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Abstract

Resource-bound analysis aims to infer symbolic bounds of worst-case resource
usage (e.g., running time andmemory) of programs. Applications of resource analy-
sis include job scheduling and prevention of side-channel attacks. Different resource-
analysis techniques have complementary strengths and weaknesses. (Automatic)
static resource analysis, which analyzes the source code of programs, is sound: if it
successfully infers a cost bound, it is guaranteed to be a valid bound. However, due
to the undecidability of resource analysis in general, every static analysis technique
is incomplete: there exists a program that the analysis technique cannot handle.
Meanwhile, data-driven analysis, which statistically analyzes cost measurements
obtained by running programs on many inputs, can infer a candidate cost bound
for any program. However, it does not guarantee soundness of inference results.

To overcome limitations of individual analysis techniques, this thesis develops
hybrid resource analysis, which integrates two complementary analysis techniques
via a user-adjustable interface. The user first specifies which analysis techniques
should analyze which code fragments and quantities. Hybrid analysis then per-
forms its constituent analysis techniques on their respective code fragments and
quantities. Finally, their inference results are combined into an overall cost bound.
Hybrid resource analysis retains the strengths of constituent analyses while miti-
gating their respective weaknesses.

The thesis introduces two hybrid-resource-analysis techniques: Hybrid AARA

and resource decomposition. They adopt distinct designs of an interface between
constituent analyses, posing a trade-off in the flexibility of hybrid analysis. Hybrid
AARA integrates static resource analysis—Automatic Amortized Resource Analy-
sis (AARA)—with data-driven resource analysis via a type-based interface. On the
other hand, resource decomposition integrates different pairs of static, data-driven,
and interactive resource analyses via a numeric-variable-based interface.

In addition to hybrid resource analysis, I discuss theoretical results of resource
analysis: (i) the undecidability of resource analysis; and (ii) the polynomial-time
completeness of Conventional AARA. I also describe newly developed Bayesian
data-driven resource analysis, which statistically infers cost bounds by Bayesian
inference. Finally, I present the optimization of probabilistic program-input gener-
ators by a genetic algorithm, showing that its output generator is more effective in
triggering high computational cost than randomly generated inputs.
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Chapter 1

Introduction

§1.1 introduces resource-bound analysis of programs and reviews existing resource-analysis
techniques studied in the literature. §1.2 then motivates hybrid resource analysis, which in-
tegrates two complementary resource-analysis techniques to retain their strengths while mit-
igating their respective weaknesses. Two approaches to hybrid resource analysis, which are
the primary contributions of the thesis are introduced: Hybrid AARA (§1.2.2) and resource
decomposition (§1.2.3). Lastly, §1.3 outlines the thesis.

1.1 Resource Analysis

Given a program 𝑃 , resource-bound analysis aims to infer a symbolic bound 𝑓 (𝑥) on the worst-
case resource usage (e.g., running time, memory, and energy) of the program 𝑃 as a function of
a program input 𝑥 . The symbolic bound 𝑓 (𝑥) must be a valid upper bound on the computational
cost of executing 𝑃 (𝑥) for any input 𝑥 . Hence, the bound 𝑓 (𝑥) inferred by resource analysis is
more precise than the result of asymptotic complexity analysis, which only concerns sufficiently
large inputs and disregards constant factors.

Resource analysis of programs has a number of applications. For example, in cloud comput-
ing [128, 196, 203], a cloud-service provider seeks to avoid over-provisioning resources, which
would waste resources and hence reduce profits, and under-provisioning resources, which
could violate service-level agreements. To this end, the cloud-service provider can perform
resource analysis to infer cost bounds of the clients’ programs. Other applications of resource
analysis include worst-case input generation to identify potential algorithmic complexity at-
tacks [42, 155, 160, 185, 219, 226], ensuring constant resource usage1to prevent side-channel
attacks [27, 46, 176], and detecting performance bugs for programmers [56, 76].

1Throughout this thesis, the goal of resource analysis is to infer upper bounds of resource usage. However, to
prevent resource-based side-channel attacks, it is enough to infer upper bounds. We must either (i) develop a new
resource-analysis technique to verify constant resource usage [176]; or (ii) infer a lower bound, in addition to an
upper bound, and show that the two bounds are equal. In the literature, resource analysis has a broader definition.
It is not just about inferring upper bounds—it may infer lower bounds or constant bounds.
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Existing resource analyses Three approaches to resource analysis exist in the literature:
(automatic) static analysis, data-driven analysis, and interactive analysis. Static resource analysis
examines the source code of a program and reasons about all possible behaviors of the program,
including its worst-case behaviors, to automatically infer a cost bound. Since the pioneering
work of Wegbreit [223], numerous static resource-analysis techniques have been developed:
type systems [113, 116, 122, 124, 136, 156], recurrence relations [9, 64, 97, 139, 141, 223], term
rewriting [22, 23, 123, 174], ranking functions [38, 53, 90, 206], and invariant generation [101,
102, 235].

Data-driven resource analysis first runs a program on many inputs of varying sizes and
records execution costs. It then analyzes the dataset of cost measurements to statistically infer
a cost bound. To collect cost measurements, most existing works [60, 74, 94, 127, 131, 195, 234]
use randomly generated program inputs or representative workloads, which do not necessarily
reveal worst-case behaviors of the program. Also, to statistically infer bounds from cost mea-
surements, these works perform optimization (e.g., polynomial regression) without quantifying
statistical uncertainty or incorporating the user’s domain knowledge into the statistical model.

In interactive resource analysis, the user first supplies a candidate cost bound of a program.
The cost bound is then either automatically verified by SMT solvers or interactively verified by
collaborating with proof assistants. Existing works include those based on separation logic [19,
52, 100, 168, 172], refinement types [62, 104, 144, 218, 222], and dependent types [67, 98, 180].

Complementary strengths andweaknesses Static and data-driven resource analyses have
their own strengths and weaknesses that complement each other. Static analysis is sound:
whenever it successfully returns an inference result, it is guaranteed to be a valid worst-case
cost bound of the program. However, static analysis is incomplete: for any technique, there
exists a program whose cost bound cannot be automatically inferred even if the bound is ex-
pressible in the language of symbolic bounds supported by the technique. The incompleteness
is due to the undecidability of resource analysis for a Turing-complete programming language.
Remark 1.1.1 (Symbolic cost bounds). In this thesis, a symbolic cost bound is a computable

function 𝑓 that takes in a program input 𝑥 (or its size) and returns a non-negative number 𝑓 (𝑥) as
an inferred worst-case cost bound for the input 𝑥 . Hