., intersection> (1/4+ ν)n, where n/4 is the expected intersection
between random sets of size≈ n/2. However, we would need a different function Φ(x).
For the sake of simplicity, we stick to the case where the intersection is > 1/2− ν.

Our final rounding algorithm relies on the idea of rounding from multiple samples from
a pseudo-distribution first introduced in [BBKSS21]. In their application for round-
ing Unique Games on certified small-set expanders, they considered a certain “shift-
partition potential” (which measured the correlation between two solutions for the in-
put UG instance). Our analysis will rely instead on the above “average agreement func-
tion” Φ(µ).

We will prove the clustering property stated in (1) in Section 9.1.2. Here, let us see
how to round when Φ(µ) is large.

Rounding when Φ(µ) is large. In order to understand the intuition behind our round-
ing, notice that for 3 random subsets of [n] of size (1/2− ε)n, the pairwise agreement
function Φ would be ≈ 3 · (1/4)2 = 3/16. Thus, if Φ(µ) > 1/4− ν > 3/16 for some

1Throughout this paper, we write Eu to denote the expectation over a uniformly random vertex u ∈ [n]
of the input graph. Notice that Eu[xux′u] then equals 〈x, x′〉/n.

109

small ν, then three draws from µ must be non-trivially correlated. We interpret this
property as saying that the (pseudo)-distribution µ is “supported” over only two “dis-
tinct” independent sets. Concretely,

Ẽx∼µ⊗3 [Φ(x)] = 3 · Ẽx(1),x(2)∼µ

[
Eu[x

(1)
u x(2)u]2

]
> 1/4− ν ,

implying that Ẽx(1),x(2) [Eu[x
(1)
u x(2)u]2] > 1/12−O(ν) > 1/16 + η for a constant η > 0 if

ν is a small enough constant. Using the independence of x(1) and x(2) this resolves to:

Ẽx(1),x(2)∼µ

[
Eu[x

(1)
u x(2)u]2

]
= Ẽ

[
Eu,v[x

(1)
u x(1)v x(2)u x(2)v]

]
= Eu,v

[
Ẽ[xuxv]

2
]
> 1/16 + η .

The classical idea of rounding by conditioning SoS solutions now suggests that we may
be able to condition µ to obtain a µ′ that is essentially supported on a unique assign-
ment. Concretely, we argue that by applying a certain repeated conditioning procedure
(that reduces “global correlation” [BRS11, RT12]; see Lemma 2.5.7) we obtain a modified
pseudo-distribution µ′ that satisfies all the original constraints and, in addition, satisfies
that for most pairs of vertices u, v ∈ [n], we have Ẽµ′ [xuxv] ≈ Ẽµ′ [xu]Ẽµ′ [xv] (where the
approximation hides additive constant errors). Thus,

Eu,v

[
Ẽµ′ [xuxv]

2
]
≈ Eu,v

[
Ẽµ′ [xu]

2Ẽµ′ [xv]
2
]
= Eu

[
Ẽµ′ [xu]

2
]2

> 1/16 + η .

We interpret this as saying that two independent “samples” from the (pseudo)-
distribution µ′ have a larger intersection than the intersection that random sets (of the
same size) typically have: Ẽx(1),x(2)∼µ′ [Eu[x

(1)
u x(2)u]] = Eu[Ẽµ′ [xu]2] > 1/4 + Ω(η). An

averaging argument now yields that Ẽµ[xu] > 1
2 for at least an Ω(η) fraction of the

vertices. This subset forms an independent set (see Fact 9.1.1) of size Ω(ηn).

9.1.2 Clustering of independent sets in one-sided expanders

Let us now return to the combinatorial guts of our approach. We present in full here,
a proof of the following extremal combinatorics statement that eventually can be im-
ported into the low-degree sum-of-squares proof system.

Lemma 9.1.2. Let G be a regular graph containing an independent set of size (1
2 − ε)n and

has λ2(G) 6 1− Cε for any small enough ε and some large enough constant C > 0. Then,
for any 3 independent sets of size at least (1

2 − ε)n, two of them have an intersection of size
> (1

2 −O(1
C)− ε)n.

Intersection between 2 independent sets. Let us analyze the intersection between 2
independent sets I1, I2 (indicated by x, y ∈ {0, 1}n) in G. By assigning every vertex u
of G the label (xu, yu), we obtain a partition of vertices of G into subsets with labels

110

in {00, 01, 10, 11}. Consider now a graph on the label set of 4 vertices and add an edge
between two such labels, say `1, `2 (including self-loops) if there are vertices u with label
`1, v with label `2 such that {u, v} ∈ E (see Figure 9.1).

00

10

01

11

Figure 9.1: The gadget for 2 independent sets.

No edges can exist between 01, 10 and 11 because x, y indicate independent sets.
There can, however, be edges between vertices in the set 00, hence the self-loop. The
graph in Figure 9.1 is the tensor product H ⊗ H where H is graph on {0, 1} and edges
{0, 0} and {0, 1}.

Let wt(ij) denote the fraction of vertices u in G such that xu = i and yu = j. Then,
|I1 ∩ I2| = wt(11). Let us now observe:

Claim 9.1.3. wt(00) 6 wt(11) + 2ε.

Proof. Since |I1|, |I2| > (1
2 − ε)n, we have: wt(11) + wt(10) and wt(11) + wt(01) > 1

2 − ε.
Thus, wt(01) +wt(10) + 2wt(11) > 1− 2ε. We use wt(00) +wt(01) +wt(10) +wt(11) =
1 to finish.

Let’s now see how expansion of G enters the picture:

Claim 9.1.4. Fix ε > 0 small enough. If λ2 6 1− Cε for some large enough constant C > 0,
then either wt(00) + wt(11) 6 O(1

C) or wt(11) > 1
2 −O(1

C)− ε.

Proof. For any subset S ⊆ V, we have e(S, S) > (1− λ2) · (|S|/n)(1− |S|/n). Here,
e(S, S) denotes the weight of edges between S and S, which is |EG(S, S)|/nd for a d-
regular graph. Applying this to the set of vertices with labels in {00, 11}, we have:
e(00, 01) + e(00, 10) > (1− λ2) · wt({00, 11})(1− wt({00, 11})).

On the other hand, since G is regular, wt(11) = e(00, 11) as there are no edges be-
tween 01, 10 and 11. Similarly, we have wt(00) = ∑α∈{0,1}2 e(00, α). Subtracting the
two, we get wt(00)− wt(11) = e(00, 00) + e(00, 01) + e(00, 10) > e(00, 01) + e(00, 10).

111

Therefore, we have

(1− λ2) · wt({00, 11}))(1− wt({00, 11})) 6 e(00, 01) + e(00, 10)

6 wt(00)− wt(11) 6 2ε .

Thus, if λ2 6 1− Cε for some large enough constant C, then either wt({00, 11}) 6 η

or wt({00, 11}) > 1− η for η = O(1/C). In the latter case, since wt(00) 6 wt(11) + 2ε,
we have wt(11) > 1

2 −O(1
C)− ε.

Proof of Lemma 9.1.2. Let’s now consider 3 independent sets. We can now naturally par-
tition the vertices of G into 8 subsets labeled by elements of {0, 1}3. In the following, we
will use “∗” to denote both possible values. For example, 00∗means {000, 001}.

From Claim 9.1.4, we know that wt(00∗) + wt(11∗) (and analogously wt(0 ∗ 0) +
wt(1 ∗ 1) and wt(∗00) +wt(∗11)) is either 6 O(1

C) <
1
3 or > 1−O(1

C) for a large enough
constant C. We now argue that the first possibility cannot simultaneously hold for all
three pairs, and thus at least one pair of independent sets must have an intersection of at
least 1

2 −O(1
C)− ε, completing the proof. Indeed, {00∗, 11∗} ∪ {0 ∗ 0, 1 ∗ 1} ∪ {∗00, ∗11}

covers all strings {0, 1}3, since each α ∈ {0, 1}3 must have either two 0s or two 1s. And
thus, wt({00∗, 11∗}) + wt({0 ∗ 0, 1 ∗ 1}) + wt({∗00, ∗11}) > 1, thus at least one of the
three terms exceeds 1/3.

9.1.3 Clustering in 3-colorable one-sided spectral expanders

We now discuss an analogous extremal clustering property of 3-colorings in one-sided
spectral expanders. This property is stated in terms of pairwise ”agreement” between
different 3-colorings — a natural generalization of intersection that “mods” out the sym-
metry between colors.

Definition 9.1.5. The relative agreement between two valid 3-colorings x and y according
to a permutation π is defined by:

agreeπ(x, y) := Eu∈V [π(xu) = yu] ,

and the agreement between x and y is defined as the maximum over all permutations:

agree(x, y) := max
π∈S3

agreeπ(x, y) .

The agreement between two relabelings of the same coloring is 1 (the maximum possi-
ble).

We will prove the following extremal clustering property of 3-colorings in a spectral
expander that informally says that in any collection of three non-trivial 3-colorings, two
must have a better-than-random agreement.

112

Lemma 9.1.6. Let G = (V, E) be a regular 3-colorable graph with λ2(G) 6 ε
1+ε for some small

enough ε. Then, given any 3 valid 3-colorings of G such that no color class has size > (1
2 + ε)n,

there exist two with an agreement > 1
2 + ε.

Agreement between 2 valid 3-colorings. We now analyze the agreement between 2
valid 3-colorings x, y ∈ [3]n of G. Similar to Section 9.1.2, the colorings induce a partition
of the vertices into 9 subsets indexed by {1, 2, 3}2, where set ij contains vertices that are
assigned i and j by x and y respectively (see Figure 9.2). The 9-vertex graph in Figure 9.2
is exactly H = K3 ⊗ K3 where K3 is a triangle.

11

1312

21

2322

31

3332

Figure 9.2: The triangle gadget for 2 valid 3-colorings. There are 2 ways to partition the 9
vertices into 3 disjoint triangles. The highlighted triangles show the partition {Sπ}π∈S+3

.

Define the set
Sπ := {(σ, π(σ)) : σ ∈ {1, 2, 3}} .

Then, for any π ∈ S3, agreeπ(x, y) = wt(Sπ).

Claim 9.1.7. If λ2 6 1− 1
1+ε , then,

∑
π∈S3

wt(Sπ)
2 > 2− 1

1− λ2
> 1− ε . (9.2)

Proof. Observe that for any π, Sπ forms a triangle in H. In fact, there are exactly two
ways to partition the 9 vertex graph above into 3 disjoint triangles: (1) {11, 22, 33},
{12, 23, 31}, {13, 21, 32} (highlighted in Figure 9.2), and (2) {11, 23, 32}, {12, 21, 33},
{13, 22, 31}, where each of the 6 triangles appearing in the list above corresponds to
a permutation π ∈ S3.

Now, e(Sπ, Sπ) > (1−λ2) ·wt(Sπ)(1−wt(Sπ)) for each π. Summing up the inequal-
ities over π ∈ S3 gives (1− λ2)∑π wt(Sπ)(1− wt(Sπ)) = (1− λ2)(2−∑π wt(Sπ)2) on

113

the right-hand side and ∑π e(Sπ, Sπ) = 1 on the left-hand side. Thus, rearranging gives
us

∑
π∈S3

wt(Sπ)
2 > 2− 1

1− λ2
> 1− ε .

Small agreement + expansion implies almost bipartite. We show the following claim:

Claim 9.1.8. Suppose λ2 6 ε
1+ε and agree(x, y) 6 1

2 + ε for small enough ε, then one of
{w(Sπ)}π∈S+3

and one of {w(Sπ)}π∈S−3
is at most O(ε).

As a result, G is almost bipartite, i.e., removing an O(ε) fraction of vertices results in a
bipartite graph.

Recall that agree(x, y) 6 1
2 + ε means that wt(Sπ) 6 1

2 + ε for all π ∈ S3. To prove
Claim 9.1.8, we formulate it as a 6-variable lemma (see Lemma 9.3.10): let z1, z2, . . . , z6

be such that 0 6 zi 6
1
2 + ε for each i, z1 + z2 + z3 = z4 + z5 + z6 = 1, and ‖z‖2

2 > 1− ε,
then one of z1, z2, z3 and one of z4, z5, z6 must be 6 O(ε).

With this lemma, the first statement in Claim 9.1.8 immediately follows from wt(Sπ) 6
1
2 + ε, ∑π∈S+3

wt(Sπ) = ∑π∈S−3
wt(Sπ) = 1, and Eq. (9.2).

For the second statement, let π+ ∈ S+
3 and π− ∈ S−3 be the permutations such

that wt(Sπ+), wt(Sπ−) 6 O(ε). Note that since π+ and π− have different signs, Sπ+

and Sπ− intersect in exactly one string α ∈ [3]2. In fact, α uniquely determines π+, π−

since there are exactly two permutations with different signs that map α1 to α2. Assume
without loss of generality (due to symmetry) that α = 11, so that Sπ+ = {11, 22, 33}
and Sπ− = {11, 23, 32}. Then, we have wt({11, 22, 33}), wt({11, 23, 32}) 6 O(ε). This
means that wt({12, 13, 21, 23}) > 1−O(ε). Observe that {12, 13, 21, 23} forms a bipartite
structure between {12, 13} and {21, 23}, as shown in Figure 9.3. In particular, the first
coloring labels the entire left side with the same color, while the second labels the right
side with the same color.

Agreement between 3 valid 3-colorings. Naturally, we consider the graph as being
partitioned into 27 subsets indexed by strings [3]3. Again, we will use “∗” to denote
“free” coordinate, so for example 11∗ means {111, 112, 113}, i.e., the set 11 if we ignore
the third coloring.

Suppose for contradiction that the agreement between each pair of 3-colorings is at
most 1

2 + ε. Then, by Claim 9.1.8, we have that each pair (i, j) of colorings gives a bi-
partite structure, denoted T(ij), such that wt(T(ij)) > 1−O(ε). This is best explained
by example. Suppose T(12) = {12∗, 13∗, 21∗, 23∗}, T(13) = {1 ∗ 2, 1 ∗ 3, 2 ∗ 1, 3 ∗ 1}
and T(23) = {∗11, ∗13, ∗22, ∗32}. Then, we can see that T := T(12) ∩ T(13) ∩ T(23) =

{122, 132, 211, 311}. This is a bipartite structure between {122, 132} and {211, 311},
where the first coloring labels the entire left side with the same color, while the second
and third label the right side with the same color.

114

11

1312

21

2322

31

3332

Figure 9.3: Sπ+ = {11, 22, 33} and Sπ− = {11, 23, 32}, and wt(Sπ+), wt(Sπ−) 6 O(ε),
which means that wt({12, 13, 21, 23}) > 1−O(ε). Here {12, 13, 21, 23} forms a bipartite
structure.

Moreover, we have wt(T) > 1−O(ε). We now use this to derive a contradiction.
Suppose no colors have size larger than (1

2 + ε)n, so wt({122, 132}), wt({211, 311}) 6
1
2 + ε. This implies that wt({122, 132}), wt({211, 311}) > 1

2 −O(ε). Next, observe that
{122, 211, 311} ⊆ {∗11, ∗22} ⊆ Sπ between the second and third colorings for some π.
Similarly, {132, 211, 311} ⊆ {∗11, ∗32} ⊆ Sπ′ for some π′. Thus, one of them has weight
at least wt({211, 311}) + 1

2wt({122, 132}) > 3
4 −O(ε), contradicting that each pairwise

agreement is 6 1
2 + ε.

One can verify that the above holds in general; T will contain at most 4 strings in [3]3

and form the bipartite structure explained above. This proves Lemma 9.1.6.

9.2 Independent sets on spectral expanders

In this section, we prove Theorem 6.3.3. Our algorithm starts by considering a constant
degree SoS relaxation of the integer program for Independent Set (9.1) and obtaining a
pseudo-distribution µ′. We then apply a simple rounding algorithm to obtain an inde-
pendent set in G as shown below.

Algorithm 9.2.1 (Find independent set in an expander).
Input: A graph G = (V, E).
Output: An independent set of G.
Operation:

1. Solve a degree D = O(1) SoS relaxation of the integer program (9.1) to

115

obtain a pseudo-distribution µ′.
2. Choose a uniformly random set of t = O(1) vertices i1, . . . , it ∼ [n] and

draw (σi1 , . . . , σit) ∼ µ′. Let µ be the pseudo-distribution obtained by
conditioning µ′ on
(xi1 = σi1 , . . . , xit = σit).

3. Output the set {u ∈ V : Ẽµ[xu] >
1
2}.

9.2.1 Multiple assignments from µ: definitions and facts

Fix t ∈ N. Throughout this section, we will work with t assignments x(1), x(2), . . . , x(t)

that the reader should think of as independent samples from the pseudo-distribution µ,
i.e. each x(i) is an n-dimensional vector which is the indicator of a (1/2− ε)n-sized in-
dependent set in G and therefore it satisfies the constraints of the integer program (9.1).
Given x(1), x(2), . . . , x(t) we use boldface x to denote (x(1), . . . , x(t)), i.e., the collection of
variables x(i)u for u ∈ [n] and i ∈ [t]. Moreover, for U ⊆ [t], we write xU := (x(i))i∈U.

Definition 9.2.2. We denote Abool
G (x) := {x2

u − xu = 0, ∀u ∈ V}, i.e., the Booleanity
constraints. Moreover, we write AIS

G (x) to denote the independent set constraints:

AIS
G (x) := Abool

G (x) ∪ {xuxv = 0, ∀{u, v} ∈ E} .

Moreover, with slight abuse of notation, for t ∈N and vectors x(1), x(2), . . . , x(t),

Abool
G (x) :=

⋃
i∈[t]
Abool

G (x(i)) , AIS
G (x) :=

⋃
i∈[t]
AIS

G (x(i)) .

We will drop the dependence on G when the graph is clear from context.

Given assignments x(1), . . . , x(t) ∈ {0, 1}n and α ∈ {0, 1}t, for each vertex u ∈ [n],
we define below the event that u is assigned αi by x(i), which is viewed as a degree-
t multilinear polynomial of x. Similarly, for S ⊆ {0, 1}t, we define the event that u
receives one of the assignments in S.

Definition 9.2.3. Let t ∈N, and let x = (x(1), x(2), . . . , x(t)). For each u ∈ [n], α ∈ {0, 1}t

and S ⊆ {0, 1}t, we define the following events,

1(u← α) := 1(x(1)u = α1, . . . , x(t)u = αt) = ∏
i∈[t]

(
x(i)u

)αi
(

1− x(i)u

)1−αi
,

1(u← S) := ∑
α∈S

1(u← α) .

For convenience, we omit the dependence on x. We will also consider the quantity
wt(α) which is the fraction of vertices that get assigned α:

wt(α) := Eu∈[n][1(u← α)] .

116

Similarly, wt(S) := Eu∈[n][1(u← S)] for S ⊆ {0, 1}t.
Moreover, we will use the symbol “∗” to denote “free variables” — for β ∈ {0, 1, ∗}t,

1(u ← β) := 1(u ← Sβ) and wt(β) := wt(Sβ) where Sβ = {α ∈ {0, 1}t : αi = βi if βi 6=
∗}. For example, wt(00∗) = wt(000) + wt(001).

We note some simple facts (written in SoS form) that will be useful later.

Fact 9.2.4. The following can be easily verified: for α, β ∈ {0, 1}t,

(1) Abool(x) 2t
x {

1(u← α)2 = 1(u← α)
}

, i.e., 1(u ← α) satisfies the Booleanity con-
straint.

(2) Abool(x) 2t
x {1(u← α) · 1(u← β) = 0} for α 6= β. This also implies that 1(u ← S)

satisfies the Booleanity constraint for any S ⊆ {0, 1}t.

(3) t
x
{

∑α∈{0,1}t 1(u← α) = 1
}

.

We next prove the following lemma, which is an “SoS proof” that if x(1), . . . , x(t) are
indicators of independent sets and {u, v} ∈ E, then u and v cannot be both assigned 1
by any x(i). As a consequence, any vertex that is assigned all 1s can only be connected
to vertices that are assigned all 0s, meaning that if v gets~1 then u must get~0.

Lemma 9.2.5. Let t ∈N and x = (x(1), x(2), . . . , x(t)) be variables. For any graph G = (V, E)
and any α, β ∈ {0, 1}t such that supp(α) ∩ supp(β) 6= ∅, then for all {u, v} ∈ E we have

AIS
G (x) 2t

x {1(u← α)1(v← β) = 0} .

In particular, for all {u, v} ∈ E,

AIS
G (x) 2t

x
{(

1− 1(u←~0)
)
· 1(v←~1) = 0

}
2t
x
{
1(u←~0) > 1(v←~1)

}
.

Proof. Let i ∈ [t] be the index such that αi = βi = 1. Then, by Definition 9.2.3, 1(u ←
α) · 1(v ← β) = x(i)u x(i)v · f (x) for some polynomial f (not depending on x(i)). The first
statement follows since x(i)u x(i)v = 0 is in the independent set constraints.

For the second statement, (1− 1(u←~0))1(v←~1) = 0 follows from the polynomial
equality ∑α∈{0,1}t 1(u← α) = 1 and that~1 intersects with all α 6=~0. Moreover, 1(u← α)

satisfies the Booleanity constraints (Fact 9.2.4). Denoting a := 1(u←~0) and b := 1(u←
~1) for convenience, from (1− a)b = 0 and a2 = a, b2 = b we have

a− b = (a− b)2 − 2(1− a)b + (a− a2) + (b− b2) > 0 ,

which completes the proof.

117

9.2.2 Spectral gap implies a unique solution

Recall the definitions from Definition 9.2.3. We need some definitions for edge sets in
the graph.

Definition 9.2.6. Let G be a graph, let t ∈ N, and let x = (x(1), . . . , x(t)). For α, β ∈
{0, 1}t, define

e(α, β) :=
1

2|E(G)| ∑
{u,v}∈E(G)

1(u← α)1(v← β) + 1(u← β)1(v← α) .

Here, we omit the dependence on x and G for simplicity.
Similarly, for S, T ⊆ {0, 1}t, we denote e(S, T) := ∑α∈S ∑β∈T e(α, β).

Given assignments x(1), . . . , x(t) ∈ {0, 1}n and α, β ∈ {0, 1}t, one should view e(α, β)

as the (normalized) number of edges between vertices that are assigned α and vertices
assigned β. We note a few properties which can be easily verified:

Fact 9.2.7. The following can be easily verified:
(1) Symmetry: e(α, β) = e(β, α) by definition.
(2) Sum of edge weights (double counted) equals 1: 2t

x {∑α,β∈{0,1}t e(α, β) = 1}, which

follows from t
x {∑α∈{0,1}t 1(u← α) = 1}.

(3) For a regular graph, the weight of a subset equals the weight of incident edges: for any
α ∈ {0, 1}t, 2t

x {∑β∈{0,1}t e(α, β) = wt(α)}.
(4) AIS

G (x) 2t
x {e(α, β) = 0} for any α, β such that supp(α) ∩ supp(β) 6= ∅ due to

Lemma 9.2.5.

We next show the following lemma relating the Laplacian to the cut in the graph.

Lemma 9.2.8. Let G be a graph and LG be its Laplacian matrix. Let t ∈ N, S ⊆ {0, 1}t, and
let yu := 1(u← S) for each vertex u, we have

Abool(x) 2t
x
{

1
2|E(G)| · y

>LGy = e(S, S)
}

.

Proof. Since yu satisfies the Booleanity constraint and 1− 1(u ← S) = 1(u ← S), for
any u, v,

Abool(x) 2t
x
{
(yu − yv)

2 = 1(u← S) + 1(v← S)− 2 · 1(u← S)1(v← S)

= 1(u← S)1(v← S) + 1(v← S)1(u← S)
}

.

The lemma then follows by noting that y>LGy = ∑{u,v}∈E(G)(yu − yv)2.

118

For rounding independent sets on spectral expanders, we will only consider t = 2
and 3. For t = 2, we get a simple bound that wt(00)− wt(11) 6 2ε given that the graph
has an independent set of size (1

2 − ε)n, i.e., Eu[x
(1)
u] and Eu[x

(2)
u] > 1

2 − ε.

Lemma 9.2.9. Let x = (x(1), x(2)).

2
x

wt(00)− wt(11) = 2ε− ∑
t∈[2]

(
Eu[x

(t)
u]−

(
1
2
− ε

)) .

Proof. First note that Eu[x
(1)
u] = wt(10) + wt(11) and Eu[x

(2)
u] = wt(01) + wt(11). Sum-

ming up Eu[x
(1)
u]− (1

2 − ε) and Eu[x
(2)
u]− (1

2 − ε) gives wt(01)+wt(10)+ 2wt(11)− (1−
2ε). Then, noting that wt(00) + wt(01) + wt(10) + wt(11) = 1 completes the proof.

We next lower bound wt(00)− wt(11) by the expansion of the graph.

Lemma 9.2.10. Let G be a d-regular n-vertex graph with λ2 := λ2(G) > 0. Let x =

(x(1), x(2)). Then,

AIS
G (x) 4

x {wt(00)− wt(11) > (1− λ2) · wt({00, 11})(1− wt({00, 11}))} .

Proof. Let S = {01, 10}, and define yu := 1(u← S). By Lemma 9.2.8,

AIS
G (x) 4

x
{

1
nd
· y>LGy = e(S, S) = e(00, 01) + e(00, 10) 6 wt(00)− wt(11)

}
(9.3)

where e(S, S) = e(00, 01) + e(00, 10) because AIS(x) 2t
x {e(01, 11) = e(10, 11) = 0}

(Fact 9.2.7), and the last inequality follows from wt(00) = ∑α∈{0,1}2 e(00, α) and wt(11) =
e(00, 11) (again because e(01, 11) = e(10, 11) = 0).

On the other hand, the trivial eigenvector of LG is~1 with eigenvalue 0 while λ2(
1
d LG) =

1− λ2, so we have

2
y
{

1
nd

y>LGy >
1
n
· (1− λ2)

(
‖y‖2

2 −
1
n
〈~1, y〉2

)}
.

By the Booleanity constraints, Abool(y) 2
y 1

n (‖y‖2
2 − 1

n 〈~1, y〉2) = Eu[yu] − Eu[yu]2 =

wt(S)(1−wt(S)) = wt(S)(1−wt(S)), where S = {00, 11}. This combined with Eq. (9.3)
finishes the proof.

Combining Lemmas 9.2.9 and 9.2.10, we have that Eu[x
(t)
u] > 1

2 − ε (i.e., the indepen-
dent set indicated by x(t) has size at least (1

2 − ε)n) together with the expansion of the
graph imply that

(1− λ2) · wt({00, 11})(1− wt({00, 11})) 6 wt(00)− wt(11) 6 2ε .

119

When λ2 6 1 − Cε for some large enough constant C, then the above implies either
wt({00, 11}) 6 γ or wt({00, 11}) > 1− γ for some small constant γ < 1

3 . In the latter
case, since wt(11) > wt(00)− 2ε, we have wt(11) > 1

2 −
γ
2 − ε.

Now, we now consider 3 assignments, where each pair of assignments satisfy the
above, i.e., wt({00∗, 11∗})(1−wt({00∗, 11∗})) 6 2ε

1−λ2
6 2

C for all 3 “∗” locations. Then,
we claim that one of them, say wt({00∗, 11∗}), must be > 1− γ. To see this, notice that
the 3 pairs wt({00∗, 11∗}) must sum up to at least 1 because each α ∈ {0, 1}3 is covered,
i.e., has either two 0s or two 1s. Thus, all 3 being 6 γ leads to a contradiction.

We now formalize this reasoning as an SoS proof.

Lemma 9.2.11. Let G be a d-regular n-vertex graph with λ2 := λ2(G) > 0, and let ε > 0. Let
x = (x(1), x(2), x(3)). LetA be the constraints AIS

G (x)∪
{

Eu[x
(t)
u] > 1

2 − ε, ∀t ∈ [3]
}

. Then,

A 6
x
{
(wt(11∗) + ε)2 + (wt(1 ∗ 1) + ε)2 + (wt(∗11) + ε)2 >

1
4

(
1− 6ε

1− λ2

)}
.

Proof. By Lemma 9.2.9, we have A implies that wt(00∗) 6 wt(11∗) + 2ε. Moreover, by
Lemma 9.2.10, we have

2ε > wt(00∗)− wt(11∗) > (1− λ2) ·
(
(wt(00∗) + wt(11∗))− (wt(00∗) + wt(11∗))2

)
> (1− λ2) ·

(
(wt(00∗) + wt(11∗))− 4(wt(11∗) + ε)2

)
.

Next, we sum up the inequalities for all 3 “∗” locations. Observe that {00∗, 11∗} ∪
{0 ∗ 0, 1 ∗ 1} ∪ {∗00, ∗11} = {0, 1}3, as any α ∈ {0, 1}3 must have either 2 zeros or 2
ones. This means that the sum of wt(00∗) + wt(11∗) must be > 1. Thus,

A 6
x
{
(1− λ2) ·

(
1− 4

(
(wt(11∗) + ε)2 + (wt(1 ∗ 1) + ε)2 + (wt(∗11) + ε)2

))
6 6ε

}
,

and rearranging the above completes the proof.

9.2.3 Analysis of Algorithm 9.2.1

We now prove that Algorithm 9.2.1 successfully outputs an independent set of size
Ω(n).

Lemma 9.2.12. Let η, δ ∈ (0, 1) such that δ 6 η2/18, and let µ be a pseudo-distribution over
{0, 1}n such that Eu,v∈[n] Iµ(Xu; Xv) 6 δ. Suppose Ẽµ⊗2 [wt(11)2] > 1

16 + η, then the set of
vertices u such that P̃rµ[xu = 1] > 1

2 forms an independent set of size ηn/4.

Proof. Recall from Definition 9.2.3 that wt(11) = Eu∼[n][x
(1)
u x(2)u], thus

Ẽµ⊗2 [wt(11)2] = Ẽµ⊗2Eu,v∼[n]

[
x(1)u x(2)u x(1)v x(2)v

]
= Eu,v∼[n]

[
Ẽµ[xuxv]

2
]
= Eu,v∼[n]

[
P̃rµ[xu = 1, xv = 1]2

]
.

120

Now, given that µ has small average correlation, by Pinsker’s inequality (Fact 2.5.8),

Eu,v∼[n]

∣∣∣P̃rµ[xu = 1, xv = 1]− P̃rµ[xu = 1]P̃rµ[xv = 1]
∣∣∣ 6 √δ/2 .

Then, using the fact that p2 = q2 + 2q(p− q)+ (p− q)2 6 q2 + 3|p− q| for all p, q ∈ [0, 1],
we have

Eu,v∼[n]

[
P̃rµ[xu = 1, xv = 1]2

]
6 Eu,v∼[n]

[
P̃rµ[xu = 1]2P̃rµ[xv = 1]2

]
+ 3
√

δ/2

6 Eu∼[n]

[
P̃rµ[xu = 1]2

]2
+ 3
√

δ/2 .

Thus, since Ẽµ⊗2 [wt(11)2] > 1
16 + η and δ 6 η2/18, we have Eu∼[n]

[
P̃rµ[xu = 1]2

]2
>

1
16 + η

2 , which means that Eu∼[n]

[
P̃rµ[xu = 1]2

]
>
√

1
16 +

η
2 > 1

4 + η
2 . It follows that at

least η/4 fraction of vertices have P̃rµ[xu = 1] > 1
2 . By Fact 9.1.1, these vertices form an

independent set.

Proof of Theorem 6.3.3. By the assumption that G contains an independent set of size
(1

2 − ε)n, the pseudo-distribution µ satisfies the constraint Eu[xu] > 1
2 − ε. Let x =

(x(1), x(2), x(3)) ∼ µ⊗3, then Lemma 9.2.11 states that

Ẽµ⊗3

[
(wt(11∗) + ε)2 + (wt(1 ∗ 1) + ε)2 + (wt(∗11) + ε)2

]
>

1
4

(
1− 6ε

1− λ2

)
.

By symmetry, the 3 terms on the left-hand side are equal, and

Ẽµ⊗3 [(wt(11∗) + ε)2] = Ẽµ⊗2 [wt(11)2 + 2ε · wt(11) + ε2] 6 Ẽµ⊗2 [wt(11)2] + 2ε + ε2 .

Thus, if ε 6 0.001 and λ2 6 1− Cε with C = 40, then we have Ẽµ⊗2 [wt(11)2] > 1
12(1−

6
C)− (2ε + ε2) > 1

15 > 1
16 .

By Lemma 2.5.7, after we condition µ′ on the values of O(1/δ) variables as done
in Step (2) of Algorithm 9.2.1 to get µ, we have Eu,v∈[n][Iµ(Xu; Xv)] 6 δ, where δ is a
small enough constant. Then, by Lemma 9.2.12, at least 1

4(
1
15 −

1
16) > 1

1000 fraction of
the vertices have P̃rµ[xu = 1] > 1

2 . By Fact 9.1.1, this must be an independent set, thus
completing the proof.

9.3 Independent sets on almost 3-colorable spectral expanders

Recall that an ε-almost 3-colorable graph is a graph which is 3-colorable if one removes
ε fraction of the vertices.

121

Theorem 9.3.1 (Formal version of Theorem 6.3.2). For any ε ∈ [0, 10−4], let G be an n-
vertex regular ε-almost 3-colorable graph with λ2(G) 6 10−4. Then, there is an algorithm that
runs in poly(n) time and outputs an independent set of size at least 10−4n.

If the graph has a color class of size at least (1
2 + Ω(1))n, then we are already done

by the well-known 2-approximation algorithm for minimum vertex cover:

Fact 9.3.2. If an n-vertex graph G has an independent set of size at least (1
2 + γ)n, then there

exists a polynomial-time algorithm that outputs an independent set of size at least 2γn.

Below, we state our algorithm.

Algorithm 9.3.3 (Find independent set in a 3-colorable expander).
Input: A graph G = (V, E).
Output: An independent set of G.
Operation: Fix γ = 10−3 and ε = 10−4.

1. Run the polynomial-time algorithm from Fact 9.3.2 and exit if that out-
puts an independent set of size at least γn.

2. Solve the degree-d SoS algorithm to obtain a pseudo-distribution µ′ that
satisfies the almost 3-coloring constraints and the constraints Eu[1(xu =

σ)] 6 1
2 + γ for all σ ∈ [3] and Eu[1(xu = ⊥)] 6 ε.

3. Choose a uniformly random set of t = O(1) vertices i1, . . . , it ∼ [n] and
draw (σi1 , . . . , σit) ∼ µ′. Let µ be the pseudo-distribution obtained by
conditioning µ′ on (xi1 = σi1 , . . . , xit = σit).

4. For each σ ∈ [3], let Iσ = {u ∈ V : Ẽµ[1(xu = σ)] > 1
2}. Output the

largest one.

9.3.1 Almost 3-coloring formulation and agreement

We define an almost 3-coloring of a graph to be an assignment of vertices to {1, 2, 3,⊥}
where {1, 2, 3} are the color classes and the fraction of vertices assigned to ⊥ is small.

Definition 9.3.4 (Almost 3-coloring constraints). Denote Σ := [3] ∪ {⊥}. Given a graph
G = (V, E) and parameter ε > 0, let x = {xu,σ}u∈V,σ∈Σ be indeterminants. We define
the almost 3-coloring constraints as follows:

ACol
G (x) := Abool(x) ∪

{
∑

σ∈Σ
xu,σ = 1, ∀u ∈ V

}
∪ {xu,σxv,σ = 0, ∀{u, v} ∈ E, σ ∈ [3]} .

Moreover, with slight abuse of notation, for t ∈N and assignments x(1), x(2), . . . , x(t),

ACol
G (x) :=

⋃
i∈[t]
ACol

G (x(i)) .

122

We will drop the dependence on G when it is clear from context.

Notation. We remark that there is a one-to-one correspondence between almost 3-
coloring assignments x ∈ {1, 2, 3,⊥}n and x ∈ {0, 1}n×4. Even though formally the
SoS program is over variables x, from here on we will use the notation x ∈ {1, 2, 3,⊥}n

as it is equivalent and more intuitive. For example, we will write 1(xu = σ) to mean
xu,σ, and similarly P̃rµ[xu = σ] = Ẽµ[xu,σ].

The following definition is almost identical to Definition 9.2.3.

Definition 9.3.5. Let t ∈ N, and let x = (x(1), x(2), . . . , x(t)). For each α ∈ Σt, we define
the following multilinear polynomials,

1(u← α) := ∏
i∈[t]

1(x(i)u = αi) , for each u ∈ [n] ,

wt(α) := Eu∈[n][1(u← α)] .

For convenience, we omit the dependence on x.
For S ⊆ Σt, we denote 1(u ← S) := ∑α∈S 1(u ← α) and wt(S) := ∑α∈S wt(α).

Moreover, we will denote S⊥ := {α ∈ Σt : ∃i ∈ [t], αi = ⊥}.

As explained in Section 9.1.3, due to the symmetry of the color classes, we need to
define the relative agreement between two valid almost 3-colorings according to some
permutation π ∈ S3. For example, consider a coloring x ∈ Σn and suppose y ∈ Σn is
obtained by permuting the 3 color classes of x. The agreement between x and y should
be close to 1. Thus, we define the agreement between x and y as

max
π∈S3

Eu∈V [π(xu) = yu 6= ⊥] .

Here for simplicity we assume π(⊥) = ⊥. Formally,

Definition 9.3.6 (Agreement between 2 valid 3-colorings). Let π ∈ S3. Define

Sπ := {(σ, π(σ)) : σ ∈ [3]} .

For almost 3-colorings x, y ∈ Σn, we define the agreement between x and y according to
permutation π to be

agreeπ(x, y) := wt(Sπ) = Eu∈[n]

 ∑
σ∈[3]

1(xu = σ, yu = π(σ))

 .

Furthermore, for any ` ∈N, we write

agree(`)(x, y) = ∑
π∈S3

agreeπ(x, y)` .

123

Here agree(`)(x, y) should be viewed as a polynomial approximation of maxπ agreeπ(x, y)`.
We note some simple facts (written in SoS form) that will be useful later.

Fact 9.3.7. For any t ∈N, the following can be easily verified:
(1) Abool(x) 2t

x {
1(u← α)2 = 1(u← α)

}
, i.e., 1(u ← α) satisfies the Booleanity con-

straint.
(2) ACol(x) 2t

x {1(u← α) · 1(u← β) = 0} for α 6= β. This also implies that 1(u ← S)
satisfies the Booleanity constraint for any S ⊆ Σt.

(3) ACol(x) t
x {∑α∈Σt 1(u← α) = 1}, thus ACol(x) t

x {∑α∈Σt wt(α) = 1}.

Each Sπ corresponds to a triangle in Figure 9.2, and we see that there are two ways to
partition the graph into 3 disjoint triangles. The next lemma can essentially be proved
by looking at Figure 9.2 (there S⊥ is not shown), and it is crucial for our analysis.

Lemma 9.3.8. Let G be a regular graph. Let S+
3 be the set of 3 permutations with sign (a.k.a.

parity) +1 and S−3 be the ones with sign −1. Then,

ACol
G (x, y) 2

x,y

 ∑
π∈S+3

wt(Sπ) = ∑
π∈S−3

wt(Sπ) = 1− wt(S⊥)

 .

Moreover,

ACol
G (x, y) 2

x,y
{

∑
π∈S3

e(Sπ, Sπ) 6 1

}
.

Proof. The first statement follows by noting that for each i, j ∈ [3], there are exactly
two permutations with opposite signs that map i to j. Thus, {Sπ : π ∈ S+

3 } ∪ {S⊥}
and {Sπ : π ∈ S−3 } ∪ {S⊥} are partitions of the whole graph. One can also prove this
directly from Figure 9.2.

For the second statement, note that each edge (i1, j1), (i2, j2) ∈ [3]2 in the gadget
uniquely identifies the permutation π such that π(i1) = j1 and π(i2) = j2. This
means that each edge not incident to Sπ is contained in exactly one Sπ, and we have
∑π e(Sπ, Sπ) = e(S⊥, S⊥) > 1− 2wt(S⊥). On the other hand, from the first statement
we have ∑π wt(Sπ) = 2 − 2wt(S⊥) Thus, ∑π e(Sπ, Sπ) = ∑π(wt(Sπ) − e(Sπ, Sπ)) 6
(2− 2wt(S⊥))− (1− 2wt(S⊥)) = 1.

9.3.2 Large spectral gap implies large agreement

Lemma 9.3.9. Let G be a d-regular n-vertex graph with λ2 := λ2(G) > 0. Then,

ACol
G (x, y) 4

x,y
{

∑
π∈S3

wt(Sπ)
2 > 2− 1

1− λ2
− 2wt(S⊥)

}
.

124

Proof. Fix a permutation π ∈ S3, and let yu = 1(u ← Sπ). By Lemma 9.2.8, we have
that

ACol
G (x, y) 4

x,y
{

e(Sπ, Sπ) =
1

nd
y>LGy >

1
n
· (1− λ2)

(
‖y‖2

2 −
1
n
〈~1, y〉2

)}
Since yu satisfies the booleanity constraints, we have 1

n (‖y‖2
2 − 1

n 〈~1, y〉2) = Eu[yu] −
Eu[yu]2 = wt(Sπ)(1− wt(Sπ)). Thus,

ACol
G (x, y) 4

x,y {
e(Sπ, Sπ) > (1− λ2) · wt(Sπ)(1− wt(Sπ))

}
.

Next, we sum over π ∈ S3. By Lemma 9.3.8, on the left-hand side we have ∑π e(Sπ, Sπ) 6
1, and on the right-hand side we have (1− λ2)∑π wt(Sπ)(1− wt(Sπ)) = (1− λ2)(2−
2wt(S⊥)−∑π wt(Sπ)2). Rearranging this completes the proof.

In Theorem 9.3.1, we assume that the graph has spectral gap 1− λ2 > 1− γ and
the almost 3-coloring assignments satisfy wt(S⊥) 6 wt({⊥∗}) + wt({∗⊥}) 6 2ε for
some small enough constants ε, γ. Thus, by Lemmas 9.3.8 and 9.3.9, the 6 variables
{wt(Sπ)}π∈S3 satisfy that ∑π∈S+3

wt(Sπ) = ∑π∈S−3
wt(Sπ) ∈ [1− 2ε, 1] and ∑π wt(Sπ)2 >

1−O(γ+ ε). On the other hand, recall from Definition 9.3.6 that wt(Sπ) = agreeπ(x, y).
We would like to prove Claim 9.1.8: assuming agreeπ(x, y) 6 1

2 + γ for all π, then
one of {wt(Sπ)}π∈S+3

and one of {wt(Sπ)}π∈S−3
must be small. This is captured in the

following lemma:

Lemma 9.3.10. Fix γ ∈ [0, 0.01]. Let z1, z2, . . . , z6 be such that 0 6 zi 6
1
2 + γ and z1 + z2 +

z3 = z4 + z5 + z6 6 1. Suppose ‖z‖2
2 > 1− γ. Then, one of z1, z2, z3 and one of z4, z5, z6 must

be 6 8γ.

Proof. For any i ∈ [6], we have ‖z‖2
2 6 z2

i + (1
2 + γ)∑j 6=i zj since zj 6

1
2 + γ for all j.

Then since ‖z‖1 6 2, for all i ∈ [6] we have

‖z‖2
2 6 z2

i +

(
1
2
+ γ

)
(2− zi) = 1 + 2γ− zi

(
1
2
+ γ− zi

)
.

Since ‖z‖2
2 > 1− γ, it follows that

zi

(
1
2
+ γ− zi

)
6 3γ , ∀i ∈ [6] .

Then, by solving a quadratic inequality, one can verify that when γ 6 0.01, the above
implies that either zi 6 8γ or zi >

1
2 − 8γ. Therefore, since z1 + z2 + z3 6 1, z1, z2, z3

cannot all be the latter, i.e., one of them must be 6 8γ. Similarly for z4, z5, z6.

We next consider 3 almost 3-coloring assignments. Recall that Σ = [3] ∪ {⊥}.

125

Lemma 9.3.11. Let 0 6 ε, γ 6 0.001. Let {w(α)}α∈Σ3 be variables such that 0 6 w(α) 6 1
and ∑α w(α) = 1. For any S ⊆ Σ3, denote w(S) = ∑α∈S w(α), and let

S(12)
π = {(σ, π(σ), ∗) : σ ∈ [3]} ,

S(13)
π = {(σ, ∗, π(σ)) : σ ∈ [3]} ,

S(23)
π = {(∗, σ, π(σ)) : σ ∈ [3]} ,

Suppose w(σ ∗ ∗), w(∗σ∗), w(∗ ∗ σ) 6 1
2 + γ and w(⊥ ∗ ∗), w(∗⊥∗), w(∗ ∗ ⊥) 6 ε. More-

over, suppose ∑π∈S3
w(S(ij)

π)2 > 1− γ for all pairs i < j ∈ [3], then there must be some π and

i < j such that w(S(ij)
π) > 1

2 + γ.

Proof. Suppose by contradiction that all w(S(ij)
π) 6 1

2 + γ. Let S+
3 be the set of 3 permu-

tations with sign (a.k.a. parity) +1 and S−3 be the ones with sign −1. For each pair i < j
(say, (12) for now), by Lemma 9.3.8 we have ∑π∈S+3

w(S(12)
π) = ∑π∈S−3

w(S(12)
π) 6 1.

Therefore, the 6 variables {w(S(12)
π)}π∈S+3

∪ {w(S(12)
π)}π∈S−3

satisfy the conditions in

Lemma 9.3.10, and thus there are some π+ ∈ S+
3 and π− ∈ S−3 such that w(S(12)

π+), w(S(12)
π−) 6

8γ. Furthermore, note that since π+ and π− have different signs, S(12)
π+ and S(12)

π− inter-
sect in exactly (β1, β2, ∗) for some β1, β2 ∈ [3]. In fact, β1, β2 uniquely determine π+

and π−, as there are exactly two permutations with different signs that map β1 to β2.
Assume without loss of generality (due to symmetry) that β1 = β2 = 1, thus we

have S(12)
π+ = {11∗, 22∗, 33∗} and S(12)

π− = {11∗, 23∗, 32∗}. Let T(12) := [3]3 \ (S(12)
π+ ∪

S(12)
π−) = {12∗, 13∗, 21∗, 31∗}, which equals {1 ∗ ∗, ∗1∗} \ {11∗} (here we do not include
⊥). Notice the structure of T(12) — ignoring the third assignment, T(12) forms a 2× 2
bipartite graph (between {12∗, 13∗} and {21∗, 31∗} in this case; see Figure 9.3) where
one assignment labels the entire left-hand side as one color while the other assignment
labels the entire right-hand side as one color.

Now, for all 3 pairs (12), (13), (23), consider T := T(12) ∩ T(23) ∩ T(13) ⊆ [3]3. First,
we have w(T) > 1− 48γ− wt(S⊥) > 1− 48γ− 3ε, since wt(S⊥) 6 3ε by assumption.
Next, we claim that for all choices of π+ and π− for each pair, T can contain at most 4
strings in [3]3 and must form a 2× 2 bipartite structure such that each assignment colors
one side with one color.

Let T(12) = {a1 ∗ ∗, ∗a2∗} \ {a1a2∗}, T(13) = {b1 ∗ ∗, ∗ ∗ b2} \ {b1 ∗ b2}, and T(23) =

{∗c1∗, ∗ ∗ c2} \ {∗c1c2} for some a1, a2, b1, b2, c1, c2 ∈ [3]. We split into several cases:

• a1 = b1: in this case, T(12) ∩ T(13) = ({a1 ∗ ∗} \ {a1a2∗, a1 ∗ b2}) ∪ ({∗a2b2} \
{a1a2b2}).

1. c1 6= a2, c2 6= b2: then, T = ({a1c1∗} \ {a1c1b2, a1c1c2})∪ ({a1 ∗ b2} \ {a1a2b2, a1c1b2}),
i.e., 2 strings in [3]3. For example, T = {123, 131}.

126

2. c1 = a2, c2 6= b2: then, T = ({a1 ∗ c2} \ {a1a2c2}) ∪ ({∗a2b2} \ {a1a2b2}), i.e.,
4 strings in [3]3. For example, T = {122, 132, 211, 311}.

3. c1 = a2, c2 = b2: then, T = ∅.
• a1 6= b1: in this case, T(12) ∩ T(13) = ({a1 ∗ b2} \ {a1a2b2}) ∪ ({b1a2∗} \ {b1a2b2}),

which is already the same case as the second case above.

For the case when T = ∅ or T contains 2 strings, we have w(T) 6 w(σ ∗ ∗) for some
σ ∈ [3], which means 1− 48γ− 3ε 6 1

2 + γ. This is a contradiction.
For the case when T contains 4 strings, let T = {α1, α2, β1, β2} such that {α1, α2}

and {β1, β2} form the bipartite structure. Assume without loss of generality that the
first assignment labels the left with the same color: α1

1 = α2
1 6= β1

1, β2
1, and the second

and third label the right with the same color: β1
2 = β2

2 6= α1
2, α2

2 and β1
3 = β2

3 6= α1
3, α2

3.
Observe that w(α1)+w(α2) 6 w(α1

1 ∗ ∗) 6
1
2 +γ and w(β1)+w(β2) 6 w(∗β1

2∗) 6 1
2 +γ

by the assumptions. Since w(T) > 1 − 48γ − 3ε, it follows that w(α1) + w(α2) and
w(β1) + w(β2) > 1

2 − 49γ− 3ε.

On the other hand, w(α1) + w(β1) + w(β2) 6 w(∗α1
2α1

3) + w(∗β1
2β1

3) 6 w(S(23)
π) and

w(α2) + w(β1) + w(β2) 6 w(∗α2
2α2

3) + w(∗β1
2β1

3) 6 w(S(23)
π′) for some permutations

π, π′ ∈ S3. However, this means that one of w(S(23)
π), w(S(23)

π′) is at least 3
2(

1
2 − 49γ−

3ε) > 1
2 + γ when ε, γ 6 0.001, which is a contradiction.

We next formalize Lemma 9.3.11 as an SoS proof.

Lemma 9.3.12 (SoS version of Lemma 9.3.11). Fix constants ε, γ ∈ (0, 0.001] and ` ∈ N.
Let S(ij)

π ⊆ [3]3 be as defined in Lemma 9.3.11, and let {w(α)}α∈Σ3 be indeterminants. Let A
be the set of constraints including

(1) 0 6 w(α) 6 1,
(2) ∑α∈Σ3 w(α) = 1,
(3) w(σ ∗ ∗), w(∗σ∗), w(∗ ∗ σ) 6 1

2 + γ for all σ ∈ [3],
(4) w(⊥ ∗ ∗), w(∗⊥∗), w(∗ ∗ ⊥) 6 ε,

(5) ∑π∈S3
w(S(ij)

π)2 > 1− γ for all pairs i < j ∈ [3].
Then, there exists an integer d = d(ε, γ, `) such that

A d

{w(α)}
 ∑

i<j∈[3]
∑

π∈S3

w
(

S(ij)
π

)`
>
(

1 + γ

2

)`
 .

Proof. Lemma 9.3.11 shows that assuming constraints A, there must be some w(S(ij)
π) >

1
2 + γ. This immediately implies that ∑i<j∈[3] ∑π∈S3

w(S(ij)
π)` > (1

2 + γ)`.

Define f (w) := ∑i<j∈[3] ∑π∈S3
w(S(ij)

π)` − (1+γ
2)`, a degree-` polynomial in 64 vari-

ables with bounded coefficients. Note thatA defines a subset A ⊆ Rn which is compact,

127

and minw∈A f (w) > θ for some constant θ = θ(γ, `) > 0. Thus, by the Positivstellensatz
(Fact 2.5.5), f (w) > 0 has an SoS proof of degree d depending on ε, γ, `.

9.3.3 Rounding with large agreement

We prove the following key lemma that large agreement and small correlation imply
rounding. Using this, we finish the proof of Theorem 9.3.1 at the end of this section.

Lemma 9.3.13 (Rounding with large agreement). Fix γ ∈ (0, 1). There exist ` ∈ N and
δ ∈ (0, 1) such that given a degree-` pseudo-distribution µ satisfying the almost 3-coloring
constraints such that

Ẽ(x,y)∼µ⊗2

[
agree(`)(x, y)

]
>
(

1
2
+ γ

)`

,

and suppose µ is almost `-wise independent on average:

Eu1,...,u`∈[n] KL(µ(Xu1 , . . . , Xu`
)‖µ(Xu1)× · · · × µ(Xu`

)) 6 δ ,

then one of the sets Iσ = {u ∈ V : P̃rµ[xu = σ] > 1
2} for σ ∈ [3] has size at least Ω(γn).

The proof of Lemma 9.3.13 relies on the following definition.

Definition 9.3.14 (Collision probability). Given a pseudo-distribution µ over Σn, we de-
fine the collision probability of a vertex u ∈ [n] to be

CPµ(xu) := Ẽx,x′∼µ[1(xu = x′u 6= ⊥)] = ∑
σ∈[3]

P̃rµ[xu = σ]2 .

Further, the (average) collision probability CP(µ) = Eu∈[n]CP(xu).

We next show a simple lemma which states that large collision probability implies a
large fraction of vertices with P̃rµ[xu = σ] > 1

2 for some color σ ∈ [3] (and they form an
independent set due to Fact 9.1.1).

Lemma 9.3.15. Suppose a pseudo-distribution µ over Σn has collision probability CP(µ) >
1
2 + γ for some γ ∈ (0, 1/2], then there is a σ ∈ [3] such that at least γ/3 fraction of u ∈ [n]
have P̃rµ[xu = σ] > 1

2 +
γ
2 .

Proof. Observe that CPµ(xu) 6 maxσ∈[3] P̃rµ[xu = σ] because ∑σ∈[3] P̃rµ[xu = σ] 6 1.
Thus, we have Eu∈[n] maxσ∈[3] P̃rµ[xu = σ] > 1

2 + γ. This implies that at least γ fraction
of u ∈ [n] has maxσ∈[3] P̃rµ[xu = σ] > 1

2 +
γ
2 . Then, there must be a σ ∈ [3] such that at

least γ/3 fraction of u ∈ [n] have P̃rµ[xu = σ] > 1
2 +

γ
2 .

In light of Lemma 9.3.15, to prove Lemma 9.3.13, it suffices to show that the pseudo-
distribution µ has large collision probability.

128

Proof of Lemma 9.3.13. We first prove an upper bound on Ẽ[agree(`)(x, y)]:

Ẽx,y∼µ

[
agree(`)(x, y)

]
6 6

(
CP(µ)` + 2

√
2δ
)

. (9.4)

For any permutation π, recalling Definition 9.3.6,

agreeπ(x, y)` = Pru1,...,u`∈[n] [xui = π(yui) 6= ⊥, ∀i ∈ [`]]

= Eu1,...,u`∈[n] ∑
σ1,...,σ`∈[3]

1 (xui = π(yui) = σi, ∀i ∈ [`]) .

Thus, summing over π ∈ S3 and using the independence between x and y,

Ẽµ⊗2

[
agree(`)(x, y)

]
= Eu1,...,u`∈[n] ∑

π∈S3

∑
σ1,...,σ`∈[3]

P̃rµ[xui = σi, ∀i] · P̃rµ[xui = π−1(σi), ∀i]

6 Eu1,...,u`∈[n] ∑
π∈S3

∑
σ1,...,σ`∈[3]

1
2

(
P̃rµ[xui = σi, ∀i]2 + P̃rµ[xui = π−1(σi), ∀i]2

)
then since the summation is over all permutations π and σ1, . . . , σ` ∈ [3],

= |S3| ·Eu1,...,u`∈[n] ∑
σ1,...,σ`∈[3]

P̃rµ[xui = σi, ∀i]2 . (9.5)

Now, suppose Eu1,...,u`∈[n] KL(µ(Xu1 , . . . , Xu`
)‖µ(Xu1)× · · · × µ(Xu`

)) 6 δ, then by
Pinsker’s inequality (Fact 2.5.8) and Jensen’s inequality,

Eu1,...,u`∈[n] ∑
σ1,...,σ`∈[3]

∣∣∣∣∣P̃rµ[xui = σi, ∀i]−
`

∏
i=1

P̃rµ[xui = σi]

∣∣∣∣∣ 6 √2δ .

Then, using the fact that p2 − q2 = (p− q)(p + q) 6 2|p− q| for all p, q ∈ [0, 1], we can
bound Eq. (9.5) by

Ẽµ⊗2

[
agree(`)(x, y)

]
6 6

Eu1,...,u`∈[n] ∑
σ1,...,σ`∈[3]

`

∏
i=1

P̃rµ[xui = σi]
2 + 2

√
2δ


= 6


Eu∈[n] ∑

σ∈[3]
P̃rµ[xu = σ]2

`

+ 2
√

2δ


= 6

(
CP(µ)` + 2

√
2δ
)

.

This completes the proof of Eq. (9.4).
Therefore, since Ẽµ⊗2 [agree(`)(x, y)] > (1

2 + γ)`, we have

CP(µ)` >
1
6

(
1
2
+ γ

)`

− 2
√

2δ .

129

For any γ > 0, there exists a large enough ` ∈ N and small enough δ (here ` = O(1/γ)

and δ = 2−O(`) suffice) such that the above is at least (1
2 + γ

2)
`, which means that

CP(µ) > 1
2 +

γ
2 .

Then, let Iσ = {u : P̃rµ[xu = σ] > 1
2} for σ ∈ [3], which are independent sets. By

Lemma 9.3.15, one of the sets has size at least Ω(γn), thus completing the proof.

We can now finish the analysis of Algorithm 9.3.3 and prove Theorem 9.3.1.

Proof of Theorem 9.3.1. Fix γ = 10−3. If there is an independent set in G with size larger
than (1

2 + γ)n, then Fact 9.3.2 says that we can find an independent set of size at least
2γn, and the first step of Algorithm 9.3.3 would succeed. Therefore, let us assume that
this is not the case, and in particular the second step of the algorithm outputs a valid
pseudo-distribution µ′ satisfying the constraints listed therein.

Fix ` = 104, and let δ be some small enough constant as in Lemma 9.3.13. First,
by Lemma 2.5.9, we can assume that the third step of Algorithm 9.3.3 reduces the total
`-wise correlation of µ′ to output a pseudo-distribution µ with total `-wise correlation
6 δ.

By Lemma 9.3.9 we have

ACol
G (x, y) 4

x,y
{

∑
π∈S3

wt(Sπ)
2 > 2− 1

1− λ2
− 2ε > 1− γ

}
since Ẽ[wt(S⊥)] 6 2ε by the constraints on µ and λ2 6 10−4, ε 6 10−4. Then, con-
sider 3 assignments x = (x(1), x(2), x(3)). By Lemma 9.3.12, it follows that the pseudo-
distribution µ satisfies

Ẽµ⊗3 ∑
i<j∈[3]

∑
π∈S3

w
(

S(ij)
π

)`
>
(

1 + γ

2

)`

.

By symmetry between the 3 assignments, it follows that

Ẽµ⊗3 ∑
π∈S3

w(Sπ)
` = Ẽµ⊗2

[
agree(`)(x, y)

]
>

1
3

(
1 + γ

2

)`

>
(

1
2
+

γ

4

)`

since ` = 104. Then, Lemma 9.3.13 shows that one of the sets Iσ = {u : P̃rµ[xu =

σ] > 1
2} for σ ∈ [3] has size at least Ω(γn). The degree of the SoS algorithm required is

O(1/δ) + d = O(1), where d = d(ε, γ, `) is the constant from Lemma 9.3.12.

9.4 Hardness of finding independent sets in k-colorable
expanders

Bansal and Khot [BK09] proved the following hardness result of finding linear-sized
independent sets in almost 2-colorable graphs, which is a strengthening of [KR08].

130

Proposition 9.4.1 ([BK09]). Assuming the Unique Games Conjecture, for any constants ε, γ >

0, given an n-vertex graph G, it is NP-hard to decide between
1. G has 2 disjoint independent sets of size (1

2 − ε)n,
2. G has no independent set of size larger than γn.

Moreover, the above holds if we additionally assume that the graph has degrees
o(n).

Proposition 9.4.2 (Formal version of Proposition 6.3.1). Assuming the Unique Games Con-
jecture, for any constants ε, γ > 0, given a regular n-vertex graph G which is a one-sided
spectral expander with λ2(G) 6 on(1), it is NP-hard to decide between

1. G is ε-almost 4-colorable,
2. G has no independent set of size larger than γn.

Proof. We start the reduction from Proposition 9.4.1. Given a graph G, we add a regular
bipartite graph H (potentially introducing multi-edges) such that H has degree Ω(n)
and the second eigenvalue of its normalized adjacency matrix λ2(H) = on(1). If G is
not regular, we can make the resulting graph G′ regular by removing o(1) fraction of
edges, denoted H′, from H.

If G is ε-almost 2-colorable, then G′ is clearly ε-almost 4-colorable (since H is 2-
colorable). On the other hand, adding edges cannot increase the size of the maximum
independent set.

Next, we prove that G′ has small normalized second eigenvalue. We can assume
that G and H′ have maximum degrees dG, dH′ = o(n) while H has degree dH = Ω(n).
Then, λ2(G′) = 1

dG′
λ2(AG + AH − AH′) =

1
dG′
·maxx⊥~1,‖x‖2=1 x>(AG + AH − AH′)x 6

on(1).

Hardness for k-colorable graphs. In this case (as opposed to almost k-colorable), we
need a hardness conjecture with perfect completeness. The natural candidate is the 2-to-1
(or d-to-1) conjecture:

Conjecture 9.4.3 (2-to-1 conjecture with perfect completeness [Kho02]). For every ε > 0,
there exists some R ∈N such that given a label cover instance ψ with alphabet size R such that
all constraints are 2-to-2 constraints, it is NP-hard to decide between

1. ψ is satisfiable,
2. no assignment satisfies more than ε fraction of the constraints in ψ.

Dinur, Mossel and Regev [DMR06] introduced the following variant of the 2-to-1
conjecture. We note that the “n” constraints (termed “alpha” or “fish-shaped” con-
straints) have also appeared in [DS05]. See [DS05, DMR06] for a precise statement.

131

Conjecture 9.4.4 (“n” variant of the 2-to-1 conjecture [DMR06]). Conjecture 9.4.3 is true
even assuming that all constraints in the label cover instance are “n” constraints.

Dinur, Mossel and Regev [DMR06] proved the following,

Proposition 9.4.5. Assuming Conjecture 9.4.4, for any constant γ > 0, given an n-vertex
graph G = (V, E), it is NP-hard to decide between

1. G is 3-colorable,
2. G has no independent set of size larger than γn.

In particular, the gadget used to prove Proposition 9.4.5 is regular, hence we can
additionally assume that the graph is regular. Moreover, we can assume that the degrees
are o(n).

With Proposition 9.4.5, we can prove the following:

Proposition 9.4.6. Assuming Conjecture 9.4.4, for any constant γ > 0, given a regular n-
vertex graph G which is a one-sided spectral expander with λ2(G) 6 on(1), it is NP-hard to
decide between

1. G is 6-colorable,
2. G has no independent set of size larger than γn.

Proof. Given a graph G, the reduction is to add a regular bipartite graph H (potentially
introducing multi-edges) such that H has degree Ω(n) and the second eigenvalue of
its normalized adjacency matrix λ2(H) = on(1). If G is k-colorable, then the resulting
graph G′ is clearly 2k-colorable (since H is 2-colorable). On the other hand, adding
edges cannot increase the size of the maximum independent set.

Next, we prove that G′ has small normalized second eigenvalue. Since we can as-
sume that G has degree dG = o(n) while H has degree dH = Ω(n). Then, λ2(G′) 6

1
dG+dH

(dGλ2(G) + dHλ2(H)) 6 on(1).

9.5 Rounding independent sets via Karger-Motwani-Sudan

In this section, we recall a folklore result (we were unable to find a reference, though
this argument seems to be known to experts) that extends the rounding algorithm of
Karger, Motwani and Sudan [KMS98] to prove the following:

Theorem 9.5.1. For any ε > 0, there exists a polynomial-time algorithm such that given an
n-vertex graph containing an independent set of size (1/2− ε)n, it finds an independent set of
size at least (εn)1−O(ε).

We first prove the following crucial lemma.

132

Lemma 9.5.2. Let G = (V, E) be a graph and ε > 0. Suppose each vertex i ∈ V is associated
with a unit vector ui such that for all (i, j) ∈ E, 〈ui, uj〉 6 −1 + ε. Then, there is a polynomial-
time algorithm that finds an independent set in G of size at least n1−O(ε).

Proof. Set t := 4
√

ε log n. The algorithm is as follows,

(1) Sample a Gaussian vector g ∼ N (0, In).
(2) Let S := {i ∈ V : 〈g, ui〉 > t}.
(3) Output T := {i ∈ S : ∀j ∈ N(i), j /∈ S}.

Here, N(i) denotes the set of neighbors of i. By definition, T is an independent set. We
next claim that in expectation over g, |T| > n1−O(ε), which finishes the proof.

First, note that Pr[i ∈ S] = Prh∼N (0,1)[h > t] > Ω(1
t e−t2/2) > n−O(ε). Next, for each

i ∈ V,

Pr[i ∈ S and ∀j ∈ N(i), j /∈ S] = Pr[i ∈ S] · (1− Pr[∃j ∈ N(i), j ∈ S|i ∈ S])

> Pr[i ∈ S] ·

1− ∑
j∈N(i)

Pr[j ∈ S|i ∈ S]

 .

where the second inequality follows by union bound.
We now analyze Pr[j ∈ S|i ∈ S]. Since 〈ui, uj〉 6 −1+ ε, we can write uj = αui + βw,

where w ⊥ ui, −1 6 α 6 −1 + ε and β =
√

1− α2 6
√

2ε. Then, j ∈ S means
that 〈g, uj〉 = α〈g, ui〉+ β〈g, w〉 > t, and combined with 〈g, ui〉 > t, we have 〈g, w〉 >
(1− α)t/β > t/β. Thus,

Pr[j ∈ S|i ∈ S] 6 Pr[〈g, w〉 > t/β] 6 e−t2/2β2
6 1/n2 ,

since β 6
√

2ε and t = 4
√

ε log n. As i has at most n neighbors, this implies that
Pr[i ∈ S and ∀j ∈ N(i), j /∈ S] > Pr[i ∈ S] · (1− o(1)). In particular, we have E|T| >
n · Pr[i ∈ S] · (1− o(1)) > n1−O(ε), completing the proof.

We now prove Theorem 9.5.1.

Proof of Theorem 9.5.1. Consider the following independent set formulation:

max ∑
i∈V

xi

s.t. (1 + xi)(1 + xj) = 0 ∀(i, j) ∈ E(G),

x2
i = 1 ∀i ∈ V(G) .

(9.6)

Note that any vector x ∈ {±1}n where {i : xi = 1} is an independent set in G is a
feasible solution to the above, since (1 + xi)(1 + xj) is nonzero only if xi = xj = 1.

133

Since G has an independent set of size (1/2− ε)n, the above program has value at least
(1/2− ε)n− (1/2 + ε)n = −2εn.

We can solve the SDP relaxation of (9.6) and obtain a pseudo-distribution µ, and we
have that ∑i∈V Ẽµ[xi] > −2εn. Let S := {i : Ẽµ[xi] > −4ε}. Then,

−2εn 6 ∑
i∈S

Ẽµ[xi] + ∑
i/∈S

Ẽµ[xi] 6 |S|+ (n− |S|) · (−4ε) =⇒ |S| > 2εn
1 + 4ε

> εn .

For any i ∼ j ∈ S, we have Ẽµ[xixj] = −1− Ẽµ[xi + xj] 6 −1 + 8ε. Moreover, each
vertex i is associated with a unit vector ui such that 〈ui, uj〉 = Ẽµ[xixj]. Thus, the sub-
graph G[S] and the unit vectors satisfy the conditions in Lemma 9.5.2. Thus, there
is a polynomial-time algorithm that finds an independent set in G[S] of size at least
|S|1−O(ε) > (εn)1−O(ε).

134

Part III

Explicit Constructions of Vertex
Expanders

135

Chapter 10

Introduction

In this part, we study the problem of constructing explicit vertex expanders. Vertex ex-
pansion refers to the property that every “small enough” set of vertices should have
“many” distinct neighbors. In this thesis, we restrict our attention to bipartite graphs.
Below, we first define bipartite vertex expanders formally.

Definition 10.0.1 (Two-sided vertex expander). We say a (dL, dR)-biregular graph Z with
left and right vertex sets L and R respectively is a γ-two-sided vertex expander if there is a
constant δ > 0 depending on γ, dL, dR such that:

1. Every subset S ⊆ L with |S| < δ|L| has at least γ · dL|S| neighbors in R.
2. Every subset S ⊆ R with |S| < δ|R| has at least γ · dR|S| neighbors in L.

In addition to vertex expansion, a well-studied notion of expansion is unique-neighbor
expansion. A unique-neighbor of a set S is a vertex v with exactly one edge to S. We can
similarly define bipartite unique-neighbor expanders.

Definition 10.0.2 (Two-sided unique-neighbor expander). We say a (dL, dR)-biregular
graph Z with left and right vertex sets L and R respectively is a γ-two-sided unique-
neighbor expander if there is a constant δ > 0 depending on γ, dL, dR such that:

1. Every subset S ⊆ L with |S| < δ|L| has at least γ · dL|S| unique-neighbors in R.
2. Every subset S ⊆ R with |S| < δ|R| has at least γ · dR|S| unique-neighbors in L.

Observe that (1− ε)-vertex expansion implies (1− 2ε)-unique-neighbor expansion.
We will call an infinite family of graphs lossless (vertex) expanders if γ = 1− ε, where ε

can be made arbitrarily small (for large enough degrees dL, dR). Thus, lossless expanders
are graphs achieving the quantitatively strongest form of unique-neighbor expansion.

More generally, γ-vertex expansion implies (2γ − 1)-unique-neighbor expansion,
and this is tight. In particular, 1

2 -vertex expansion, which is guaranteed by spectral
expansion, does not guarantee unique-neighbor expansion [Kah95] (see Section 10.1 for
more discussion).

137

The main result of this part is an explicit construction of constant-degree lossless
expanders, resolving a longstanding open problem (see, e.g., [HLW06, Open problem
10.8]). Before stating our results, we first provide some background on prior work and
applications of vertex expanders in Section 10.1. Then, in Section 10.2, we state our main
result and discuss the sequence of works [HMMP24, HLMOZ25, HLMRZ25] that led to
this construction.

10.1 History of vertex expanders

The quest for explicit lossless vertex expanders can be traced back to the seminal work
of Sipser and Spielman [SS96] who identified vertex expansion as an important prop-
erty for error correction. In particular, they showed that a one-sided lossless expander
can be used to construct a good error-correcting code with a linear-time decoding algo-
rithm. Around the same time, a parallel line of work on distributed routing in networks
[Pip93, ALM96, BFSU98] identified vertex expansion as a crucial property of networks
for designing routing protocols. At the time, it was well understood that a random
graph is a lossless vertex expander with optimal parameters with high probability, but
no explicit constructions were known.

The quest for explicit constructions I. The first work in the direction of obtaining ex-
plicit constructions was by Kahale [Kah95], who proved that any d-regular Ramanujan
graph is a (1/2− o(1))-vertex expander (see Theorem 3.2.1). Unfortunately, this barely
fell short of being useful for applications, which needed small sets to have many unique-
neighbors. In the same work, Kahale proved that 1/2 was an inherent barrier to spectral
techniques by constructing a near-Ramanujan graph along with a small subset S of ver-
tices with only d/2 · |S| neighbors, and more strikingly, with zero unique-neighbors (see
[MM21, KK22, KY24] for similar examples of such graphs).

The first explicit construction of unique-neighbor expanders was given by Alon and
Capalbo [AC02]. Shortly after, in a breakthrough work, Capalbo, Reingold, Vadhan,
and Wigderson [CRVW02] gave explicit constructions of one-sided lossless expanders.

Applications. We refer the reader to [CRVW02] for a detailed treatment of known
applications of lossless expanders at the time in coding theory, distributed routing, fault
tolerant networks, storage schemes, and proof complexity.

Ever since, the array of applications has expanded: [DSW06, BV09] proved that
one can use codes arising from unique-neighbor expanders to construct robustly testable
codes, and Viderman [Vid13] gave a linear-time decoding algorithm for codes constructed
from 2

3 -vertex expanders. Vertex expanders have also seen applications in high-dimensional
geometry: the works of [GLR10, Kar11, BGIKS08, GMM22] used unique-neighbor ex-
panders to construct `p-spread subspaces and matrices satisfying the `p-isometry property.
The work [HMP06] gave a construction of a family of deterministic and uniform circuits

138

for computing the (approximate) majority of n bits assuming the construction of fully
lossless expanders. Motivated by randomness extractors, the works [TUZ07, GUV09]
gave constructions of polynomially imbalanced one-sided lossless expanders.

More recently, in the wake of advances on constructing c3-locally testable codes
[DELLM22, PK22] and quantum LDPC codes [PK22], Lin and M. Hsieh gave alternate
simpler constructions of both these objects: c3-LTCs in [LH22a] based on one-sided loss-
less expanders, and quantum LDPC codes in [LH22b] based on two-sided lossless ex-
panders with a free group action, which we now have (see Remark 10.2.3).

The quest for explicit constructions II. The work of Lin and M. Hsieh [LH22b] re-
newed interest in constructing vertex expanders, which led to a flurry of new work.
Asherov and Dinur [AD24] gave a simple construction of one-sided unique-neighbor
expanders, based on generalizing a construction in [AC02], which was simplified in a
work of Kopparty, Ron-Zewi, and Saraf [KRS23]. Golowich [Gol24] and independently,
Cohen, Roth and Ta-Shma [CRT23] proved that their construction instantiated with ap-
propriate parameters in fact yields one-sided lossless expanders.

Using significantly different ideas, a recent work of [CGRZ24] studied the bipartite
graphs of [KT22], which have polynomially large imbalance, and showed that they have
two-sided lossless expansion — the first construction of two-sided lossless expanders in
the unbalanced setting. The setting of polynomial imbalance is of interest in the litera-
ture on randomness extractors, , but are not known to give good quantum LDPC codes
via [LH22b]. Here, we focus on bipartite graphs with constant degrees and constant
imbalance.

10.2 Explicit lossless vertex expanders

In a sequence of works [HMMP24, HLMOZ25, HLMRZ25], culminating in [HLMRZ25],
we give the first construction of constant-degree lossless expanders.

Theorem 10.2.1 (Constant-degree lossless expanders). For every ε > 0, there exists a suffi-
ciently large integer d0 = d0(ε) such that for every integer d > d0, there is an explicit (determin-
istic polynomial-time constructible) infinite family of d-regular graphs G that are (1− ε)-vertex
expanders.

More generally, we construct two-sided lossless expanders with arbitrary constant
imbalance β = dL/dR. Having arbitrary imbalance is important in many applications;
for example, in coding theory, the imbalance determines the rate of the code.

Theorem 10.2.2. For every ε, β ∈ (0, 1], there exist k = k(ε), d0 = d0(ε, β) ∈ N such that
for any dL, dR > d0 for which β 6 dL/dR 6 β + ε, there is an infinite family of (kdL, kdR)-
biregular bipartite graphs (Zn)n>1 for which Zn is a two-sided (1− ε)-vertex expander on Θ(n)

139

vertices. Additionally, there is an algorithm that takes in a positive integer n as input, and in
poly(n)-time outputs Zn.

We remark that Theorem 10.2.2 implies Theorem 10.2.1: In the special case where
dL = dR = d, the construction can be made d-regular for any d > d0(ε). The trick
is to begin with a (d̃, d̃)-biregular graph G guaranteed by Theorem 10.2.2, where d̃ ∈[

d,
(

1 + 1
k−1

)
d
]
. Since G is bipartite, it can be decomposed into d̃ edge-disjoint perfect

matchings. By taking the union of any d of these matchings, we obtain a d-regular
subgraph. Such a d-regular subgraph can be seen to incur only a negligible loss in the
vertex expansion.

Remark 10.2.3 (Free group action). Our construction also admits a free group action by
a group of size linear in the number of vertices in the graph, resolving a conjecture
of Lin and M. Hsieh [LH22b, Conjecture 10]. By their work, our construction yields
a new family of good quantum LDPC codes, which also admit a linear-time decoding
algorithm. See Section 13.5 for details.

Tripartite line product. In all three papers [HMMP24, HLMOZ25, HLMRZ25], the
main ingredient is the tripartite line product, which was first introduced in [HMMP24]
and will be explained in detail in Chapter 11. It has 2 ingredients: a large base graph
and a constant-size gadget graph. The gadget graph can be viewed as a random graph,
which has lossless expansion (see Section 11.1). At a high level, the tripartite line prod-
uct “lifts” the strong expansion properties of the gadget graph to a large graph, accord-
ing to the base graph. This falls in the general framework of “local-to-global lifting”
(see, e.g., Dinur’s recent talk [Din24]).

Once the tripartite line product is defined, the main innovation lies in choosing the
large base graphs, as the gadget graph is always assumed to be a random graph.

• In Chapter 12, we instantiate the base graphs using explicit (near-)Ramanujan bi-
partite graphs. This yields γ-unique-neighbor expanders, where γ > 0 is a small
universal constant. The analysis is simple and only uses the bound on subgraph
densities in near-Ramanujan bipartite graphs (Theorem 3.2.3), which was proved
in Chapter 5.

Moreover, using the generalized Moore bound (Theorem 3.1.3; proved in Chap-
ter 4) and the high-girth properties of the explicit Ramanujan graphs by [OW20],
we are able to show that small sets in this construction have lossless expansion.
This chapter is based on [HMMP24].

• In [HLMOZ25], we use the face-vertex incidence graphs of Ramanujan simplicial
complexes (i.e., high-dimensional expanders) by [LSV05a, LSV05b]. This gives
(3/5)-unique-neighbor expanders, which notably surpass Kahale’s spectral bar-
rier of 1/2 guaranteed by spectral expansion (recall Theorem 3.2.1). We do not

140

include this construction in the thesis, since many of the ideas are shared with
those in the subsequent paper.

• In Chapter 13, we use the face-vertex incidence graphs of expanding cubical com-
plexes based on LPS Ramanujan graphs [LPS88], which were constructed (in a
different form) in [RSV19]. This achieves the final goal of constructing lossless
expanders. This chapter is based on [HLMRZ25].

141

142

Chapter 11

Tripartite Line Product

Our construction of lossless expanders is based on the tripartite line product framework,
which is a generalization of the line product introduced in [AC02].

Definition 11.0.1 (Tripartite line product). Given the ingredients:
• Two bipartite base graphs, a (k, DL)-biregular graph GL = (L, M, EL), and a (k, DR)-

biregular graph GR = (R, M, ER), along with injective functions LNbru : [DL]→ L
and RNbru : [DR] → R for every vertex u ∈ M that index the left and right
neighbors of u,

• A (dL, dR)-biregular gadget graph H where the left-hand side is [DL], and the right-
hand side is [DR].

We define the tripartite line product of (GL, GR) and H as the (kdL, kdR)-biregular graph
Z obtained by taking each middle vertex u ∈ M, and placing a copy of H between the
left and right neighbors of u. Specifically, for every edge (i, j) ∈ H, we place an edge
between LNbru(i) and RNbru(j).

See Figure 11.1 for an example of the tripartite line product.
Since the gadget graph H has constant size (since DL, DR are constants), we can find

an H that satisfies strong expansion properties by brute force. In particular, we can find
a gadget graph with the properties that a random graph satisfies (with high probability),
such as lossless expansion. Therefore, it is convenient to think of H as a random graph.

On the other hand, the bipartite graphs GL and GR of the base graph are carefully
chosen explicit, infinite families of bipartite expanders. As mentioned in Chapter 10, our
goal is to choose base graphs that allow the tripartite line product to “lift” the expansion
properties of the (random) gadget to much larger graphs.

Remark 11.0.2 (Generalizing the line product and routed product). The line product and
routed product, which feature in [AC02, AD24, Gol24], arise from instantiating the tri-
partite line product with appropriate base graphs. The line product can be obtained
by choosing a (2, DL)-biregular graph between L and M, and a (DR, 2)-biregular graph

143

3

1

2
3

4

1

3
2

4

5

6

1
2

4

1
2

4
5

3

6

L M R

(a) The base graph G and gadget graph H.

L R

(b) The product G � H.

Figure 11.1: The tripartite line product between a base graph G and gadget graph H. In
this figure, only the edges from the copy of H placed at the red vertex in M are drawn.

between M and R in the base graph. The routed product arises by choosing a (k, DL)-
biregular graph between L and M, and a (DR, 1)-biregular graph between M and R in
the base graph.

Parameters. In our constructions, the parameters k, DL, DR, dL, dR are all constants
(large enough depending on the imbalance β and the lossless expansion parameter ε)
compared to the size of the base graphs. However, it is convenient to treat k as fixed
while dL, dR and D := DL + DR grow (as we want constructions for infinitely many
degrees), and we will use oD(1) to denote a quantity that can be made smaller than any
constant by making D a large enough constant.

11.1 Gadget graph

The reader should think of the gadget graph as a random graph that satisfies strong
expansion properties. Its properties were analyzed in [HMMP24, HLMOZ25], which
we articulate in the following statement.

Lemma 11.1.1 ([HLMOZ25, Lemma 2.10]). Let DL, DR, dL, dR, k, s be integers such that DL ·
dL = DR · dR, and k 6 D0.1 6 dL, dR 6 oD(D) where D := DL + DR. Suppose for any
distinct a, b ∈ [k], there is an r(a, b) ∈ N and a partition (Qa,b

i)i∈[r(a,b)] of [DR] where each
partition has size within

[D
2s , 2D

s
]
. Then, there exists a bipartite graph H on [DL] ∪ [DR] such

that
• (lossless expansion) for any A ⊆ [DL] with |A| 6 oD(1) · DR/dL, we have |N(A)| >

144

(1− oD(1))dL|A|,
• (spread) for any distinct a, b ∈ [k], for any A ⊆ [DL] and any W ⊆ [r(a, b)] with
|W| > s log D

dL
,

∑
i∈W
|N(A) ∩Qi| 6 32|W| ·max

{
dL|A|

s
, log D

}
.

Additionally, H satisfies the above guarantees when the roles of “L” and “R” are swapped.

The spread condition above can be interpreted as follows: for any A ⊆ [DL] not too
small, it has at most dL|A| neighbors, and these neighbors are well spread across the r
partitions — any |W| partitions contain at most an O

(
|W|

s

)
fraction of them.

In Chapter 12, we will only use the expansion property — in fact, we will need
unique-neighbor expansion of “slightly larger” subsets in a random gadget graph (see
Lemma 12.2.1). In Chapter 13, we will exploit the high-dimensional structure in the
base graphs, in which the spread property in Lemma 11.1.1 is crucial.

11.2 Outline of the analysis

Once the tripartite line product is defined, the main innovation lies in choosing the large
base graphs, as the gadget graph is always assumed to be a random graph.

145

146

Chapter 12

Unique-Neighbor Expanders with
Lossless Small-Set Expansion

In this chapter, we show that instantiating the tripartite line product with
• a base graph consisting of two explicit near-Ramanujan bipartite graphs, and

• a “random” gadget graph,
gives γ-unique-neighbor expanders, where γ > 0 is a universal constant.

Moreover, using the generalized Moore bound from Chapter 4 (Theorem 3.1.3), we
prove that if the near-Ramanujan bipartite graphs have no bicycle (recall Definition 3.1.2)
of size at most gn = ωn(1), then small subsets of size exp(gn) expand losslessly. Such
expanders were constructed in the works of [MOP20, OW20].

Theorem 12.0.1 (Special case of main theorem in [OW20]). For every c, d > 3 and γ > 0,
there is an explicit construction of an infinite family of (c, d)-biregular graphs (Gn)n>1 where
λ2(Gn) 6 (

√
c− 1 +

√
d− 1) · (1 + γ), and Gn has no bicycle on o(

√
log |V(Gn)|) vertices.

This gives the following result.

Theorem 12.0.2. For every ε, β ∈ (0, 1], there are constants γ > 0 and k, d0 ∈ N such that
for any dL, dR > d0 for which β 6 dL/dR 6 β + ε, there is an infinite family of (kdL, kdR)-
biregular bipartite graphs (Zn)n>1 such that:

1. Zn is a two-sided γ-unique-neighbor expander,
2. every S ⊆ L(Zn) with |S| 6 exp(Ω(

√
log |V(Zn)|)) has (1 − ε) · kdL · |S| unique-

neighbors,
3. every S ⊆ R(Zn) with |S| 6 exp(Ω(

√
log |V(Zn)|)) has (1− ε) · kdR · |S| unique-

neighbors.

While Theorem 12.0.2 is ultimately subsumed by our construction of lossless ex-
panders in Chapter 13, the goal of this chapter is to highlight the effectiveness and

147

flexibility of the tripartite line product. Notably, using well-known constructions of Ra-
manujan graphs [LPS88, Mor94, MOP20, OW20] — as opposed to the more involved
base graphs via cubical complexes used in Chapter 13 — the product already yields
non-trivial guarantees in unique-neighbor expansion.

Organization. In Section 12.1, we prove lossless expansion of small sets in graphs
with no short cycles or bicycles (Lemma 12.1.1), generalizing a result of [Kah95]. Then,
in Section 12.2, we prove Theorem 12.0.2.

12.1 Lossless expansion in high-girth graphs

We first restate the generalized Moore bound for convenience.

Theorem (Restatement of Theorem 3.1.3). Suppose G is a graph on n vertices, and let ρ =

ρ(BG) be the spectral radius of its non-backtracking matrix BG. Suppose ρ > 1, then G contains
a cycle of size at most 2(blogρ nc+ 1) and a bicycle of size at most 3(blogρ 2nc+ 1).

Finally, we will need the following statement about the expansion of small sets in
graphs with no short cycles or bicycles, which generalizes [Kah95, Theorem 10].

Lemma 12.1.1 (Expansion of small sets). Let G = (L ∪ R, E) be a d-left-regular bipartite
graph, and let ε ∈ (0, 1) such that ε(d− 1) > 1. Suppose G has no cycle of length at most g,
then for all S ⊆ L with |S| 6 1

d+1(ε(d− 1))
1
4 g− 1

2 we have |NG(S)| > (1− ε)d|S|.
Similarly, suppose G has no bicycle of length at most g, then for all S ⊆ L with |S| 6

1
2(d+1)(ε(d− 1))

1
6 g− 1

2 we have |NG(S)| > (1− ε)d|S|.

Proof. Let T := NG(S) ⊆ R. Suppose S does not expand losslessly, i.e., |T| < (1− ε)d|S|.
Then, the subgraph G[S ∪ T] must have right average degree at least d|S|

(1−ε)d|S| >
1

1−ε >
1 + ε. Let ρ > 0 be the spectral radius of the non-backtracking matrix BG[S∪T] so that
HG[S∪T](1/ρ) � 0. Then, applying Lemma 3.2.4, we have

1 + ε 6 1 +
ρ2

(d− 1)
=⇒ ρ >

√
ε(d− 1) .

Next, by Theorem 3.1.3, G[S ∪ T] must contain a cycle of size at most

2 logρ(|S|+ |T|) + 2 6
2 log((d + 1)|S|)

log
√

ε(d− 1)
+ 2 .

Suppose |S| 6 1
d+1(ε(d− 1))

1
4 (g−2), then there exists a cycle of length at most g, which

is a contradiction.

148

Similarly, by Theorem 3.1.3, G[S ∪ T] must contain a bicycle of size at most

3 logρ(2(|S|+ |T|)) + 3 6
3 log(2(d + 1)|S|)

log
√

ε(d− 1)
+ 3 .

Suppose |S| 6 1
2(d+1)(ε(d − 1))

1
6 (g−3), then there exists a bicycle of length at most g,

which is a contradiction.

We remark that in a follow-up work, Chen [Che25] gave a different proof using com-
binatorial and subsampling arguments, with slightly improved parameters compared
to Lemma 12.1.1.

12.2 Proof of Theorem 12.0.2

From Lemma 11.1.1, we know that the random gadget H has lossless expansion for
small sets. Here, we need that slightly larger sets have unique-neighbor expansion.

Lemma 12.2.1 (Lemma 4.3 of [HMMP24]). Let β ∈ (0, 1/2], θ > 0, and τ > 0 be constants.
For integers d1, d2, D1, D2 and D := D1 + D2 satisfying

1. d1
d2

= D2
D1

,

2. 1 > d1
d2

> β
1−β ,

3. θ
√

D/2 6 d1 + d2 6 θ
√

D,
there is a (d1, d2)-biregular graph H with D1 vertices on the left and D2 vertices on the right
such that:

min
S⊆V(H):16|S|6t

|UNH(S)|
|S| > (1− oD(1)) · d1 · exp(−θt/

√
D)

for 1 6 t 6 τ
√

D where oD(1) hides constant factors depending only on β, θ and τ.

We now prove Theorem 12.0.2 using the tripartite line product, where the base graph
consists of two near-Ramanujan bipartite graphs from Theorem 12.0.1. In the analysis,
we will use the bound on subgraph densities in Ramanujan bipartite graphs, which we
restate below.

Theorem (Restatement of Theorem 3.2.3). Let 3 6 c 6 d be integers, γ ∈ [0, 1], and
ε ∈ (0, 0.1). Let G = (L ∪ R, E) be a (c, d)-biregular graph such that λ2 6 (

√
c− 1 +√

d− 1)(1 + γ/d). Then, there exists δ = δ(ε, c, d) > 0 such that for every S1 ⊆ L and
S2 ⊆ R with |S1| + |S2| 6 δ|L ∪ R|, the left and right average degrees d1 = |E(S1,S2)|

|S1|
and

d2 = |E(S1,S2)|
|S2|

in the induced subgraph G[S1 ∪ S2] must satisfy

(d1 − 1)(d2 − 1) 6
√
(c− 1)(d− 1) · (1 + O(ε +

√
γ)) .

149

Proof of Theorem 12.0.2. The construction of Zn is based on taking the tripartite line prod-
uct of some base graph Gn and a bipartite gadget graph H from Lemma 11.1.1 with
suitably chosen parameters.

• Let K = K1 = K2 = 1000
ε2 .

• Let d0 > C0K where C0 = C0(ε, β) is some large enough constant chosen later.
• Let d̃1 := d1/K and d̃2 := d2/K, both at least C0.
• Let θ := C

ε

√
K/β (depending only on ε, β) where C is a universal constant.

• Let D1 :=
⌈

d̃1+d̃2
θ2

⌉
· d̃2 and D2 :=

⌈
d̃1+d̃2

θ2

⌉
· d̃1, and define D := D1 + D2.

Note that 1 > d̃1/d̃2 = d1/d2 > β
1−β . One can verify that KD1 6 2ε2d̃2

2/C2 and

KD2 6 2ε2d̃2
1/C2.

The above choice of parameters satisfy the requirements of Lemma 12.2.1. Thus,
applying Lemma 12.2.1 with parameters θ and τ = 1, there is a (d̃1, d̃2)-biregular graph
H with D1 left vertices and D2 right vertices such that

min
S⊆V(H):16|S|6t

|UNH(S)|
|S| > (1− oD(1)) · d̃1 · exp(−θt/

√
D) (12.1)

for 1 6 t 6
√

D. We can set C0 large enough (depending only on β, θ which only depend
on ε, β) such that the oD(1) term is at most 0.1.

For the tripartite base graph Gn = (L ∪ M ∪ R, E1 ∪ E2), we construct G(1)
n = (L ∪

M, E1) and G(2)
n = (M ∪ R, E2) to be (K1, D1) and (D2, K2)-biregular near-Ramanujan

graphs from Theorem 12.0.1 respectively, i.e., λ2(G
(1)
n) 6 (

√
K1 − 1 +

√
D1 − 1)(1 +

0.01/D1) and λ2(G
(2)
n) 6 (

√
K2 − 1+

√
D2 − 1)(1+ 0.01/D2), along with the guarantee

that no small bicycles exist.

Unique-neighbor expansion. Next, we analyze the vertex expansion of a subset S ⊆
L(Zn) in the product graph Zn. Recall that L(Zn) = L. Let U := NGn(S) ⊆ M be the
neighbors of S in G(1)

n , and we partition U into U` := {v ∈ U : |E1(v, S)| 6
√

D} (the
“low S-degree” vertices) and Uh := U \ U` (the “high S-degree” vertices). Consider
the bipartite subgraph induced by S ∪ Uh. By definition, the average right-degree in
G(1)

n [S∪Uh] is at least
√

D. By the upper bound on λ2(G
(1)
n), we can apply Theorem 3.2.3

and bound the average left-degree by

dleft(S, Uh) 6 1 +

√
(K1 − 1)(D1 − 1)√

D− 1
· 1.1 6 1 + 1.2

√
K ,

as long as |S| 6 µ|L| for some µ = µ(K, D1) > 0 (depending only on ε, β, d1, d2). For
any K > 100, the above is at most 0.2K. Thus, we know that |E1(S, U`)| > 0.8K|S|, i.e., a
constant fraction of edges incident to S go to U`. This also implies that |Uh| 6 0.2|U|.

150

For each v ∈ U, let Sv ⊆ S be the vertices in S incident to v. Consider the gadget H
placed on v, and let Tv ⊆ R be the set of unique-neighbors of Sv in the gadget. Further,
let T̃ :=

⋃
v∈U Tv. Note that each vertex in T̃ is a unique-neighbor within some gadget, but

there may be edges coming from other gadgets, so not all of T̃ are unique-neighbors of
S in the final product graph. Our goal is to show that a large fraction of T̃ are unique-
neighbors of S.

We will analyze the induced subgraph G(2)
n [U ∪ T̃], and we claim that a large fraction

of T̃ are unique-neighbors of U in G(2)
n , thus are also unique-neighbors of S in Zn. We

first lower bound the left average degree of G(2)
n [U ∪ T̃]. For each v ∈ U`, we have

1 6 |Sv| 6
√

D, and by the expansion profile of the gadget (Eq. (12.1)), v has degree at
least

|Sv| · 0.9 · d̃1 · exp(−θ|Sv|/
√

D) > 0.9 · d̃1 ·min
{

e−θ/
√

D,
√

De−θ
}

in G(2)
n [U ∪ T̃]. Since θ depends only on ε, β, we choose C0 = C0(ε, β) to be large enough

(thus also D) such that the above is at least 0.8 · d̃1.
Next, for v ∈ Uh, we have no control over its degree in G(2)

n [U ∪ T̃]. However, since
|Uh| 6 0.2|U| 6 1

4 |U`|, we have

dleft(U, T̃) >
0.8d̃1 · |U`|
|U`|+ |Uh|

> 0.64 · d̃1 .

Then, for |S| 6 µ|L| where µ is small enough, we have |U| 6 µ′|M| where µ′ (depend-
ing on ε, β, K, D2) is small enough to apply Theorem 3.2.3 and conclude that the right
average degree

dright(U, T̃) 6 1 +

√
(K2 − 1)(D2 − 1)

0.64 · d̃1 − 1
·O(1) 6 1.1 ,

since d̃1 + d̃2 6 1
β d̃1 and K2D2 6 d̃1

2
/C with some large C by our choice of θ and D2.

This implies that 0.9 fraction of T̃ are unique-neighbors of S.
Finally, we lower bound |E2(U, T̃)|. Again by Eq. (12.1),

|E2(U, T̃)| > ∑
v∈U`

|Sv| · 0.9 · d̃1 · exp(−θ|Sv|/
√

D) > 0.9 · d̃1 · exp(−θ) ∑
v∈U`

|Sv|

= 2δ · d̃1 · |E1(S, U`)| > 1.6δd1|S| ,

where δ = δ(ε, β) > 0. The last inequality uses the fact that |E1(S, U`)| > 0.8K|S| and
d1 = Kd̃1. With dright(U, T̃) 6 1.1, it follows that

|UNZn(S)| > δd1|S| .

151

For S ⊆ R(Zn), the analysis is completely symmetric. Indeed, we have K1 = K2,

and we can verify that K1D1 6 d̃2
2
/C. Since d1 6 d2, the unique-neighbor lower bound

holds for all S ⊆ V(Zn) with |S| 6 µ|V(Zn)|.

Small set lossless expansion. We now turn to the expansion of small subsets S ⊆
L(Zn). Let U := N

G(1)
n
(S) ⊆ M and T := NZn(S) ⊆ R. By assumption, G(1)

n has no

bicycle of size at most gn, thus Lemma 12.1.1 states that |U| > (1 − ε/2)K|S| (i.e., S
expands losslessly in G(1)

n) assuming that

|S| 6 1
2(K + 1)

(ε

2
(K− 1)

) 1
6 gn− 1

2 .

With our choice of K and gn = ωn(1), it suffices that |S| 6 exp(gn).
Next, as each gadget on v ∈ U expands with a factor of at least d̃1, we can lower

bound |E2(U, T)| by d̃1 · |U|. Moreover, the left average degree of the induced subgraph
G(2)

n [U ∪ T] is at least d̃1. Then, by Theorem 3.2.3, the right average degree of G(2)
n [U ∪ T]

is

dright(U, T) 6 1 +

√
(K2 − 1)(D2 − 1)

d̃1 − 1
·O(1) 6 1 +

ε

2
,

given that K2D2 6 ε2d̃2
1/C for a large enough constant C. Thus, since |E2(U, T)| >

d̃1 · |U| > (1− ε/2) · Kd̃1 · |S| = (1− ε/2)d1|S|,

|T| > 1
1 + ε/2

|E2(U, T)| > 1− ε/2
1 + ε/2

· d1|S| > (1− ε)d1|S| .

For S ⊆ R(Zn), the analysis is symmetric with d1, d̃1 replaced by d2, d̃2.

152

Chapter 13

Explicit Lossless Vertex Expanders

In this chapter, we present our construction of constant-degree lossless expanders with
arbitrary constant imbalance.

Theorem (Restatement of Theorem 10.2.2). For every ε, β ∈ (0, 1], there exist k = k(ε), d0 =

d0(ε, β) ∈ N such that for any dL, dR > d0 for which β 6 dL/dR 6 β + ε, there is an infinite
family of (kdL, kdR)-biregular bipartite graphs (Zn)n>1 for which Zn is a two-sided (1− ε)-
vertex expander on Θ(n) vertices. Additionally, there is an algorithm that takes in a positive
integer n as input, and in poly(n)-time outputs Zn.

As in Chapter 12, our construction uses the tripartite line product (Chapter 11).
For the base graphs (i.e., the two bipartite graphs), we replace the Ramanujan graphs
used in Chapter 12 with graphs that have additional high-dimensional structure. In
[HLMOZ25], we use Ramanujan high-dimensional expanders of [LSV05a, LSV05b],
which yields (3/5)-vertex expanders. To get lossless expanders, we use Ramanujan
cubical complexes. It turns out that cubical complexes give us extra symmetry that Ra-
manujan complexes lack.

Organization. We begin with a technical overview in Section 13.1, which includes an
overview of cubical complexes, the associated incidence graphs, and an overview of
the analysis. In Section 13.2, we introduce the notion of structured bipartite graph (Def-
inition 13.2.1 and Lemma 13.2.4) and show that, when used as the base graph in the
tripartite line product, they yield lossless expanders.

Next, in Section 13.3, we formally define expanding cubical complexes (Definition 13.3.4).
Moreover, we show that the coded incidence graphs (Definition 13.3.7) of such complexes
give structured bipartite graphs with the desired parameters. A crucial component of
the proof is an upper bound on small-set subcube density in expanding cubical complexes
(Lemma 13.3.11), which is proved in Section 13.3.2.

In Section 13.4, we describe the construction of expanding cubical complexes based
on the LPS Ramanujan graphs [LPS88]. This section provides an exposition of LPS

153

graphs and self-contained proofs of the properties we need, while we will only use
the fact that they are Ramanujan as a black box.

Finally, as noted in Remark 10.2.3, our construction admits a free group action, which
leads to new families of quantum LDPC codes by [LH22b] with linear time decoding
algorithms. The details are given in Section 13.5.

13.1 Technical overview

Our construction is obtained as the tripartite line product (Chapter 11) of bipartite
graphs derived from Ramanujan cubical complexes with a constant-sized gadget graph,
which can be thought of as a random graph. In Section 13.1.1, we first give an overview
of expanding cubical complexes, deferring technical details and the construction to Sec-
tions 13.3 and 13.4. Next, in Section 13.1.2, we describe the coded incidence graphs as-
sociated with such complexes, which we will use as the bipartite base graphs in the
tripartite line product. Finally, in Section 13.1.3, we give an overview of the analysis.

13.1.1 Cubical complexes

Our construction of lossless expanders relies on expanding cubical complexes. Here,
we give a brief overview; see Section 13.3 for more definitions and properties, and Sec-
tion 13.4 for an explicit construction using LPS Ramanujan graphs [LPS88].

The theory of expanding cubical complexes was first studied by Jordan and Livné
[JL00] as a high-dimensional generalization of Ramanujan graphs, where it was shown
that infinite families of such complexes exist but no explicit construction was given.
Later, explicit constructions were presented in [RSV19] (in a slightly different form),
where more general cases were also treated. Recently, cubical complexes were used
in [DLV24] to construct quantum locally testable codes, and they instantiated the com-
plexes using abelian lifts of expanders [JMOPT22].

Earlier, a 2-dimensional version of the cubical complexes, dubbed left-right Cayley
complexes, was an important ingredient in the constructions of locally testable codes
with constant rate, distance and locality, as well as good quantum LDPC codes by
[DELLM22, PK22]. For our purposes, we will need higher-dimensional cubical com-
plexes with constant degree and good expansion; notably, these can only be constructed
over non-abelian groups.

Cayley cubical complex. A k-dimensional cubical complex1 can be constructed from
a finite group Γ and generating sets A1, A2, . . . , Ak ⊆ Γ that satisfy

(1) Ai · Aj = Aj · Ai for all i 6= j, and

1One can define cubical complexes from any set Γ and sets of permutations of Γ. For simplicity, we
restrict to Cayley cubical complexes.

154

(2) |A1 · · · Ak| = |A1| · · · |Ak|.
Here, we denote A · B = {ab : a ∈ A, b ∈ B}. We call any collection of sets A1, . . . , Ak
satisfying the above cubical generating sets. Note that we require A1, . . . , Ak to commute
as sets while the elements do not necessarily commute. In particular, for any a1 ∈ A1

and a2 ∈ A2, there exist unique b1 ∈ A1 and b2 ∈ A2 such that a1a2 = b2b1. More
generally, for any {ai ∈ Ai}i∈[k] and any permutation π ∈ Sk, there exist unique {bi ∈
Ai}i∈[k] such that a1a2 · · · ak = bπ(1)bπ(2) · · · bπ(k).

Given a group Γ and cubical generating sets A1, . . . , Ak ⊆ Γ, the decorated2 cubical
complex, denoted X = Cay(Γ; (A1, . . . , Ak)), is the complex with vertex set X(0) = Γ×
{0, 1}k, edges of the form {(g, x), (gai, x⊕ ei)} where g ∈ Γ and ai ∈ Ai, and k-faces (or
cubes) X(k) of the form f = {(fx, x)}x∈{0,1}k where f−1

x fx⊕ei ∈ Ai for each i ∈ [k] and
x ∈ {0, 1}k. It is easy to verify that the requirements of cubical generating sets imply
that each cube is uniquely specified by a group element g ∈ Γ and {ai ∈ Ai}i∈[k]. See
Definition 13.3.2 for a formal definition and Figure 13.1 for an illustration.

We note that it is straightforward to construct cubical complexes using abelian groups
since all elements commute. However, we need the complex to exhibit strong expan-
sion, and it is well known that constant-degree abelian Cayley graphs cannot be ex-
panders [AR94].

We construct cubical complexes based on the LPS Ramanujan graphs [LPS88]. Sec-
tion 13.4 contains an exposition and self-contained proofs of the properties we need.
Here, we briefly recall that given primes p, q ≡ 1 (mod 4), the LPS graphs X(p; q) are
Cayley graphs over Γ = PSL(2, Fq) with p + 1 generators A(p). The Ramanujan cubi-
cal complex we construct is simply Cay(Γ; A(p1), A(p2), . . . , A(pk)) for distinct primes
p1, . . . , pk. It is a remarkable fact that A(p1), . . . , A(pk) indeed form cubical generating
sets as defined above (Lemma 13.4.8). Moreover, since each Cayley graph Cay(Γ; A(pi))

is Ramanujan (a fact that we will only use as a black box), the resulting Ramanujan cu-
bical complexes also inherit strong expansion properties.

Remark 13.1.1. By substituting the (arguably more elementary) cubical complex from
[DLV24, Section 3.5.2]—derived from abelian lifts of Θ(log n)-sized Ramanujan Cayley
graphs [JMOPT22]—into our construction, one obtains constant-degree n-vertex graphs
in which every subset of size O(n/polylog n) has lossless vertex expansion, and which
supports a free group action by a Θ(n/polylog n)-sized group.

13.1.2 Coded incidence graphs

We now describe the base graph (i.e., the two bipartite graphs GL, GR) used in the tri-
partite line product. These graphs are constructed using a k-dimensional Ramanujan

2We use the word “decorated” since the vertex set X(0) comprises 2k copies of Γ, unlike traditional
Cayley graphs that have only one copy of Γ.

155

000 100

010

001 101

111

110

011

Figure 13.1: A 3-dimensional (decorated) cubical complex X = Cay(Γ; (A1, A2, A3)),
where the vertex set X(0) = Γ× F3

2. An element g ∈ Γ and a1 ∈ A1, a2 ∈ A2, a3 ∈ A3

uniquely specify a face (or cube) f ∈ X(3), as depicted in the figure. Note that by the
properties of A1, A2, A3, there exist unique a′1 ∈ A1, a′2 ∈ A2 and a′3 ∈ A3 such that
a1a2a3 = a′2a′3a′1.

The vertex-face incidence graph we need for our base graph construction will be
restricted to a linear code C ⊆ Fk

2 of large distance — the bipartite graph between X(k)
and Γ× C ⊆ X(0) where edges indicate containment. Here, a code {000, 011, 110, 101}
is highlighted.

cubical complex X and the Hadamard code C ⊆ {0, 1}k (with |C| = k = 2r for some
r ∈ N). We set L = X(k), the k-faces of X, and M = Γ× C, a subset of vertices X(0)
according to the code C. A k-face f ∈ L and a vertex (g, x) ∈ M are connected in GL if
and only if (g, x) ∈ f . Thus, each f ∈ L has degree |C| = k, and each vertex in M has
degree DL = ∏k

i=1 |Ai|. The other bipartite graph GR is defined the same way.

Remark 13.1.2. Restricting the vertices according to the Hadamard code C provides cru-
cial symmetry in our construction. In particular, for two vertices (g, x) and (h, y) with
x 6= y ∈ C, their common neighborhood (i.e., the set of k-faces containing them) is
either empty or all possible completions to a full cube. Since dist(x, y) = k/2 for all
x 6= y ∈ C,3 the common neighborhoods are all roughly the same structure (by choos-
ing |A1|, . . . , |Ak| to be a constant factor away from each other). We believe that this is
one key improvement over [HLMOZ25] which is based on Ramanujan simplicial com-
plexes, where M is also k-partite but the common neighborhoods (a.k.a. links) of two

3We expect that any δ-balanced linear code with a small enough constant δ will work as well; see
Remark 13.3.9.

156

vertices differ drastically depending on which parts they are in.

13.1.3 Overview of the analysis

Our analysis follows the same outline as [HMMP24, HLMOZ25]. To bound the expan-
sion of a set S ⊆ L (sets on the right follow the same analysis), we split into two parts:
the left-to-middle and the middle-to-right analysis. Fix a (small) subset S ⊆ L, and consider
the neighbors U = NGL(S) ⊆ M. For each u ∈ U, as long as degS(u) := |S ∩ NGL(u)| is
sufficiently small, we will have lossless expansion within the gadget placed on u (since
the gadget is random-like). On the other hand, if degS(u) is too large, then the gadget
cannot experience lossless expansion because the number of right vertices in the gadget
is much smaller than the number of edges in the gadget arising from NGL(u). Thus,
we split U into U` (low-degree) and Uh (high-degree), and we need to show that most
elements of S partake in many U` gadgets and few Uh gadgets: precisely, we need to
show that eGL(S, Uh) is small such that 1− ε fraction of edges from S go to U`.

Left-to-middle analysis: small-set subcube density. We bound the small-set subcube
density of the cubical complex, similar to the triangle density bound of the Ramanujan
simplicial complexes needed in [HLMOZ25]. Our goal is to show that there are not too
many k-faces that have many vertices in Uh. More specifically, we upper bound the size
of { f ∈ X(k) : | f ∩Uh| > 2

√
k} by Ok(1) · D5/8

L |Uh|. This is proved in Section 13.3.2
using the structure and expansion of X. More specifically, whereas [HLMOZ25] used
spectral properties within the links of the high dimensional expander to obtain their
bounds, our complex notably is not a high dimensional expander as the links are dis-
connected. Instead, we rely on the Hadamard structure of the links along with a variant
of the Loomis–Whitney inequality [LW49] to argue that Uh contains few subcubes.

To demonstrate the key ideas, we focus on the simple case of k = 3 —- subcube den-
sity of 3-dimensional expanding cubical complexes with a code C = {000, 011, 110, 101} ⊆
F3

2, as depicted in Figure 13.1. For any small subset U ⊆ Γ × C, we will show an
upper bound on the size of { f ∈ X(3) : | f ∩ U| = 4}. For simplicity, assume that
|A1| = |A2| = |A3| = p (this is true in our construction up to absolute constants), and
denote Ux := U ∩ (Γ× {x}) for x ∈ C.

First, we use the expansion property of the cubical complex. Consider the bipartite
graph between Γ× {000} and Γ× {110}, where (g, 000) and (ga1a2, 110) are connected
for a1 ∈ A1 and a2 ∈ A2. This bipartite graph has degree |A1| · |A2| = p2 and has second
eigenvalue O(p), which implies that the subgraph induced by U000 ∪U110 has average
degree O(p). Thus, a typical element (g, 000) ∈ U000 has at most O(p) neighbors in
U110, U101 and U011 respectively.

The next crucial property we use is the fact that any cube f is uniquely identified by
any 3 points in f ∩ (Γ×C). For example, (g, 000), (ga1a2, 110) and (ga1a3, 101) uniquely
specifies a cube f ∈ X(3), and in particular, there exist unique a′2 ∈ A2 and a′3 ∈ A3

157

such that (ga′2a′3, 011) ∈ f . For simplicity, let us assume that a′2 = a2 and a′3 = a3. Then,
the key question is:

For a set of 3-tuples T, suppose N12 = |{(a1, a2) : (a1, a2, a3) ∈ T for some a3}|
and N13, N23 defined similarly, how large can T be?

The answer is |T| 6
√

N12N23N13. This is in fact a special case of the Loomis–Whitney
inequality. Here, we give a simple proof using an entropic argument. For the uniform
distribution over T, we have H(a1, a2, a3) = log |T|, while by assumption H(ai, aj) 6
log Nij for i < j. The well-known Shearer’s inequality states that

H(a1, a2, a3) 6
1
2 ∑

i<j
H(ai, aj) ,

which completes the proof.
Our argument for general k follows the same idea. The reason that 2

√
k is relevant

is because for any subset B ⊆ C of a linear code C ⊆ Fk
2 with |B| > 2

√
|C|, there exist

four distinct elements σ1, σ2, σ3, σ4 ∈ B such that σ1 + σ2 + σ3 + σ4 = 0 (Lemma 13.3.13).
This, at a high level, reduces to the 3-dimensional case. We are able to show that |{ f ∈
X(k) : | f ∩U| > 2

√
k}| 6 Ok(1) · D5/8

L |U|. Thus, by setting the threshold for U` and
Uh to be larger than D5/8

L and k = O(1/ε2), we have that most vertices in S ⊆ L have

at least 1− 2
√

k
k > 1− ε fraction of edges going to U`. This completes the left-to-middle

analysis.

Middle-to-right analysis. Having established that most vertices of S participate in
many low-degree gadgets, it remains to show that these different gadgets do not have
too many collisions in GR. Our proof of this part closely follows the middle-to-right
analysis in [HLMOZ25]. In fact, the common neighborhood structure of GR is the key
improvement over Chapter 12 which uses Ramanujan bipartite graphs.

It is convenient to view the expansion of each gadget Hu, for u ∈ U, as “red” edges
going from u to vertices in NGR(u) ⊆ R. The neighbors of S in the final product Z are
exactly the vertices incident to any red edge. See Figure 13.2 for an example. The red
edges form a subgraph of GR, denoted RED, and we need to show that there are very
few collisions on the right.

To this end, we define a collision (multi-)graph C on U, where we place an edge {u, v}
for each u 6= v ∈ U and r ∈ R such that {u, r}, {v, r} ∈ RED (see e.g. Figure 13.2b). We
need to show an upper bound on e(C). Let C be the simple graph obtained by removing
duplicated edges from C. Moreover, let G̃R be the simple graph on M where u 6= v ∈ M
are connected if they have a common neighbor in R. Observe that C is a subgraph of
G̃R. Then, the natural idea to bound e(C) is to use the expansion of G̃R, which we call
skeleton expansion (Definition 13.2.3).

If GR is chosen to be a Ramanujan bipartite graph (as in Chapter 12), then most
pairs of vertices in M have few common neighbors, and G̃R has degree O(D) and sec-

158

ond eigenvalue O(
√

D). In our case, due to the structure of the cubical complexes,
every pair of vertices in M has either zero or ≈

√
D common neighbors, and thus G̃R

has degree O(
√

D) and second eigenvalue O(D1/4). This is the key improvement over
Chapter 12. Of course, now the collision graph C may have large multiplicities, which
complicate the analysis. We handle this by using the spreadness of the “random” gad-
get H (Lemma 11.1.1), and crucially this requires us to place the gadget in the same way
for every u ∈ M (as opposed to arbitrarily). See Section 13.2.2 for more details.

13.2 Construction of lossless vertex expanders

13.2.1 Base graph construction

In this section, we describe the precise properties we will need from the bipartite graphs
and the gadget graph.

Notation, terminology, and parameters. Given a graph G and S, T ⊆ V(G), we use
G[S] to refer to the induced subgraph of G on S, and G[S, T] as the induced bipartite
subgraph of G between S and T. Given a bipartite graph (U, V, E), we denote an edge
between a vertex u ∈ U and v ∈ V by the ordered tuple (u, v).

In our construction, the parameters k, DL, DR, dL, dR are all constants (large enough
depending on ε, β) compared to the size of the base graphs. However, it is convenient
to treat k ≈ ε−2 as fixed while dL, dR and D := DL + DR grow (as we want constructions
for infinitely many degrees), and we will use oD(1) to denote a quantity that can be
made smaller than any constant by making D a large enough constant.

Base graph construction. We introduce the notion of a structured bipartite graph.

Definition 13.2.1 (Structured bipartite graph). A (k, D)-biregular bipartite graph G be-
tween vertex sets V and M is a structured bipartite graph if:

(1) For each vertex u ∈ M, there is an injective function Nbru : [D]→ V that specifies
an ordering of the D neighbors of u.

(2) The set M can be expressed as a disjoint union ta∈[k]Ma such that each v ∈ V has
exactly one neighbor in each Ma.

(3) There is an s ∈ N such that the following holds: for each pair of distinct a, b ∈
[k], there are r(a, b) special sets {Qa,b

i ⊆ [D]}i∈[r(a,b)] that partition [D] (abbrevi-
ated to r and Qi), each |Qi| ∈ [D

2s , 2D
s], such that for every u ∈ Ma, there are

distinct v1, . . . , vr ∈ Mb with N(u) ∩ N(vi) = Nbru(Qi) for each i ∈ [r] and
N(u) ∩ N(v′) = ∅ for all other v′ ∈ M.

Intuitively, Item (3) of Definition 13.2.1 means that for every u ∈ Ma, there are r(a, b)
vertices in Mb that have common neighbors with u, and the common neighborhoods

159

form a specific structure. See Figure 13.2a for an illustration. For our construction, it is
important that this structure is the same across all u ∈ Ma — the special sets {Qi ⊆ [D]}
are independent of u (but can depend on a, b ∈ [k]).

Henceforth, we fix G as a structured (k, D)-biregular graph between V and M.

Definition 13.2.2 (Small-set j-neighbor expansion). We say G is a τ-small-set j-neighbor
expander if for some small constant η > 0, and for every U ⊆ M such that |U| 6 η|M|,
the number of vertices in V with at least j neighbors in U is bounded by τ · |U|.

Definition 13.2.3 (Small-set skeleton expansion). Let G̃ be the simple graph on M ob-
tained by placing an edge between u, u′ ∈ M if there exists a length-2 path between u
and u′. We say G is a λ-small-set skeleton expander if for some small constant η > 0, and
for every U ⊆ M such that |U| 6 η|M|, the largest eigenvalue of the adjacency matrix
of the graph G̃[U] is at most λ.

We now state the guarantees we can achieve in a structured bipartite graph, which
we prove in Section 13.3.2.

Lemma 13.2.4. For every k that is a power of 2, and large enough D ∈N, there is an algorithm
that takes in n, DL, DR ∈ N as input where DL, DR 6 D, and constructs vertex sets L, M, R
such that |M| = Θ(n) and |R| = |L| · DL/DR along with structured bipartite graphs GL on
(L, M), GR on (R, M), where GL is (k, DL)-biregular and GR is (k, DR)-biregular, with the
following properties:

• s = Θ(
√

D) for the special set structure.
• GL and GR are O

(
D5/8)-small-set 2

√
k-neighbor expanders.

• GL and GR are O
(

D1/4)-small-set skeleton expanders.

13.2.2 Proof of Theorem 10.2.2

We are now ready to use the above ingredients to prove Theorem 10.2.2 on the explicit
construction of 2-sided lossless vertex expanders. Given ε, dL and dR, we choose param-
eters D, DL, DR, k ∈N and δ ∈ (0, 1) such that the following relations hold.

• DL · dL = DR · dR.

• D = DL + DR.

• k > 16/ε2 and is a power of 2.

• D−1/16 6 δ 6 oD(1) ·
1
k2 .

•
D1/4 log2 D

δ
6 dL, dR 6

δD3/8

log D
.

Here, we assume dL, dR > d0(ε, β) for a large enough d0(ε, β) such that any oD(1) term

160

is sufficiently small.

Let GL = (L, M, EL) and GR = (R, M, ER) be the structured bipartite graphs con-
structed from the algorithm in Lemma 13.2.4 with parameters k, D, n, DL, DR. Recall
that GL and GR are structured bipartite graphs with s = Θ(

√
D) for the special set

structure and are O
(

D5/8)-small-set 2
√

k-neighbor expanders, and O
(

D1/4)-small-set
skeleton expanders. In this proof, we will use τ = O(D5/8) to denote the small-set
2
√

k-neighbor expansion, and λ = O(D1/4) to denote the small-set skeleton expansion.

Let H be a (dL, dR)-biregular bipartite graph on [DL]∪ [DR] whose special subsets of
[DR] are identical to the special subsets associated to GR, and whose special subsets of
[DL] are identical to the special subsets associated to GL.

Looking ahead, we will need that

• τ 6 oD(δ) · DR
dL

and similarly τ 6 oD(δ) · DL
dR

.

• λ 6 sδ,

• dL, dR > 1
δ max{λ,

√
s} log D.

One can verify that with parameters τ = O(D5/8), λ = O(D1/4) and s = Θ(
√

D) from
Lemma 13.2.4, our choice for δ and DL, DR listed above satisfy all requirements.

We output the tripartite line product Z = (L, R, EZ) of (GL, GR) with H. We will
establish vertex expansion of small subsets of L; the analysis of the vertex expansion of
small subsets of R is similar.

Left-to-middle analysis. Let S ⊆ L such that |S| 6 η|L|. Let U ⊆ M be the neighbors
of S in GL. We split U into its “high-degree” part Uh :=

{
v ∈ U : degGL[S,U](v) >

τ
δ

}
,

and “low-degree” part U` := U \Uh.

Our first step is to prove that most edges from S to U point to U`.

Claim 13.2.5. The number of edges in GL[S, U] incident to U` is at least
(

1−
√

δ− 2k−1/2
)
·

k|S|.

Proof. By definition, the number of edges incident to Uh in GL[S, U] is at least τ
δ |Uh|. On

the other hand, denoting S>2
√

k to be the set of vertices in S with at least 2
√

k neighbors

in Uh, by small-set 2
√

k-neighbor expansion of GL, we have |S>2
√

k| 6 τ|Uh|. Conse-
quently, the number of edges from S>2

√
k into Uh satisfies:

e
(

S>2
√

k, Uh

)
6 k
∣∣∣S>2

√
k

∣∣∣ 6 kτ|Uh| = kδ · τ

δ
|Uh| 6 kδ · e(S, Uh) 6

√
δ · k|S| .

161

Here, we use k 6 1/
√

δ. Thus, we have:

e(S, U`) = e(S, U)− e(S, Uh)

= k|S| − e
(

S>2
√

k, Uh

)
− e
(

S<2
√

k, Uh

)
> k|S| −

√
δ · k|S| − 2

√
k|S|

=

(
1−
√

δ− 2√
k

)
· k|S| .

Middle-to-right analysis. We have proved that most edges from S to U touch low-
degree vertices, which the reader should think of as gadgets through which the expan-
sion into R is lossless. We make this formal below.

Definition 13.2.6. For S ⊆ L and U = NGL(S) ⊆ M, if a vertex v ∈ R is a neighbor of
S in the final product due to connections from the gadget Hu for u ∈ U, then we color
the edge (u, v) red. The red edges form a subgraph of GR, which we denote as RED(S)
or simply RED when S is clear from context. Figure 13.2a contains an example of the
subgraph RED.4

By the choice of the threshold, we have τ
δ 6 oD(1) ·DR/dL, and hence, by Lemma 11.1.1,

each vertex in U` expands by at least a (1− oD(1))dL factor. In particular, we have,

e(RED) > ∑
u∈U`

(1− oD(1))dL · degS(u) = (1− oD(1))dL · eGL(S, U`) . (13.1)

In the remainder of the argument, we prove that the collisions between neighbor-
hoods of different gadgets inflict negligible damage on expansion.

We next show that the red edges have few collisions in R. We will crucially use the
small-set skeleton expansion with λ = O(D1/4) and the special set structure of GR with
s = Θ(

√
D) (Definition 13.2.1 and Lemma 13.2.4).

We construct the collision graph C — the multi-graph C on vertex set U ⊆ M by
placing a copy of the edge {u, v} for each u 6= v ∈ U, and r ∈ R such that {u, r} and
{v, r} are red edges in RED. See Figure 13.2 for an example. The number of neighbors
of S in the final product Z is at least

e(RED)− e(C) ,

since a vertex v ∈ R with degree dv in RED contributes one neighbor, but it is counted
dv times in e(RED) and

(dv
2

)
times in e(C), and dv −

(dv
2

)
6 1 for all dv ∈N.

We will need the following folklore fact.

4We note that in [HLMOZ25], they need to define “blue” and “red” edges to prove unique-neighbor
expansion. In our case, since we will show lossless expansion, we do not need to make this distinction.

162

u

v
w

(a) Let S ⊆ L consist of the cubes colored green,
and the cubes on the right incident to red edges
are the neighbors of S in the final product Z.

u

v w

(b) The collision multi-graph C on
M. Removing parallel edges gives the
simple graph C, which is a subgraph
of G̃R.

Figure 13.2: The two bipartite base graphs GL, GR have the structure that M has k parts,
and for u ∈ M and v, w ∈ M from a different part, the common neighborhoods NGR(u)∩
NGR(v) and NGR(u) ∩ NGR(w) ⊆ R are disjoint, each corresponding to a special set in
[DR], i.e., NGR(u) ∩ NGR(v) = Nbru(Qi) for some special set Qi ⊆ [DR].

Figure 13.2a shows an example of RED(S), a subgraph of GR. The middle-to-right
analysis involves upper bounding the collisions of the red edges on the right. Here, u
has collisions with v and w, represented as edges in the collision graph C in Figure 13.2b.
We will show that this cannot happen too often by upper bounding e(C).

Lemma 13.2.7 ([HLMOZ25, Lemma 2.17]). Given a graph G whose adjacency matrix has
maximum eigenvalue λ, then there is an orientation of the edges in G such that all vertices have
out-degree at most λ.

Claim 13.2.8. Suppose kδ2 6 oD(1), λ 6 sδ, and dL > 1
δ max{λ,

√
s} log D. Then, e(C) 6

oD(1) · kdL|S|.

Proof. Let C be the simple graph obtained by removing duplicate edges from C. More-
over, let G̃R be the simple graph on M where u 6= v ∈ M are connected if they have a
common neighbor in R in the graph GR. Clearly, C is a subgraph of G̃R. Moreover, recall
from Definition 13.2.1 that M is a union of k vertex sets, and thus G̃R is k-partite. Let us
now restrict C to edges between two parts a, b ∈ [k]. We will write r = r(a, b) and the
special sets Qi = Qa,b

i for simplicity.
By the λ-small set skeleton expansion, we have that C has largest eigenvalue at most

λ. This intuitively means that C contains very few edges. Next, we need to upper

163

bound the multiplicities of edges in C. The main observation is that if u ∈ Ma and
v ∈ Mb are connected in G̃R, then u, v in fact have many common neighbors in GR.
More specifically, u has neighbors v1, v2, . . . , vr in G̃R, and each common neighborhood
NGR(u) ∩ NGR(vi) ⊆ R corresponds to a special set as in Definition 13.2.1. On the other
hand, the pseudorandomness of the gadget H implies that the red edges coming out of
u must be evenly spread among the special sets. In the following, we make this intuition
formal.

The largest eigenvalue of C is at most λ. Thus, by Lemma 13.2.7, there is an orien-
tation of the edges of C such that all vertices have out-degree at most λ. Pick such an
orientation, and let Out(u) be the set of out-going edges incident to u. Then,

e(C) = ∑
u∈U

∑
e∈Out(u)

multiplicity(e) .

Due to the special set structure of GR (Definition 13.2.1), for any u ∈ Ma and v1, . . . , vr

(potentially) connected in C, their common neighborhoods within GR are exactly spe-
cial sets in the gadget Hu — that is, NGR(u) ∩ NGR(vi) = RNbru(Qi), and each |Qi| ∈[

DR
2s , 2DR

s

]
where s = Θ(

√
D) from Lemma 13.2.4.

Thus, we can upper bound ∑e∈Out(v) multiplicity(e) by the number of red edges
that land in any |Out(v)| of the special sets. Denote degS(v) := degGL[S,U](v). By

Lemma 11.1.1, applying the bound with |W| = max
{
|Out(v)|, s log D

dL

}
6 max

{
λ, s log D

dL

}
and |A| = degS(v), we get

∑
e∈Out(v)

multiplicity(e) 6 O(1) ·max
{

λ,
s log D

dL

}
·max

{
dL

s
· degS(v), log D

}

6 O(1) ·max

{
λ

s
,

λ log D
dL degS(v)

,
log D

dL
,

s log2 D
d2

L degS(v)

}
· dL · degS(v)

6 O(δ) · dL · degS(v) .

Here, we use the assumptions on the parameters: λ 6 δs, and dL > 1
δ max{λ,

√
s} log D >

1
δ log D.

Summing over v ∈ U, we get

e(C) 6 O(δ) · dL ∑
v∈U

degS(v) 6 O(δ) · kdL|S| .

The above is restricted to one pair a, b ∈ [k]. For the final bound, we multiply the above
by k2. Since k2δ 6 oD(1), we get e(C) 6 oD(1) · kdL|S|.

Finally, we combine the above to finish the proof of Theorem 10.2.2. With δ 6 oD(1) ·
1
k2 and k > 16/ε2, Claim 13.2.5 and Eq. (13.1) imply that

e(RED) > (1− oD(1)) · dL ·
(

1−
√

δ− 2k−1/2
)

k|S| > (1− ε/2)kdL|S| .

164

The number of neighbors of S in the final product Z is at least e(RED)− e(C), and by
Claim 13.2.8 we have e(C) 6 oD(1) · kdL|S|. Thus, choosing D large enough,

|NZ(S)| > (1− ε)kdL|S| .

The analysis for the expansion of any T ⊆ R is identical. This finishes the proof.

13.3 Cubical complexes and coded incidence graphs

Notation and terminology. Given subsets A, B of a group Γ with multiplication oper-
ation ·, we define A · B to refer to the product set {a · b : a ∈ A, b ∈ B}.

We start with the definition of cubical generating sets.

Definition 13.3.1 (Cubical generating set). Let Γ be a finite group and k ∈ N. We say
A1, A2, . . . , Ak ⊆ Γ are cubical generating sets if they are closed under inverses, and

• Ai · Aj = Aj · Ai for all i 6= j,
• |A1 · · · Ak| = |A1| · · · |Ak|.

Definition 13.3.2 (Decorated Cayley cubical complex). Given a finite group Γ and cubi-
cal generating setsA = (A1, . . . , Ak), the (decorated) Cayley cubical complex X = Cay(Γ;A)
is defined by:

• its vertex set X(0) = Γ× {0, 1}k,
• its k-face set X(k) consisting of all 2k-sized subsets of X(0) of the form f = {(fx, x)}x∈{0,1}k

such that for every edge {x, x⊕ ei} of the hypercube, f−1
x fx⊕ei ∈ Ai.

• For I ⊆ [k], we define an I-subcube to be all {0, 1}k strings of the form y⊕⊕i∈I biei,
where bi ∈ {0, 1} and ei denotes the vector with a 1 in the i’th index. The dimen-
sion of an I-subcube is |I|.

• For a subcube C of {0, 1}k, we define the set of C-faces X(C) as:

X(C) :=
{
{(fx, x)}x∈C : f ∈ X(k)

}
.

We define the set of i-faces as X(i) :=
⋃

C:dim(C)=i X(C).

We use the word “decorated” since the vertex set X(0) consists of 2k copies of Γ, as
opposed to the usual way of Cayley graphs on Γ.

Henceforth, we fix a group Γ along with cubical generating sets A1, . . . , Ak, and let
X = Cay(Γ; (A1, . . . , Ak)).

One important property of cubical complexes is that for any two points (g,~0) and
(g′,~1) in opposite corners, there is at most one k-face f ∈ X(k) that contains the two
points. More generally, given U = {(g1,~0), (g2, x2), . . . , (gm, xm)}, any face restricted to

165

the subcube of the coordinates
⋃

t>1 supp(xt) is uniquely identified (if exists). An ex-
ample is given in Figure 13.1. The points (g, 000) and (ga1a2a3, 111) uniquely identify a
3-face. Moreover, the points (g, 000), (ga1a2, 110) and (ga1a′3, 101) also uniquely identify
a 3-face, since supp(110) ∪ supp(101) = [3].

This property is crucial in our construction, and a more general form is formalized
in the following lemma.

Lemma 13.3.3. For any U ⊆ X(0) where U = {(g1, x1), . . . , (gm, xm)}, define

S(U) = {i ∈ [k] : ∃ s, t ∈ [m] s.t. xs[i] 6= xt[i]} =
⋃
t>1

supp(xt ⊕ x1) ,

and subcube
C(U) = x1 ⊕

⊕
i∈S(U)

{0, 1} · ei .

There is at most one C(U)-face containing U, and if such an C(U)-face exists, the number of
k-faces containing U is equal to ∏i/∈S(U) |Ai|.

Proof. We will first prove that there is at most one C(U)-face containing U, and then
prove that if nonzero, the number of k-faces containing U is equal to ∏i/∈S(U)|Ai|.

Proof that there is at most one C(U)-face containing U. Define BS
r (x) as the set of all

vectors y in {0, 1}k such that the Hamming weight of x ⊕ y is at most r and supp(x ⊕
y) ⊆ S. We will prove for every r > 1 and each y ∈ BS(U)

r (x1), there exists an element
gy ∈ Γ such that fy = gy for every face f containing U. Indeed, this claim implies that
there can be at most one C(U)-face containing U.

We start by proving the claim for r = 1. Let y = x1 ⊕ ei ∈ BS(U)
1 (x1) where i ∈ S(U).

Note that i ∈ S(U) means that there is a t ∈ [m] such that x1[i] 6= xt[i]. We will prove
that the points (g1, x1) and (gt, xt) uniquely identify (fy, y). Equivalently, any pair of
faces f and f ′ containing U must have fy = f ′y.

Define ai = g−1
1 fy and a′i = g−1

1 f ′y. Note that both ai and a′i must be in Ai. Pick an
arbitrary order j1, . . . , j` for the coordinates in supp(x1 ⊕ xt) \ {i}. Next, observe that
the sets E := ai · Aj1 · · · Aj` and E′ := a′i · Aj1 · · · Aj` , which both have size

∣∣Aj1

∣∣ · · · ∣∣Aj`

∣∣,
must have a nonempty intersection since they both must contain g−1

1 gt. Now,
∣∣Ai · Aj1 · · · Aj`

∣∣ =
|Ai| ·

∣∣Aj1

∣∣ · · · ∣∣Aj`

∣∣, and thus if ai 6= a′i, then E and E′ must be disjoint. Therefore, ai = a′i
and fy = f ′y.

For the inductive step, assume that for some r > 2, the uniqueness statement holds
for all y ∈ BS(U)

r−1 (x1). Let f be any face containing U and let y ∈ BS(U)
r (x1). We will prove

that fy is uniquely determined. Define U′ := U ∪
{
(gx, x) : x ∈ BS(U)

r−1 (x1)
}

where gx is
the unique value of fx for any face f containing U. Note that S(U′) = S(U). Observe
that supp(y⊕ x1) is nonempty by the assumption that r > 2, and let i be an arbitrary

166

element contained within. This means that y ⊕ ei ∈ BS(U)
r−1 (x1). Since S(U′) = S(U),

the conclusion that fy is uniquely determined follows by applying the statement we
established for r = 1 to U′ in place of U and y⊕ ei in place of x1.

On number of ways to extend a C(U)-face to a k-face. It remains to prove that the
number of ways to extend a C(U)-face to a full k-face is equal to ∏i/∈S(U)|Ai|. To this end,
fix an order i1, . . . , i` of coordinates in S(U) arbitrarily. For each choice of (ai ∈ Ai)i/∈S(U),

we will prove that there is a unique k-face f containing U∪
{(

g1 · ai1 · · · ai` , x1 ⊕ 1S(U)

)}
.

The conclusion will follow from the fact that there are ∏i/∈S(U)|Ai| many choices for
(ai)i/∈S(U).

We will construct this face f by describing fy for each y ∈ {0, 1}k. We will first
treat the case of y of the form x1 ⊕ ∆ for ∆ supported on coordinates outside S(U). Let
j1, . . . , js be the coordinates in the support of ∆, and let j′1, . . . , j′`−s be an arbitrary order
for coordinates in {i1, . . . , i`} \ {j1, . . . , js}. Now, by the property that Ai · Aj = Aj · Ai
for every i, j, we have:

g1 · ai1 · · · ai` = g1 · a′j1 · · · a
′
js · a

′
j′1
· · · a′j′`−s

where a′j ∈ Aj. We define fy as g1 · a′j1 · · · a
′
js .

We now construct fy for general y ∈ {0, 1}k. Observe that y can be written as z⊕ ∆
for z ∈ C(U) and ∆ supported only on coordinates outside S(U). Let j1, . . . , js be the
coordinates in the support of ∆, and let j′1, . . . , j′s′ be the coordinates in the support of
x1 ⊕ z. Now, we can write:

fx1⊕∆ = g1 · a′j1 · · · a
′
js

= gz · a′j′1 · · · a
′
j′
s′
· a′j1 · · · a

′
js

= gz · a′′j1 · · · a
′′
js · a

′′
j′1
· · · a′′j′

s′
,

where a′′j ∈ Aj. In the above, we used the construction of fx1⊕∆ from earlier in the first
equality, the fact that there is a C(U)-face containing (gz, z) and (g1, x1) in the second
equality, and Ai · Aj = Aj · Ai in the third equality. Finally, we set fy as gz · a′′j1 · · · a

′′
js . It

can easily be checked using the set-commuting relation that f is indeed a valid k-face.
Finally, f is the unique face containing Ũ := U ∪

{(
g1 · ai1 · · · ai` , x1 ⊕ 1S(U)

)}
since

S(Ũ) = [k], which completes the proof.

Finally, we define a natural notion of expansion in a cubical complex that is useful
for our purposes.

Definition 13.3.4 (Expanding cubical complex). We say that a cubical complex X =

Cay(Γ; (A1, . . . , Ak)) is α-expanding if for any x, y ∈ {0, 1}k, the bipartite graph Iy,y⊕x

167

with edge set
{{

(g, y), (g ·∏k
i=1 axi

i , y⊕ x)
}

: g ∈ Γ, ai ∈ Ai

}
, which has degree dx(X) =

∏k
i=1 |Ai|xi , has second eigenvalue at most α

√
dx(X). For i ∈ [k], we define di(X) :=

maxx∈{0,1}k : |supp(x)|=i dx(X) .

The following theorem is essentially contained in [RSV19] in a different form. We
provide a mostly self-contained proof in Section 13.4, assuming only that the expander
graphs of Lubotzky–Phillips–Sarnak [LPS88] are Ramanujan.

Theorem 13.3.5. Let p1 < · · · < pk and q > 2
√

∏k
i=1 pi be any prime numbers congruent

to 1 mod 4, and each pi is a quadratic residue modulo q. There is an explicit choice of cubical
generating sets A1, . . . , Ak on Γ = PSL2(Fq) such that |Ai| = pi + 1 and the cubical complex
X = Cay(Γ; (A1, . . . , Ak)) is 2k-expanding.

Base graph construction. We will construct our bipartite base graph based on a cubi-
cal complex X and a code C ⊆ {0, 1}k. To do so, we first introduce the notion of the
“signature” of a cube.

Definition 13.3.6 (Signature of cube). Given a k-face f ∈ X(k), its signature is the fol-
lowing labeling of the directed edges of the k-dimensional hypercube with elements of
Γ: for every x ∈ {0, 1}k and every i ∈ [k], we label the directed edge (x, x ⊕ ei) with
f−1
x fx⊕ei .

Definition 13.3.7 (Coded cubical incidence graph). Given a code C ⊆ {0, 1}k, the C-
cubical incidence graph of a cubical complex X is the edge-labeled bipartite graph (V1, V2, E)
such that V1 = X(k), V2 = Γ× C ⊆ X(0), and f ∈ X(k) and (g, x) ∈ V2 are connected iff
(g, x) ∈ f . Further, an edge between f and (g, x) is labeled with the signature of f .

Our construction uses the cubical incidence graph arising from the Hadamard code,
of which we use minimal properties.

Fact 13.3.8. Let k be a power of 2. The k-th Hadamard codeHk is a linear code in Fk
2 of dimension

log2 k where for all distinct x, y ∈ Hk, the Hamming distance between x and y is exactly k/2.

Remark 13.3.9. For our purposes, any linear code with dimension growing in k and
pairwise distance between 2

5 + δ and 3
5 − δ would suffice. The rate and distance of the

chosen code determine the trade-off between the degree d and the parameter ε in the
(1− ε)-vertex expansion. However, we do not optimize this dependence and use the
Hadamard code for simplicity.

168

13.3.1 Proof of Lemma 13.2.4: structured bipartite graph construction

We now construct structured bipartite graphs (Definition 13.2.1) with the parameters
specified in Lemma 13.2.4. It is quite straightforward to see that the C-cubical incidence
graph of a cubical complex from Theorem 13.3.5 has the desired special set structure
and small-set skeleton expansion, while we defer the proof of small-set 2

√
k-neighbor

expansion to Section 13.3.2. However, since the construction from Theorem 13.3.5 re-
stricts the degrees to be products of primes, we must remove some faces according to
their signatures to get the desired degrees DL, DR.

We will need the following folklore fact (see, e.g., [HLMOZ25, Lemma 3.13] for a
proof).

Lemma 13.3.10. For any n-vertex d-regular graph G with largest nontrivial eigenvalue λ, and
any subgraph H of G incident to at most δn vertices, the largest eigenvalue of H is at most
λ + δd.

Let p1, . . . , pk and p′1, . . . , p′k be 2k distinct primes congruent to 1 mod 4 such that
each D1/k 6 pi 6 2D1/k, and let q be a prime of the form 1 + 4`∏k

i=1 pi p′i for ` ∈ N.
These primes exist due to Fact 13.4.11. Let X be the cubical complex given by The-
orem 13.3.5 for p1, . . . , pk and q, and let X′ be the corresponding cubical complex for
p′1, . . . , p′k and q. Let C = Hk ⊆ Fk

2 be the Hadamard code, let DL := ∏k
i=1(pi + 1),

and let DR := ∏k
i=1(p′i + 1). Finally, let GL = (L, M, EL) and GR = (R, M, ER) be the

C-cubical incidence graphs (Definition 13.3.7) of X and X′ respectively.
We first prove the desired properties for GL and GR, and then show how to construct

GL and GR from them, which inherit the desired properties and additionally are (k, DL)-
biregular and (k, DR)-biregular respectively.

Small-set skeleton expansion. Recall that M = Γ × C has |C| = k parts, and the
skeleton of X (Definition 13.2.3) is the simple graph on M where vertices (g, x), (h, y) ∈
M are connected if they are contained in some face f ∈ X(k). Thus, the skeleton of
X is the union of bipartite graphs over each pair x 6= y ∈ C with edges {(g, x), (g ·
∏k

i=1 axi⊕yi
i , y)} for g ∈ Γ and ai ∈ Ai. Since x, y have distance exactly k/2, the degree

of the bipartite graph is dx⊕y = ∏k
i=1 |Ai|xi⊕yi = O(

√
D). By the fact that X is 2k-

expanding (from Theorem 13.3.5), its second eigenvalue is at most 2k√dx⊕y 6 O(D1/4).
By Lemma 13.3.10, we get that GL is an O

(
D1/4)-skeleton expander. The same argument

applies for GR.

Bound on the number of special sets. For every x, y ∈ C, along with any signature σ

on the subcube given by Cx,y := {x⊕ z : supp(z) ⊆ supp(x⊕ y)}, let Qσ be the set of all
signatures τ of the hypercube that extend σ. The number of choices of x, y and signature
σ on the subcube is at most k2 ·

√
D. It can be verified that for any pair of vertices u, v,

either the neighborhoods are empty, or are described by one of the sets Qσ.

169

Small-set 2
√

k-neighbor expansion. The precise statement from which our bounds
on small-set 2

√
k-neighbor expansion follows is given below.

Lemma 13.3.11. For any subset of vertices U ⊆ M of size at most D−1|M|, we have that the
number of vertices in L and R with more than 2

√
k neighbors in U is at most O

(
D5/8)|U|.

We defer the proof of Lemma 13.3.11 to Section 13.3.2, and describe how to construct
GL and GR.

Satisfying degree constraints. There is a collection SL of DL distinct signatures τ such
that every m ∈ M is incident to exactly one element of L with signature τ in GL. Like-
wise, there is a collection SR of DR distinct signatures τ such that every m ∈ M is
incident to exactly one element of R with signature τ in GR.

We pick an arbitrary DL-sized subcollection SL of SL and an arbitrary DR-sized sub-
collection SR of SR, and define L and R as:

L := {v ∈ L : Signature(v) ∈ SL} , R := {v ∈ R : Signature(v) ∈ SR} .

We now define GL and GR as the induced subgraphs GL[L, M] and GR[R, M] respec-
tively. The graphs GL and GR are (k, DL)- and (k, DR)-biregular bipartite graphs, re-
spectively, and each inherits the desired small-set skeleton expansion and small-set
2
√

k-neighbor expansion properties from its parent graph.

Neighborhood functions. Arbitrarily order the DL signatures in SL as `1, . . . , `DL , and
the DR signatures in SR as r1, . . . , rDR . For any vertex u ∈ M and i ∈ [DL], the function
LNbru(i) maps to the neighbor of u in L with the signature `i, and similarly for i ∈ [DR],
RNbru(i) maps to the neighbor of u with signature ri.

13.3.2 Small-set subcube density in cubical complexes

In this section, we prove Lemma 13.3.11, which states that for any small enough subset
U ⊆ M = Γ ×Hk, there are at most Ok(D5/8)|U| faces f ∈ X(k) that contain at least
2
√

k vertices in U. Here, recall that Hk ⊆ Fk
2 is the k-th Hadamard code of distance k/2

(Fact 13.3.8). Thus, the following lemma directly implies Lemma 13.3.11.

Lemma 13.3.12. Let Γ be a group with cubical generating sets A1, . . . , Ak such that maxi∈[k]|Ai| 6
2 ·mini∈[k]|Ai|. Let D := ∏i∈[k]|Ai|, and let X = Cay(Γ; (A1, . . . , Ak)) be a 2k-expanding
cubical complex with vertex set X(0) = Γ × Fk

2. Then, for any U ⊆ Γ ×Hk where |U| 6
D−1|Γ×Hk|, we have:∣∣∣{ f ∈ X(k) : | f ∩U| > 2

√
k
}∣∣∣ 6 Ok

(
D5/8

)
· |U| .

Notations. For a vertex (g, s) ∈ X(0), we say that it has type s ∈ Fk
2. We use Fk(U;>

2
√

k) to denote the set of k-faces
{

f ∈ X(k) : | f ∩U| > 2
√

k
}

, which is what we will

170

bound in Lemma 13.3.12. More generally, for σ ⊆ Hk, we define Fk(U; σ) to be the set
of all k-faces whose vertices with types in σ lie in U, i.e.,

Fk(U; σ) := { f ∈ X(k) : (fs, s) ∈ U, ∀s ∈ σ} .

When restricted to a subcube C ⊆ Fk
2, we use FC(U; σ) to denote the C-faces in X(C)

(recall Definition 13.3.2) whose vertices with types in σ lie in U.

Our first observation is that for any f ∈ Fk(U;> 2
√

k), f ∩ U must contain four
vertices whose types sum to 0.

Lemma 13.3.13. Let S ⊆ Hk be of size > 2
√

k. Then there exists a four-tuple of distinct
elements σ ∈ S4 for which σ1 ⊕ σ2 ⊕ σ3 ⊕ σ4 = 0.

Proof. Consider the set of sums of two distinct elements of S. Since there are
(
|S|
2

)
>(

2
√

k
2

)
> k such sums, whereas there are only |Hk| = k possible values for the sum,

there must be two distinct pairs of elements that have the same sum. Namely, there are
elements σ1, σ2, σ3, σ4 ∈ S for which σ1 + σ2 = σ3 + σ4. Note that σ1, σ2, σ3, σ4 must be
pairwise distinct: if for instance σ1 = σ3, then σ2 = σ4 also, which implies that the pair
{σ1, σ2} is equal to the pair {σ3, σ4}.

We may therefore partition the set Fk(U;> 2
√

k) according to the value of the four
vertex types that sum to 0. In particular, Fk(U; σ) is the set of all k-faces that have four
vertices of types σ1, σ2, σ3, σ4 in U. Then

Fk(U;> 2
√

k) ⊆
⋃

σ: σ1⊕σ2⊕σ3⊕σ4=0
Fk(U; σ),

which lets us bound |Fk(U;> 2
√

k)| by

|Fk(U;> 2
√

k)| 6 ∑
σ: σ1⊕σ2⊕σ3⊕σ4=0

|Fk(U; σ)|. (13.2)

It therefore suffices to upper bound the size of each Fk(U; σ) individually.
To this end, fix σ ∈ H4

k for which σ1 ⊕ σ2 ⊕ σ3 ⊕ σ4 = 0. The tuple σ determines a
subcube

Cσ = σ1 ⊕
⊕

i∈∆(σ)

{0, 1} · ei , (13.3)

where

∆(σ) :=
{

i ∈ [k] : ∃j1, j2 ∈ [4] s.t. σj1 [i] 6= σj2 [k]
}
=

⋃
j∈{2,3,4}

supp(σ1 ⊕ σj) .

Let us establish some properties of ∆(σ).

171

Claim 13.3.14. For any (σ1, σ2, σ3, σ4) ∈ H4
k that sum to 0 over Fk

2, there are three disjoint sets
a, b, c ⊆ [k], each of size k/4, for which

supp(σ1 ⊕ σ2) = a ∪ b

supp(σ1 ⊕ σ3) = a ∪ c

supp(σ1 ⊕ σ4) = b ∪ c .

In particular, ∆(σ) = a ∪ b ∪ c is of size 3k/4.

Proof. Notice that σ′2 := σ2 ⊕ σ1 and σ′3 := σ3 ⊕ σ1 are distinct codewords of Hk, and
hence have weight k/2. Furthermore, the distance between σ′2 and σ′3 is also k/2. Define
a = supp(σ′2) ∩ supp(σ′3). Then, the Hamming distance between σ′2 and σ′3, which is
k/2, can also be written as (k/2− |a|) + (k/2− |a|), implying that |a| = k/4. We can
now define b = supp(σ′2)\a and c = supp(σ′3)\a, which will both be of size k/4 as
well. We simply need to check that supp(σ4 ⊕ σ1) = b ∪ c, which we do as follows:
σ4 ⊕ σ1 = σ2 ⊕ σ3 = σ′2 ⊕ σ′3 implies that supp(σ4 ⊕ σ1) = supp(σ′2 ⊕ σ′3) = b ∪ c.

For any element x ∈ Hk, we use Ux to denote U ∩ (Γ × {x}). For a subcube C
of {0, 1}k, recall that FC(U; σ) is all C-faces with a vertex in each Uσi for σi ∈ σ. By
Lemma 13.3.3, each f ′ ∈ FCσ

(U; σ) can be extended to a k-face f ∈ Fk(U; σ) in ∏i 6∈∆(σ)|Ai|
ways.

In the remainder of this section, we will use C to refer to Cσ. We can further partition
FC(U; σ) based on the value of its type-σ1 vertex. That is, for u ∈ Uσ1 , define

FC(u; U; σ) := { f ∈ FC(U; σ) : u ∈ f } .

We will bound the size of FC(u; U; σ) in the following lemma.
In order to state the bound, we define the s-neighborhood Ns(u) of u ∈ Uσ1 , for

s ∈ Fk
2, as all the neighbors of u in the bipartite graph Iσ1,s between Γ×{σ1} and Γ×{s}

(recall Definition 13.3.4).

Lemma 13.3.15. Suppose that u ∈ Uσ1 is such that |Ns(u)∩U| 6 ν for s ∈ {σ2, σ3, σ4}. Then

|FC(u; U; σ)| 6 ν3/2 .

Proof. Let a, b, c be the partition of ∆(σ) ⊆ [k] given by Claim 13.3.14. Define A(a) =

∏i∈a Ai, A(b) = ∏i∈b Ai, and A(c) = ∏i∈c Ai. There is a one-to-one correspondence
between Nσ2(u) and A(a)A(b) = A(b)A(a), Nσ3(u) and A(a)A(c) = A(c)A(a), and Nσ3(u)
and A(b)A(c) = A(c)A(b). For instance, we can view Nσ2 as the set of vertices obtained
by starting from u = (g1, σ1), and then multiplying g1 first by an A(a) element and then
an A(b) element to obtain a type-σ2 vertex.

By Lemma 13.3.3, any C-face containing u = (g1, σ1) can be uniquely specified by
choosing one element each from A(a), A(b), and A(c). Concretely, Lemma 13.3.3 implies

172

that for a ∈ A(a), b ∈ A(b), c ∈ A(c), and g2 = g1 a b, g3 = g1 a c, there is a unique C-face
f containing (g1, σ1), (g2, σ2), (g3, σ3), where for fσ4 = (g4, σ4) we have g4 = g1 b

′
c′ for

some b
′ ∈ A(b) and c′ ∈ A(c). Similarly, f is also uniquely determined by the choice of

a, b
′
, and c′.

Let H(·) be the entropy function, and let f denote the random variable obtained
by sampling a uniformly random C-face in FC(u; U; σ), and let a, b, c, b

′
, c′ denote the

corresponding group elements. Then,

log2 |FC(u; U; σ)| = H(f)

=
1
2
· H
(
a, b, c

)
+

1
2
· H
(
a, b
′
, c′
)

=
1
2
·
(

H
(
a, b
)
+ H

(
c | a, b

))
+

1
2
·
(

H (a) + H
(
b
′
, c′ | a

))
6

1
2
·
(

H
(
a, b
)
+ H (c | a) + H (a) + H

(
b
′
, c′
))

=
1
2
·
(

H
(
a, b
)
+ H

(
a, c
)
+ H

(
b
′
, c′
))

6
1
2
· (log2|Ns2(u) ∩U|+ log2|Ns3(u) ∩U|+ log2|Ns4(u) ∩U|) ,

or equivalently,

|FC(u; U; σ)| 6
√
|Nσ2(u) ∩U| · |Nσ3(u) ∩U| · |Nσ4(u) ∩U| .

In Lemma 13.3.15, we bounded the size of FC(u; U; σ) in terms of maxs∈{σ2,σ3,σ4} |Ns(u)∩
U|. We also need to establish an upper bound on the number of u ∈ Uσ1 with a given
value of maxs∈{σ2,σ3,σ4} |Ns(u) ∩ U|. To do this, we use the fact that our cubical com-
plex X is 2k-expanding, i.e., each bipartite graph Iσ1,s has second eigenvalue at most
2k
√

dσ1⊕s(X) 6 2k
√

dk/2(X) (Definition 13.3.4 and Theorem 13.3.5). Here, we use that
σ1 ⊕ s has weight k/2 for s ∈ {σ2, σ3, σ4}.

By our assumption that maxi∈[k] |Ai| 6 2 ·mini∈[k] |Ai| and D = ∏i∈[k] |Ai|, we have

dk/2 := dk/2(X) 6
√

2kD = Ok(1) ·
√

D. For 1 6 α 6 1 + log2 dk/2, define

Uσ1(α) :=
{

u ∈ Uσ1 : max
s∈{σ2,σ3,σ4}

|Ns(u) ∩U| ∈ [2α−1, 2α)

}
.

Lemma 13.3.16. For any σ ∈ H4
k with σ1 ⊕ σ2 ⊕ σ3 ⊕ σ4 = 0, it holds that

|Uσ1(α)| 6 Ok(1) ·min

{
1,

√
D

22α

}
· |U| .

Proof. For s ∈ {σ2, σ3, σ4} and integer α 6 1 + log dk/2, let us define

Uσ1,s(α) :=
{

u ∈ Uσ1 : 2α−1 6 |Ns(u) ∩U| < 2α
}

.

173

Note that

|Uσ1(α)| 6 ∑
s∈{σ2,σ3,σ4}

|Uσ1,s(α)| ,

so it suffices to bound each |Uσ1,s(α)| separately.
To do this, we count the number of edges between Uσ1,s(α) and Us in Iσ1,s in two

different ways. First, by definition each u ∈ Uσ1,s(α) has at least 2α−1 neighbors within
Us, so we have that

|E(Uσ1,s(α), Us)| > 2α−1 · |Uσ1,s(α)| . (13.4)

Second, by the expander mixing lemma on the graph Iσ1,s and using that X is 2k-
expanding and that dk/2 is an upper bound on the degree of Iσ1,s,

E(Uσ1,s(α), Us) 6
dk/2 · |Uσ1,s(α)| · |Us|

|Γ| + 2k ·
√

dk/2 ·
√
|Uσ1,s(α)| · |Us|

6
(

dk/2 · kD−1 + 2k ·
√

dk/2

)
·
√
|Uσ1,s(α)| · |Us|

6 Ok(1) · D1/4 ·
√
|Uσ1,s(α)| · |Us| , (13.5)

where in the second line we use that |U| 6 D−1 · |Γ×Hk| and in the last line we use
that dk/2 = Ok(1) ·

√
D. Combining Eq. (13.4) and (13.5), this gives that

2α−1 · |Uσ1,s(α)| 6 Ok(1) · D1/4 ·
√
|Uσ1,s(α)| · |Us| ,

which rearranges to give

|Uσ1,s(α)| 6 Ok(1) ·
D1/2

22α
· |Us| 6 Ok(1) ·

D1/2

22α
· |U| .

Thus,

|Uσ1(α)| 6 ∑
s∈{σ2,σ3,σ4}

|Uσ1,s(α)| 6 Ok(1) ·
D1/2

22α
· |U| . (13.6)

Finally, we obtain the lemma statement by combining Eq. (13.6) with the fact that |Us1(α)| 6
|U|.

We are now ready to prove Lemma 13.3.12.

Proof of Lemma 13.3.12. We first prove |Fk(U; σ)| 6 Ok(1) ·D5/8 · |U| for σ = (σ1, σ2, σ3, σ4) ∈
H4

k that sums up to 0 over Fk
2.

174

For the subcube C = Cσ = σ1 ⊕
⊕

i∈∆(σ){0, 1} · ei (Eq. (13.3)), we can write

|FC(U; σ)| = ∑
u∈Uσ1

|FC(u; U; σ)|

=
1+log dk/2

∑
α=1

∑
u∈Uσ1 (α)

|FC(u; U; σ)|

6
1+log dk/2

∑
α=1

|Uσ1(α)| · 2
3α/2

6
1+log dk/2

∑
α=1

Ok(1) ·min

{
1,

D1/2

22α

}
· |U| · 23α/2

= Ok(1)
(log D)/4

∑
α=1

23α/2 · |U|+ Ok(1)
1+log dk/2

∑
α=1+(log D)/4

D1/2

2α/2 · |U|

6 Ok(1) · D3/8 · |U| ,

where the first inequality follows from Lemma 13.3.15 (since every u ∈ Uσ1(α) satisfies
|Ns(u) ∩U| 6 2α for s ∈ {σ2, σ3, σ4} by definition), and the second inequality follows
from Lemma 13.3.16.

Next, by Lemma 13.3.3, each f ∈ FC(U; σ) can be extended to f ∈ Fk(U; σ) in
∏i 6∈∆(σ) |Ai| 6 Ok(1) · D1/4 ways, so

|Fk(U; σ)| 6 |FC(U; σ)| ·Ok(1) · D1/4 6 Ok(1) · D5/8 · |U| .

Finally, by plugging in the above into Eq. (13.2), we obtain the desired inequality:

|Fk(U;> 2
√

k)| 6 Ok(1) · D5/8 · |U| .

13.4 Ramanujan cubical complexes

In this section, we give a proof of Theorem 13.3.5, which is essentially contained in
[RSV19]. In particular, we describe the construction of expanding cubical complexes
(Definition 13.3.4) based on the LPS Ramanujan graphs [LPS88]. For our purposes, we
only need basic properties of the generating sets of these Cayley graphs, while using
the (highly non-trivial) fact that they are Ramanujan as a black box.

13.4.1 LPS Ramanujan graphs

In this section, we give a brief overview of the LPS Ramanujan graphs [LPS88] (see also
[Lub94]).

175

Notation. For any n ∈N, let r4(n) := |{(a, b, c, d) ∈ Z4 : a2 + b2 + c2 + d2 = n}|.
We start with a standard fact.

Fact 13.4.1 (Jacobi’s four-square theorem). For any odd n, r4(n) = 8 ∑m|n m. In particular,
if n = p1p2 · · · pk for distinct odd primes p1, . . . , pk, then r4(n) = 8 ∏k

i=1(pi + 1).

Let us start with the definition of quaternions. We will restrict our attention to inte-
gral quaternions (a.k.a. Lipschitz quaternions).

Definition 13.4.2 (Integral quaternions). DefineH(Z) = {a id+ bi + cj + dk : a, b, c, d ∈
Z} where

i =
[

i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
∈ C2×2 .

For α = aid + bi + cj + dk ∈ H(Z), we define its norm N(α) as det(α) = a2 + b2 + c2 +

d2, and we define the (normalized) trace tr(α) = a.

Remark 13.4.3. It can be verified that i, j, k in Definition 13.4.2 satisfy the following
relations:

i2 = j2 = k2 = ijk = −id .

The quaternions are traditionally defined according to these relations. Definition 13.4.2
is a matrix representation of quaternions in C2×2.

Note that the norm is a multiplicative map: N(αβ) = det(αβ) = N(α)N(β). Thus,
for integral quaternions, the group of units is

H(Z)× = {±id,±i,±j,±k} .

We now formulate the “unique factorization” theorem forH(Z). This is a key prop-
erty that we will need later to construct the Ramanujan cubical complexes (see Sec-
tion 13.4).

Fact 13.4.4 (Unique factorization [Dic22, Theorem 8]). Let α ∈ H(Z) such that N(α) is
odd.5 Let N(α) = p1p2 · · · pk be the factorization of the norm into primes, arranged in an
arbitrary but definite order. Then, there is a decomposition α = α1α2 · · · αk where N(αi) =

pi for each i ∈ [k]. Moreover, the decomposition is unique up to “unit migration”, where
α1α2 · · · αk and (α1u1)(u1α2u2) · · · (uk−1αk) for any u1, . . . , uk−1 ∈ H(Z)× are considered
the same decomposition.

Note that factorization can only be unique up to unit migration simply because αβ =

(αu)(uβ) for any unit u ∈ H(Z)×.6

5N(α) being odd is necessary because 2 = (1+ i)(1− i) = (1+ j)(1− j), which is not unique up to unit
migration. One can extendH(Z) to the Hurwitz quaternions to handle this case (see, e.g., [Pal40, CS03]).

6This is similar for integers Z where factorization is unique up to the association a ∼ −a.

176

Next, we define the following, which will later give us the generators of the LPS
graphs.

Definition 13.4.5. For n ∈N, define

A(n) := {α ∈ H(Z) : N(α) = n, tr(α) is odd} / {id,−id} .

It is convenient to view this quotient as the set of odd-trace quaternions where α and
−α are considered to be identical.

The following fact is a simple consequence of Jacobi’s four-square theorem (Fact 13.4.1).
We will prove a generalization later (Lemma 13.4.8).

Fact 13.4.6. For a prime p congruent to 1 modulo 4, |A(p)| = p + 1.

LPS Ramanujan graphs. We now describe the LPS Ramanujan graphs X(p; q), where
• p < q are primes congruent to 1 modulo 4,

• p is a quadratic residue modulo q — that is, there exists x ∈ Z such that p ≡ x2

(mod q).7

The graph is a Cayley graph over the group PSL(2, Fq) with p + 1 generators defined
by A(p) (Definition 13.4.5). Here, PSL(2, Fq) is the projective special linear group: it is a
subgroup of 2× 2 matrices in Fq of determinant 1 modulo scalar multiplication, i.e., α̃

belongs to the equivalence class [cα̃] if det(cα̃) = c2 det(α̃) = 1 (in Fq). It is easy to check
that |PSL(2, Fq)| = q(q2 − 1)/2.

We first need to map a quaternion α ∈ A(p) to an element in PSL(2, Fq). To do so,
we need an element j ∈ Fq such that j2 = −1 (thus behaving like the imaginary unit i).
This requires q ≡ 1 (mod 4), in which case it is well known (by Euler’s criterion) that
−1 is a quadratic residue mod q, i.e., there exists y ∈ Z such that y2 ≡ −1 (mod q).

Moreover, each α ∈ A(p) has det(α) = p. We need that there exists c ∈ Z such
that det(cα) = c2p ≡ 1 (mod q) to get an element in PSL(2, Fq). Thus, choosing p such
that p ≡ x2 (mod q) for some x ∈ Z, since there always exists c ∈ Z such that cx ≡ 1
(mod q), we have that c2p ≡ c2x2 ≡ 1 (mod q).

This gives a natural map α ∈ A(p) to α̃ ∈ PSL(2, Fq) by simply replacing i with
j ∈ Fq with j2 = −1. We denote

Ã(p) := {α̃ : α ∈ A(p)} .

Note that |Ã(p)| = |A(p)| = p + 1, since no distinct α, β ∈ A(p) are scalar multiples of
each other.

The following is the main theorem of [LPS88] whose proof is out of the scope of this
paper.

7[LPS88] also defined Cayley graphs when p is not a quadratic residue. In this case, the graphs are
over PGL(2, Fq) and they are bipartite. We will not consider this case.

177

Theorem 13.4.7 ([LPS88]). Suppose p < q are primes congruent to 1 modulo 4, and p is a
quadratic residue modulo q. Let Γ = PSL(2, Fq). Then, the Cayley graph Cay(Γ; Ã(p)) is a
(p + 1)-regular graph on q(q2 − 1)/2 vertices with all non-trivial eigenvalues at most 2

√
p.

13.4.2 Construction of Ramanujan Cayley cubical complexes

The following is an important lemma that allows us to construct cubical complexes. The
proof is straightforward given Facts 13.4.1 and 13.4.4.

Lemma 13.4.8. For any k ∈N and distinct primes p1, p2, . . . , pk congruent to 1 modulo 4,

(1) |A(p1p2 · · · pk)| = ∏k
i=1(pi + 1).

(2) A(p1) · A(p2) · · · A(pk) = A(p1p2 · · · pk).

Proof. First, note that any number x has x2 ≡ 1 (mod 4) if x is odd, and 0 otherwise.
Thus, p ≡ 1 (mod 4) implies that for a2

0 + a2
1 + a2

2 + a2
3 = p, the set a0, a1, a2, a3 must

have exactly one odd and three even integers. Note also that pi ≡ 1 (mod 4) implies
that p1p2 · · · pk ≡ 1 (mod 4).

With a slight abuse of notation, we will view an element α of A(n) as a quaternion
even though it is technically a coset {α,−α}, since N(α) = N(−α) and tr(α), tr(−α)

have the same parity.
For (1), let n = p1p2 · · · pk. By Jacobi’s four-square theorem (Fact 13.4.1), r4(n) =

8 ∏k
i=1(pi + 1). Since A(n) has the restriction that tr(α) is odd, each element in A(n)

gives rise to 8 distinct 4-tuples of integers whose squares sum up to n (by specifying the
position of the odd integer and its sign). This shows that |A(n)| = 1

8r4(n) = ∏k
i=1(pi +

1).
For (2), we first show that for any n1 6= n2 congruent to 1 modulo 4, we have A(n1) ·

A(n2) ⊆ A(n1n2). This implies that A(p1) · A(p2) · · · A(pk) ⊆ A(p1p2 · · · pk) as all
pi ≡ 1 (mod 4). For any α = a0id + a1i + a2j + a3k ∈ A(n1) and β = b0id + b1i +
b2j + b3k ∈ A(n2), we have that N(αβ) = N(α)N(β) = n1n2. Moreover, we know that
a0, b0 are odd and the rest are even, thus tr(αβ) = a0b0 − a1b1 − a2b2 − a3b3 is odd. This
implies that αβ ∈ A(n1n2).

On the other hand, A(p1p2 · · · pk) ⊆ A(p1) · A(p2) · · · A(pk) follows directly from
unique factorization (Fact 13.4.4).

The next lemma follows almost immediately from Theorem 13.4.7 and Lemma 13.4.8.

Lemma 13.4.9. Let p1, p2, . . . , pk and q be distinct primes congruent to 1 modulo 4, and suppose
each pi is a quadratic residue modulo q. Let Γ = PSL(2, Fq). Consider the bipartite graph G de-
fined on Γ× {0, 1} where (g, 0) and (h, 1) are connected if and only if g−1h ∈ Ã(p1p2 · · · pk).
Then, G has degree d = ∏k

i=1 |Ã(pi)| = ∏k
i=1(pi + 1) and second eigenvalue at most 2k

√
d.

178

Proof. By Lemma 13.4.8, we have that A(p1) · A(p2) · · · A(pk) = A(p1p2 · · · pk) and that
|A(p1p2 · · · pk)| = ∏k

i=1(pi + 1). Thus, the degree d = ∏k
i=1(pi + 1). The adjacency ma-

trix of G is the (bipartite form of) product of adjacency matrices of Cay(Γ; Ã(pi)). The
trivial eigenvector is the all-ones vector for all these graphs, and thus, by submultiplica-
tivity of the spectral norm, the second eigenvalue of G is at most the product of the sec-
ond eigenvalues of Cay(Γ; Ã(pi)), which is ∏k

i=1(2
√

pi) 6 2k
√

d by Theorem 13.4.7.

Infinite family of cubical complexes. For any distinct primes p1, p2, . . . , pk, we need
to show that there are infinitely many desirable primes q: congruent to 1 modulo 4 and
that each pi is a quadratic residue modulo q. This is standard and follows directly from
the law of quadratic reciprocity and the Dirichlet prime number theorem.

Lemma 13.4.10. Let p1, p2, . . . , pk be distinct primes congruent to 1 modulo 4. There are in-
finitely many primes q such that q ≡ 1 (mod 4) and that each pi is a quadratic residue modulo
q.

Proof. Let n = p1p2 · · · pk, and consider the arithmetic progression {1 + 4n`}`∈N. The
Dirichlet prime number theorem states that this sequence contains infinitely many prime
numbers (since 1 and 4n are coprime). For any such prime q, we have q ≡ 1 (mod 4)
and q ≡ 1 (mod pi) for each i, which also means that q is a quadratic residue modulo
pi. Then, quadratic reciprocity implies that each pi is a quadratic residue modulo q.

We also need to argue that there exist such primes that are all within a constant
factor apart. This follows from standard facts about the density of primes in arithmetic
progressions (see e.g., [BMOR18]).

Fact 13.4.11. For any k ∈ N and B > 1, there exists x0 = x0(k, B) such that for any x > x0,
there are distinct primes p1, p2, . . . , pk ∈ [x, Bx] congruent to 1 modulo 4.

13.5 Free group action and good quantum LDPC codes

The main result of [LH22b] is a construction of good quantum low density parity check
(qLDPC) codes with a linear time decoding algorithm, assuming the existence of two-
sided lossless expanders with a free group action, which they left as a conjecture. We
state their conjecture below.

Conjecture 13.5.1 ([LH22b], Conjecture 10). For any ε > 0, and for any β ∈ (0, 1] and
ε0 > 0, there are dL, dR ∈ N satisfying dR

dL
∈ [β, β + ε0], a constant η > 0, and an infinite

family of (dL, dR)-biregular bipartite graphs {Zi = (Li, Ri, Ei)} and groups {Gi}, satisfying
the following properties:

179

(I) Zi is a two-sided (1 − ε)-vertex expander. Namely, any S ⊆ Li with |S| 6 η · |Li|
has > (1− ε)dL · |S| neighbors on the right, and any S ⊆ Ri with |S| 6 η · |Ri| has
> (1− ε)dR · |S| neighbors on the left.

(II) |Gi| = Θ(|Zi|), and Zi has a free Gi-action.

Lin and M. Hsieh used such two-sided lossless expanders to construct good qLDPC
codes.

Theorem 13.5.2 ([LH22b], Theorem 9 and Theorem 14). Assuming Conjecture 13.5.1, then
for all r ∈ (0, 1), there exists δ > 0, w ∈ N and a infinite family of quantum error-correcting
codes C = {Ci}i∈N with parameters [[ni, ki, di]], such that ki/ni > r, di/ni > δ, and all
stabilizers of Ci have weight w. Furthermore, C has a linear time decoding algorithm.

In what follows, we show that the graphs we construct in Section 13.2 resolve Con-
jecture 13.5.1, thereby giving a new instantiation of qLDPC codes via the framework
of [LH22b]. We have already proved Condition (I) in Theorem 10.2.2. It remains simply
to check that the groups Gi satisfying Condition (II) exist.

Proposition 13.5.3. The graph Z constructed in Section 13.2, using Cayley cubical complexes
over Γ = PSL(2, Fq), has a free Γ-action.

Proof. We begin by recalling some notation. Let X = Cay(Γ,A) be a cubical complex
over Γ, where A = {A1, . . . , Ak} are k sets of Cayley cubical generators. The graphs
GL = (L, M, EL) and GR = (M, R, ER) are defined as follows:

• L = {v ∈ X(k) : Signature(v) ∈ SL}, where SL ⊆ SL is a DL-sized collection of
signatures,

• R = {v ∈ X(k) : Signature(v) ∈ SR}, where SR ⊆ SR is a DR-sized collection of
signatures (see Section 13.3.1),

• M = Γ×Hk,
• (f , u) ∈ EL if u ∈ f , and (u, f) ∈ ER if u ∈ f .

Then, the graph Z was constructed by placing a copy of the gadget graph H on the left
and right neighbors of each u ∈ M. Precisely, for each edge (i, j) ∈ H, we place an edge
between LNbru(i) and RNbru(j).

We claim that Z has a free left Γ-action. This will essentially follow from the obser-
vations that GL and GR permit a free left Γ-action, and the placement of the gadget H
respects the group structure.

More concretely, let us define the left Γ-action on u = (g, x) ∈ M as follows:

γu := (γg, x).

We can also define a left Γ-action on L = R = X(k): for f = {(fx, x)}x∈{0,1}k , we define

γ f := {(γ fx, x)}x∈Hk .

180

It turns out that because the cubical generating sets Ai all act on the right, this defines a
legal action on X(k) as well, which we check by verifying γ f ∈ X(k):

(γ f)−1
x (γ f)x+ei = f−1

x γ−1γ fx+ei = f−1
x fx+ei ∈ Ai. (13.7)

Both the above actions are free because Γ acting on itself is free. This will imply that the
left Γ-action on Z, which has vertex set a subset of X(k), is free as well.

Eq. (13.7) actually implies something even stronger: acting on the left by γ preserves
the signature of the cube. It follows that the subsets L ⊆ L and R ⊆ R also permit a free
left Γ-action, since L and R consist of all cubes with a certain collection of signatures.
Now looking at the base graph GL, we define for (f , u) ∈ EL

γ(f , u) := (γ f , γu).

This defines a valid left Γ-action on EL, since if u ∈ f then γu ∈ γ f . Similarly, we can
define for (u, f) ∈ ER

γ(u, f) := (γu, γ f).

Note in particular that if f is the neighbor of u with a given signature σ, then γ f is the
neighbor of γu with signature σ.

Next, we show that the placement of the gadget graph H respects the left Γ action.
Recall that in Section 13.3.1, LNbru (similarly, RNbru) were defined so that Signature(LNbru(i)) =
Signature(LNbru′(i)) for any u, u′ ∈ Γ× {σ}, σ ∈ Hk. From the above discussion, this
implies that

γLNbru(i) = LNbrγu(i).

In particular, under a left Γ-action, an edge (LNbru(i), RNbru(j)) ∈ E gets sent to

γ(LNbru(i), RNbru(j)) := (γLNbru(i), γRNbru(j)) = (LNbrγu(i), RNbrγu(j)) ∈ E.

Finally, we check that Γ has linear size:

|Z| 6 2|X(k)| = 2|Γ| ·
k

∏
i=1
|Ai| = Ok(1) · |Γ|.

181

182

Bibliography

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential Algo-
rithms for Unique Games and Related Problems. Journal of the ACM
(JACM), 62(5):1–25, 2015. 1.2, 6.3

[AC88] Noga Alon and Fan RK Chung. Explicit construction of linear sized toler-
ant networks. Discrete Mathematics, 72(1-3):15–19, 1988. 1, 1.1, 2.1.1

[AC02] Noga Alon and Michael Capalbo. Explicit unique-neighbor expanders. In
The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings., pages 73–79. IEEE, 2002. 10.1, 11, 11.0.2

[ACC06] Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approxima-
tion guarantee for chromatic number. In 38th Annual ACM Symposium on
Theory of Computing, STOC’06, pages 215–224, 2006. 6.3

[ACIM01] Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher
Moore. The phase transition in 1-in-k SAT and NAE 3-SAT. In Proceedings
of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages
721–722, 2001. 8.2.3

[AD24] Ron Asherov and Irit Dinur. Bipartite unique neighbour expanders via
ramanujan graphs. Entropy, 26(4):348, 2024. 1.1, (2), 3.2.2, 3.2.2, 10.1, 11.0.2

[AE98] Gunnar Andersson and Lars Engebretsen. Better approximation algo-
rithms for Set splitting and Not-All-Equal SAT. Information Processing Let-
ters, 65(6):305–311, 1998. 8.2.3

[AF09] Noga Alon and Uriel Feige. On the power of two, three and four probes.
In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 346–354. SIAM, 2009. 3.1.2

[AG11] Sanjeev Arora and Rong Ge. New Tools for Graph Coloring. In Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization,
pages 1–12. Springer, 2011. 6.3

[AGK21] Jackson Abascal, Venkatesan Guruswami, and Pravesh K Kothari.
Strongly refuting all semi-random Boolean CSPs. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 454–

183

472. SIAM, 2021. 6.1, 6.2, 6.2, 8, 8.1.2

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for
irregular graphs. Graphs and Combinatorics, 18(1):53–57, 2002. 1.1, (1), 3.1,
3.1.1, 4

[AK97] Noga Alon and Nabil Kahale. A Spectral Technique for Coloring Random
3-Colorable Graphs. SIAM Journal on Computing, 26(6):1733–1748, 1997.
6.3

[AK98] Noga Alon and Nabil Kahale. Approximating the independence number
via the ϑ-function. Mathematical Programming, 80(3):253–264, 1998. 6.3

[AKK95] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time
approximation schemes for dense instances of NP-hard problems. In Pro-
ceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 284–293. ACM,
1995. 6.1

[AKK+08] Sanjeev Arora, Subhash A Khot, Alexandra Kolla, David Steurer, Madhur
Tulsiani, and Nisheeth K Vishnoi. Unique games on expanding constraint
graphs are easy. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 21–28, 2008. 1.2, 6.3

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large
hidden clique in a random graph. Random Structures & Algorithms, 13(3-
4):457–466, 1998. 1

[ALM96] Sanjeev Arora, FT Leighton, and Bruce M Maggs. On-Line Algorithms for
Path Selection in a Nonblocking Network. SIAM Journal on Computing,
25(3):600–625, 1996. 10.1

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
1

[AOW15] Sarah R Allen, Ryan O’Donnell, and David Witmer. How to refute a ran-
dom CSP. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 689–708. IEEE, 2015. 1.2, 6.1, 6.2, 7, 8

[App16] Benny Applebaum. Cryptographic Hardness of Random Local Functions:
Survey. Computational complexity, 25:667–722, 2016. 6.2

[AR94] Noga Alon and Yuval Roichman. Random Cayley graphs and expanders.
Random Structures & Algorithms, 5(2):271–284, 1994. 13.1.1

[Bas92] Hyman Bass. The Ihara-Selberg zeta function of a tree lattice. International
Journal of Mathematics, 3(06):717–797, 1992. 2.2, 5

[BBKSS21] Mitali Bafna, Boaz Barak, Pravesh K Kothari, Tselil Schramm, and David

184

Steurer. Playing Unique Games on Certified Small-Set Expanders. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing, pages 1629–1642, 2021. 6.3, 9.1.1

[BCK15] Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of Squares Lower
Bounds from Pairwise Independence. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 97–106. ACM, 2015. 6.1

[BFSU98] Andrei Z Broder, Alan M Frieze, Stephen Suen, and Eli Upfal. Optimal
construction of edge-disjoint paths in random graphs. SIAM Journal on
Computing, 28(2):541–573, 1998. 10.1

[BGIKS08] Radu Berinde, Anna C Gilbert, Piotr Indyk, Howard Karloff, and Martin J
Strauss. Combining geometry and combinatorics: A unified approach to
sparse signal recovery. In 2008 46th Annual Allerton Conference on Commu-
nication, Control, and Computing, pages 798–805. IEEE, 2008. 10.1

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell.
Efficient probabilistically checkable proofs and applications to approxi-
mations. In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 294–304, 1993. 8.1.2

[BGMT12] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur
Tulsiani. SDP gaps from pairwise independence. Theory of Computing,
8(1):269–289, 2012. 6.1

[BH92] Ravi Boppana and Magnús M Halldórsson. Approximating maximum
independent sets by excluding subgraphs. BIT Numerical Mathematics,
32(2):180–196, 1992. 6.3

[BHK25] Mitali Bafna, Jun-Ting Hsieh, and Pravesh K Kothari. Rounding Large
Independent Sets on Expanders. In Proceedings of the 57th Annual ACM
Symposium on Theory of Computing, pages 631–642, 2025. 1.4, (3)

[BHL+02] Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico Ricci-
Tersenghi, Martin Weigt, and Riccardo Zecchina. Hiding solutions in ran-
dom satisfiability problems: A statistical mechanics approach. Physical
review letters, 88(18):188701, 2002. 6.2, 8

[BHSV25] Rares-Darius Buhai, Yiding Hua, David Steurer, and Andor Vári-Kakas.
Finding Colorings in One-Sided Expanders. In 2025 IEEE 66th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 2025. 6.3

[Big93] Norman Biggs. Algebraic graph theory. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, second edition, 1993. 3.1

[BK97] Avrim Blum and David Karger. An Õ(n3/14)-coloring algorithm for 3-

185

colorable graphs. Information processing letters, 61(1):49–53, 1997. 6.3

[BK09] Nikhil Bansal and Subhash Khot. Optimal Long Code Test with One Free
Bit. In 2009 50th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 453–462. IEEE, 2009. 6.3, 6.3, 9.4, 9.4.1

[BKHL99] Claudia Bertram-Kretzberg, Thomas Hofmeister, and Hanno Lefmann.
Sparse 0- 1 matrices and forbidden hypergraphs. Combinatorics, Proba-
bility and Computing, 8(5):417–427, 1999. 3.1.2

[Blu94] Avrim Blum. New approximation algorithms for graph coloring. Journal
of the ACM (JACM), 41(3):470–516, 1994. 6.3

[BM16] Boaz Barak and Ankur Moitra. Noisy Tensor Completion via the Sum-of-
Squares Hierarchy. In Proceedings of the 29th Conference on Learning Theory,
COLT 2016, New York, USA, June 23-26, 2016, volume 49 of JMLR Workshop
and Conference Proceedings, pages 417–445. JMLR.org, 2016. 6.1

[BMOR18] Michael A Bennett, Greg Martin, Kevin O’Bryant, and Andrew Rech-
nitzer. Explicit bounds for primes in arithmetic progressions. Illinois Jour-
nal of Mathematics, 62(1-4):427–532, 2018. 13.4.2

[BMS08] Louay Bazzi, Mohammad Mahdian, and Daniel A Spielman. The mini-
mum distance of turbo-like codes. IEEE Transactions on Information Theory,
55(1):6–15, 2008. 3.1.2

[Bol78] Béla Bollobás. Extremal graph theory, volume 11 of London Mathematical So-
ciety Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Pub-
lishers], London-New York, 1978. 3.1

[Bor20] Charles Bordenave. A new proof of Friedman’s second eigenvalue The-
orem and its extension to random lifts. In Annales Scientifiques de l’École
Normale Supérieure, volume 4, pages 1393–1439, 2020. 1.3, 3.1.1

[BQ09] Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s one-
way function. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques: 12th International Workshop, APPROX
2009, pages 392–405. Springer, 2009. 6.2

[BR14] S Ajesh Babu and Jaikumar Radhakrishnan. An entropy-based proof for
the Moore bound for irregular graphs. In Perspectives in Computational
Complexity, pages 173–181. Springer, 2014. 3.1

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding Semidef-
inite Programming Hierarchies via Global Correlation. In IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 472–481. IEEE, 2011. 2.5.2,
9.1.1

186

[BS95] Avrim Blum and Joel Spencer. Coloring Random and Semi-Random k-
Colorable Graphs. J. Algorithms, 19(2):204–234, 1995. 1.2, 6.1, 6.3

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest to-
ward optimal algorithms. arXiv preprint arXiv:1404.5236, 2014. 6.2

[BS16] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the
lens of sum-of-squares. Course notes: http: // www. sumofsquares. org/
public/ index. html , 2016. 2.5

[BV09] Eli Ben-Sasson and Michael Viderman. Tensor products of weakly smooth
codes are robust. Theory of Computing, 5(1):239–255, 2009. 10.1

[CCF10] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse
regularity concept. SIAM Journal on Discrete Mathematics, 23(4):2000–2034,
2010. 6.2

[CGL07] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refuta-
tion heuristics for random k-SAT. Combinatorics, Probability & Computing,
16(1):5, 2007. 6.1, 8.1.5

[CGRZ24] Eshan Chattopadhyay, Mohit Gurumukhani, Noam Ringach, and Yunya
Zhao. Two-Sided Lossless Expanders in the Unbalanced Setting. arXiv
preprint arXiv:2409.04549, 2024. 10.1

[Che25] Yeyuan Chen. Unique-neighbor Expanders with Better Expansion for
Polynomial-sized Sets. In Proceedings of the 2025 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 3335–3362. SIAM, 2025. 12.1

[Chl09] Eden Chlamtac. Non-local analysis of SDP-based approximation algorithms.
Princeton University, 2009. 6.3

[CRT23] Itay Cohen, Roy Roth, and Amnon Ta-Shma. HDX condensers. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
pages 1649–1664. IEEE, 2023. 10.1

[CRVW02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Ran-
domness conductors and constant-degree lossless expanders. In Proceed-
ings of the 34th Annual ACM Symposium on Theory of Computing, pages 659–
668, 2002. 1.3, 10.1

[CS03] John H Conway and Derek A Smith. On quaternions and octonions. AK
Peters/CRC Press, 2003. 5

[DELLM22] Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes.
Locally Testable Codes with constant rate, distance, and locality. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Comput-
ing, pages 357–374, 2022. 10.1, 13.1.1

187

http://www.sumofsquares.org/public/index.html
http://www.sumofsquares.org/public/index.html

[DF16] Roee David and Uriel Feige. On the effect of randomness on planted 3-
coloring models. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 77–90, 2016. 6.3, 6.3, 5

[DHV16] Amit Deshpande, Prahladh Harsha, and Rakesh Venkat. Embedding
Approximately Low-Dimensional `2

2 Metrics into `1. In 36th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016. 6.3

[Dic22] Leonard E Dickson. Arithmetic of quaternions. Proceedings of the London
Mathematical Society, 2(1):225–232, 1922. 13.4.4

[Din24] Irit Dinur. Expanders and PCPs: Emergence from Local to Global. FOCS
2024 Plenary Talk, YouTube video, 2024. https://www.youtube.com/

watch?v=5eGoy6NfkZE. 10.2

[DKPS10] Irit Dinur, Subhash Khot, Will Perkins, and Muli Safra. Hardness of Find-
ing Independent Sets in Almost 3-Colorable Graphs. In 2010 IEEE 51st An-
nual Symposium on Foundations of Computer Science, pages 212–221. IEEE,
2010. 6.3

[DLV24] Irit Dinur, Ting-Chun Lin, and Thomas Vidick. Expansion of High-
Dimensional Cubical Complexes: with Application to Quantum Locally
Testable Codes. In 2024 IEEE 65th Annual Symposium on Foundations of
Computer Science (FOCS), pages 379–385. IEEE, 2024. 13.1.1, 13.1.1

[DMR06] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for
Approximate Coloring. In Proceedings of the thirty-eighth annual ACM sym-
posium on Theory of Computing, pages 344–353, 2006. 6.3, 9, 9.4, 9.4.4, 9.4

[DS05] Irit Dinur and Samuel Safra. On the hardness of approximating minimum
vertex cover. Annals of mathematics, pages 439–485, 2005. 6.3, 9.4

[DSS14] Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random
regular NAE-SAT. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 814–822, 2014. 8.2.3

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testabil-
ity of tensor products of LDPC codes. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques., pages 304–315.
Springer, 2006. 10.1

[Fei02] Uriel Feige. Relations between average case complexity and approxima-
tion complexity. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 534–543, 2002. 6.1, 1, 7

[Fei04] Uriel Feige. Approximating maximum clique by removing subgraphs.

188

https://www.youtube.com/watch?v=5eGoy6NfkZE
https://www.youtube.com/watch?v=5eGoy6NfkZE

SIAM Journal on Discrete Mathematics, 18(2):219–225, 2004. 6.3

[Fei07] Uriel Feige. Refuting Smoothed 3CNF Formulas. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2007), October 20-23,
2007, Providence, RI, USA, Proceedings, pages 407–417. IEEE Computer So-
ciety, 2007. 6.1

[Fei08] Uriel Feige. Small linear dependencies for binary vectors of low weight.
In Building Bridges: Between Mathematics and Computer Science, pages 283–
307. Springer, 2008. 1.1, 1.2, (1), 3.1.2, 3.1.5, 6.1

[FK01] Uriel Feige and Joe Kilian. Heuristics for Semirandom Graph Problems.
J. Comput. Syst. Sci., 63(4):639–671, 2001. 6.1

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic
Proofs and Efficient Algorithm Design. Foundations and Trends® in The-
oretical Computer Science, 14(1-2):1–221, 2019. 2.5, 6.2

[FLP16] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-
exponential Approximation Schemes for CSPs: From Dense to Almost
Sparse. In 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs,
pages 37:1–37:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. 6.1, 6.1, 6.2

[FM17] Zhou Fan and Andrea Montanari. How well do local algorithms solve
semidefinite programs? In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 604–614, 2017. 2.2

[FPV15] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. Subsampled
Power Iteration: a Unified Algorithm for Block Models and Planted
CSP’s. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 2836–2844, 2015. 1.2, 6.2, 6.2, 8, 8,
8.1, 8.2, 8.2, 4

[FPV18] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. On the Complexity
of Random Satisfiability Problems with Planted Solutions. SIAM Journal
on Computing, 47(4):1294–1338, 2018. 6.1

[Fri08] Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related prob-
lems. American Mathematical Soc., 2008. 1.3

[GHKM23] Venkatesan Guruswami, Jun-Ting Hsieh, Pravesh K Kothari, and Peter
Manohar. Efficient Algorithms for Semirandom Planted CSPs at the Refu-
tation Threshold. In 2023 IEEE 64th Annual Symposium on Foundations of
Computer Science (FOCS), pages 307–327. IEEE, 2023. 1.4, (2), 8.2.3

189

[GKM22] Venkatesan Guruswami, Pravesh K Kothari, and Peter Manohar. Algo-
rithms and certificates for Boolean CSP refutation: smoothed is no harder
than random. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pages 678–689, 2022. 1.1, 1.2, (1), 3.1.2, 3.1.2, 4.2,
4.2, 4.3, 4.4, 6.1, 6.1, 6.2, 7, 7.0.2, 8, 8.1.5, 8.3

[GL03] Andreas Goerdt and André Lanka. Recognizing more random unsatis-
fiable 3-sat instances efficiently. Electron. Notes Discret. Math., 16:21–46,
2003. 6.1

[GLR10] Venkatesan Guruswami, James R Lee, and Alexander Razborov. Almost
Euclidean subspaces of `N

1 via expander codes. Combinatorica, 30(1):47–68,
2010. 10.1

[GM88] Chris D Godsil and Bojan Mohar. Walk generating functions and spectral
measures of infinite graphs. Linear Algebra and its Applications, 107:191–
206, 1988. 2.1

[GMM22] Venkatesan Guruswami, Peter Manohar, and Jonathan Mosheiff. `p-
Spread and Restricted Isometry Properties of Sparse Random Matrices.
In 37th Computational Complexity Conference (CCC 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022. 10.1

[Gol00] Oded Goldreich. Candidate One-Way Functions Based on Expander
Graphs. Electron. Colloquium Comput. Complex., 2000. 6.2

[Gol24] Louis Golowich. New explicit constant-degree lossless expanders. In Pro-
ceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 4963–4971. SIAM, 2024. 10.1, 11.0.2

[GS20] Venkatesan Guruswami and Sai Sandeep. d-to-1 hardness of coloring
3-colorable graphs with O(1) colors. In 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020. 6.3

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Un-
balanced expanders and randomness extractors from Parvaresh–Vardy
codes. Journal of the ACM (JACM), 56(4):1–34, 2009. 10.1

[Hae95] Willem H Haemers. Interlacing eigenvalues and graphs. Linear Algebra
and its applications, 226:593–616, 1995. 2.1

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798–859, 2001. 6.1

[HKM23] Jun-Ting Hsieh, Pravesh K. Kothari, and Sidhanth Mohanty. A simple and
sharper proof of the hypergraph Moore bound. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,

190

January 22-25, 2023, pages 2324–2344. SIAM, 2023. 1.4, (1), (1), 6.2, 8

[HKMMS25] Jun-Ting Hsieh, Pravesh K Kothari, Sidhanth Mohanty, David
Munhá Correia, and Benny Sudakov. Small Even Covers, Locally Decod-
able Codes and Restricted Subgraphs of Edge-Colored Kikuchi Graphs.
International Mathematics Research Notices, 2025(5):rnaf045, 2025. 3.1.2

[HLMOZ25] Jun-Ting Hsieh, Ting-Chun Lin, Sidhanth Mohanty, Ryan O’Donnell, and
Rachel Yun Zhang. Explicit Two-Sided Vertex Expanders Beyond the
Spectral Barrier. In Proceedings of the 57th Annual ACM Symposium on The-
ory of Computing, 2025. 1.3, 1.4, 10, 10.2, 10.2, 11.1, 11.1.1, 13, 13.1.2, 13.1.3,
4, 13.2.7, 13.3.1

[HLMRZ25] Jun-Ting Hsieh, Alexander Lubotzky, Sidhanth Mohanty, Assaf Reiner,
and Rachel Yun Zhang. Explicit Lossless Vertex Expanders. In 2025 IEEE
66th Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
2025. 1.3, 1.4, 10, 10.2, 10.2

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bulletin of the American Mathematical Society, 43(4):439–
561, 2006. 1, 1.3, 3.2, 10

[HMMP24] Jun-Ting Hsieh, Theo McKenzie, Sidhanth Mohanty, and Pedro Paredes.
Explicit two-sided unique-neighbor expanders. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing, pages 788–799, 2024. 1.3,
1.4, (2), 10, 10.2, 10.2, 11.1, 12.2.1, 13.1.3

[HMP06] Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for
the majority function. In International Workshop on Approximation Algo-
rithms for Combinatorial Optimization, pages 410–425. Springer, 2006. 10.1

[HMY24] Jiaoyang Huang, Theo McKenzie, and Horng-Tzer Yau. Ramanujan Prop-
erty and Edge Universality of Random Regular Graphs. arXiv preprint
arXiv:2412.20263, 2024. 2

[Hof70] Alan J Hoffman. On eigenvalues and colorings of graphs. In Graph Theory
and its Applications, pages 79–91. Acad. Press, 1970. 6.3

[Hoo02] Shlomo Hoory. The size of bipartite graphs with a given girth. Journal of
Combinatorial Theory, Series B, 86(2):215–220, 2002. 3.1

[Hsi25] Jun-Ting Hsieh. Coloring 3-Colorable Graphs with Low Threshold Rank.
arXiv preprint arXiv:2508.03093, 2025. 6.3

[Iha66] Yasutaka Ihara. On discrete subgroups of the two by two projective lin-
ear group over p-adic fields. Journal of the Mathematical Society of Japan,
18(3):219–235, 1966. 2.2, 5

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-

191

SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. 6.1

[Jer92] Mark Jerrum. Large cliques elude the Metropolis process. Random Struc-
tures & Algorithms, 3(4):347–359, 1992. 6.3

[JL00] Bruce W Jordan and Ron Livné. The Ramanujan property for regular
cubical complexes. Duke Math. J., 104(1):85–103, 2000. 13.1.1

[JMOPT22] Fernando Granha Jeronimo, Tushant Mittal, Ryan O’Donnell, Pedro Pare-
des, and Madhur Tulsiani. Explicit Abelian Lifts and Quantum LDPC
Codes. In 13th Innovations in Theoretical Computer Science Conference (ITCS
2022), pages 88–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2022. 13.1.1, 13.1.1

[JMS07] Haixia Jia, Cristopher Moore, and Doug Strain. Generating Hard Satisfi-
able Formulas by Hiding Solutions Deceptively. Journal of Artificial Intelli-
gence Research, 28:107–118, 2007. 6.2, 8

[Kah95] Nabil Kahale. Eigenvalues and expansion of regular graphs. Journal of the
ACM (JACM), 42(5):1091–1106, 1995. 1.1, 1.3, (2), 3.2.1, 3.2.1, 10, 10.1, 12,
12.1

[Kar72] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.
6.3

[Kar94] David R Karger. Random sampling in cut, flow, and network design prob-
lems. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 648–657, 1994. 8.1.3, 8.1.3

[Kar11] Zohar S Karnin. Deterministic construction of a high dimensional `p sec-
tion in `n

1 for any p < 2. In Proceedings of the forty-third annual ACM sym-
posium on Theory of computing, pages 645–654, 2011. 10.1

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 767–775, 2002. 9, 9.4.3

[KK22] Amitay Kamber and Tali Kaufman. Combinatorics via closed orbits: num-
ber theoretic Ramanujan graphs are not unique neighbor expanders. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 426–435, 2022. 3.2.1, 10.1

[KLT18] Akash Kumar, Anand Louis, and Madhur Tulsiani. Finding Pseudoran-
dom Colorings of Pseudorandom Graphs. In 37th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
6.3

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer.

192

Sum of squares lower bounds for refuting any CSP. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 132–145. ACM, 2017. 6.1

[KMS98] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate Graph
Coloring by Semidefinite Programming. Journal of the ACM (JACM),
45(2):246–265, 1998. 6.3, 6.3, 9, 9.5

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approx-
imate to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008. 6.3,
9.4

[KRS23] Swastik Kopparty, Noga Ron-Zewi, and Shubhangi Saraf. Simple Con-
structions of Unique Neighbor Expanders from Error-correcting Codes.
arXiv preprint arXiv:2310.19149, 2023. 10.1

[KS12] Subhash Khot and Rishi Saket. Hardness of Finding Independent Sets
in Almost q-Colorable Graphs. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 380–389. IEEE, 2012. 6.3

[KT17] Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-Colorable
Graphs with Less than n1/5 Colors. Journal of the ACM (JACM), 64(1):1–23,
2017. 6.3

[KT22] Itay Kalev and Amnon Ta-Shma. Unbalanced Expanders from Multiplic-
ity Codes. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2022), pages 12–1.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022. 10.1

[KTY24] Ken-ichi Kawarabayashi, Mikkel Thorup, and Hirotaka Yoneda. Better
coloring of 3-Colorable graphs. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, pages 331–339, 2024. 6.3

[Kuč95] Luděk Kučera. Expected complexity of graph partitioning problems. Dis-
crete Applied Mathematics, 57(2-3):193–212, 1995. 6.3

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. Journal of the ACM (JACM), 51(3):497–515, 2004. 2.3, 8.1.4

[KY24] Dmitriy Kunisky and Xifan Yu. Computational hardness of detecting
graph lifts and certifying lift-monotone properties of random regular
graphs. In 2024 IEEE 65th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1621–1633. IEEE, 2024. 10.1

[Las01] Jean B. Lasserre. Global Optimization with Polynomials and the Problem
of Moments. SIAM Journal on Optimization, 11(3):796–817, 2001. 2.5.1

[LH22a] Ting-Chun Lin and Min-Hsiu Hsieh. c3-Locally Testable Codes from Loss-
less Expanders. In 2022 IEEE International Symposium on Information Theory

193

(ISIT), pages 1175–1180. IEEE, 2022. 10.1

[LH22b] Ting-Chun Lin and Min-Hsiu Hsieh. Good quantum LDPC codes
with linear time decoder from lossless expanders. arXiv preprint
arXiv:2203.03581, 2022. 10.1, 10.2.3, 13, 13.5, 13.5.1, 13.5.2, 13.5

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan
graphs. Combinatorica, 8:261–277, 1988. 1.3, 3.2, 10.2, 12, 13, 13.1.1, 13.1.1,
13.3, 13.4, 13.4.1, 13.4.1, 7, 13.4.7

[LS96] Wen-Ch’ing Winnie Li and Patrick Solé. Spectra of regular graphs and hy-
pergraphs and orthogonal polynomials. European Journal of Combinatorics,
17(5):461–477, 1996. 2.1

[LSV05a] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit construc-
tions of Ramanujan complexes of type Ãd. European Journal of Combina-
torics, 26(6):965–993, 2005. 10.2, 13

[LSV05b] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan com-
plexes of type Ãd. Israel Journal of Mathematics, 149:267–299, 2005. Proba-
bility in mathematics. 10.2, 13

[Lub94] Alex Lubotzky. Discrete groups, expanding graphs and invariant measures,
volume 125. Springer Science & Business Media, 1994. 13.4.1

[LW49] LH Loomis and H Whitney. An inequality related to the isoperimetric
inequality. Bulletin of the American Mathematical Society, 55(10):961–962,
1949. 13.1.3

[Mar88] Grigorii Aleksandrovich Margulis. Explicit group-theoretical construc-
tions of combinatorial schemes and their application to the design of
expanders and concentrators. Problemy peredachi informatsii, 24(1):51–60,
1988. 1.3, 3.2

[MM11] Konstantin Makarychev and Yury Makarychev. How to play unique
games on expanders. In Approximation and Online Algorithms: 8th Interna-
tional Workshop, WAOA 2010, Liverpool, UK, September 9-10, 2010. Revised
Papers 8, pages 190–200. Springer, 2011. 1.2, 6.3

[MM21] Theo McKenzie and Sidhanth Mohanty. High-Girth Near-Ramanujan
Graphs with Lossy Vertex Expansion. In 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021. 10.1

[MOP20] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit near-
Ramanujan graphs of every degree. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pages 510–523, 2020. 3.1.2,
3.2.2, 12, 12

194

[Mor94] Moshe Morgenstern. Existence and explicit constructions of q+ 1 regu-
lar Ramanujan graphs for every prime power q. Journal of Combinatorial
Theory, Series B, 62(1):44–62, 1994. 1.3, 3.2, 12

[Mos15] Dana Moshkovitz. The Projection Games Conjecture and the NP-
Hardness of ln n-Approximating Set-Cover. Theory Comput., 11:221–235,
2015. 8.1.2

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error.
J. ACM, 57(5):29:1–29:29, 2010. 8.1.2, 2

[MR17] Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition The-
orem and Complexity of Approximating Dense CSPs. In 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. 2.5.9

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ε-biased genera-
tors in NC0. Random Structures & Algorithms, 29(1):56–81, 2006. 6.2

[MW16] Ryuhei Mori and David Witmer. Lower Bounds for CSP Refutation by
SDP Hierarchies. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2016, September
7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 41:1–41:30, 2016. 6.1

[Nil91] Alon Nilli. On the second eigenvalue of a graph. Discrete Mathematics,
91(2):207–210, 1991. 2.1

[NV08] Assaf Naor and Jacques Verstraëte. Parity check matrices and product
representations of squares. Combinatorica, 28(2):163–185, 2008. 3.1.2

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-
optimal polynomial stretch. In 2014 IEEE 29th Conference on Computational
Complexity (CCC), pages 1–12. IEEE, 2014. 6.1

[OW20] Ryan O’Donnell and Xinyu Wu. Explicit near-fully X-Ramanujan graphs.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 1045–1056. IEEE, 2020. 3.2.2, 10.2, 12, 12.0.1, 12

[Pal40] Gordon Pall. On the arithmetic of quaternions. Transactions of the American
Mathematical Society, 47(3):487–500, 1940. 5

[Par00] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. PhD thesis, California Institute of
Technology, 2000. 2.5.1

[PD01] Alexander Prestel and Charles Delzell. Positive Polynomials: From Hilbert’s
17th Problem to Real Algebra. Springer Science & Business Media, 2001.
2.5.1, 2.5.5

195

[Pip93] Nicholas Pippenger. Self-routing superconcentrators. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of Computing, pages 355–361,
1993. 10.1

[PK22] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and
locally testable classical LDPC codes. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, pages 375–388, 2022.
10.1, 13.1.1

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refut-
ing random CSPs below the spectral threshold. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 121–131,
2017. 1.2, 6.1, 6.2, 7.0.2, 8

[RSV19] Nithi Rungtanapirom, Jakob Stix, and Alina Vdovina. Infinite series of
quaternionic 1-vertex cube complexes, the doubling construction, and ex-
plicit cubical Ramanujan complexes. International Journal of Algebra and
Computation, 29(06):951–1007, 2019. 10.2, 13.1.1, 13.3, 13.4

[RT12] Prasad Raghavendra and Ning Tan. Approximating CSPs with global
cardinality constraints using SDP hierarchies. In Proceedings of the twenty-
third annual ACM-SIAM symposium on Discrete Algorithms, pages 373–387.
SIAM, 2012. 2.5.2, 2.5.7, 9.1.1

[RV17] Yuval Rabani and Rakesh Venkat. Approximating Sparsest Cut in Low
Rank Graphs via Embeddings from Approximately Low Dimensional
Spaces. Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 2017. 6.3

[Sch04] Markus Schweighofer. On the complexity of Schmüdgen’s Positivstellen-
satz. Journal of Complexity, 20(4):529–543, 2004. 2.5.1, 2.5.5

[SS96] Michael Sipser and Daniel Spielman. Expander Codes. IEEE Trans. Inform.
Theory, 42(6, part 1):1710–1722, 1996. 10.1

[SS12] Warren Schudy and Maxim Sviridenko. Concentration and moment in-
equalities for polynomials of independent random variables. In Proceed-
ings of the twenty-third annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 437–446. SIAM, 2012. 3.1.2

[ST11] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of
graphs. SIAM Journal on Computing, 40(4):981–1025, 2011. 2.3, 8.1.4, 8.5

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and
pruning: Faster, stronger, and simpler. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2616–2635.
SIAM, 2019. 2.3, 8.1.4

196

[Tre08] Luca Trevisan. Approximation Algorithms for Unique Games. Theory OF
Computing, 4:111–128, 2008. 1.2, 6.3

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. Foun-
dations and Trends® in Machine Learning, 8(1-2):1–230, 2015. 2.4.2

[TUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless
condensers, unbalanced expanders, and extractors. Combinatorica, 27:213–
240, 2007. 10.1

[Vid13] Michael Viderman. Linear-time decoding of regular expander codes.
ACM Transactions on Computation Theory (TOCT), 5(3):1–25, 2013. 10.1

[WAM19] Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The Kikuchi
hierarchy and tensor PCA. In 2019 IEEE 60th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 1446–1468. IEEE, 2019. 1, 1.1,
1.2, 3.1.2, 6.1

[Wig83] Avi Wigderson. Improving the performance guarantee for approximate
graph coloring. Journal of the ACM (JACM), 30(4):729–735, 1983. 6.3

[Wik22] Wikipedia contributors. Moore graph — Wikipedia, the free encyclope-
dia, 2022. [Online; accessed 12-July-2022]. 3.1

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with
improved worst-case update time. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1130–1143, 2017. 2.3,
8.1.4

197

	1 Introduction
	1.1 Part I: Spectral methods in graph theory
	1.2 Part II: Spectral methods in algorithm design
	1.3 Part III: Spectral methods in constructing vertex expanders
	1.4 Organization of the thesis

	2 Background and Preliminaries
	2.1 Elementary graph theory
	2.2 Non-backtracking matrix
	2.3 Graph pruning and expander decomposition
	2.4 Concentration inequalities
	2.5 The Sum-of-Squares algorithm

	I Graph Theory
	3 Introduction
	3.1 Girth-density trade-off in hypergraphs
	3.2 Subgraph density in spectral expanders

	4 Girth-Density Trade-Off in Hypergraphs
	4.1 Generalization of the Moore bound
	4.2 Warm-up: weak Moore bound for graphs
	4.3 Hypergraph Moore bound: even arity
	4.4 Hypergraph Moore bound: odd arity

	5 Subgraph Density in Spectral Expanders
	5.1 Average degree of bipartite graphs
	5.2 Non-backtracking matrix of subgraphs in bipartite expanders

	II Algorithms
	6 Introduction
	6.1 Algorithms for strongly refuting semirandom CSPs
	6.2 Efficient algorithms for semirandom planted CSPs
	6.3 Finding large independent sets in expanders

	7 Algorithms for Strongly Refuting Semirandom CSPs
	7.1 Refuting semirandom even arity XOR
	7.2 Refuting semirandom odd arity XOR

	8 Efficient Algorithms for Semirandom Planted CSPs
	8.1 Technical overview
	8.2 From planted CSPs to noisy XOR
	8.3 From k-XOR to spread bipartite k-XOR
	8.4 Identifying noisy constraints in spread bipartite k-XOR
	8.5 Notions of relative approximation

	9 Rounding Large Independent Sets on Expanders
	9.1 Technical overview
	9.2 Independent sets on spectral expanders
	9.3 Independent sets on almost 3-colorable spectral expanders
	9.4 Hardness of finding independent sets in k-colorable expanders
	9.5 Rounding independent sets via Karger-Motwani-Sudan

	III Explicit Constructions of Vertex Expanders
	10 Introduction
	10.1 History of vertex expanders
	10.2 Explicit lossless vertex expanders

	11 Tripartite Line Product
	11.1 Gadget graph
	11.2 Outline of the analysis

	12 Unique-Neighbor Expanders with Lossless Small-Set Expansion
	12.1 Lossless expansion in high-girth graphs
	12.2 Proof of Theorem 12.0.2

	13 Explicit Lossless Vertex Expanders
	13.1 Technical overview
	13.2 Construction of lossless vertex expanders
	13.3 Cubical complexes and coded incidence graphs
	13.4 Ramanujan cubical complexes
	13.5 Free group action and good quantum LDPC codes

	Bibliography

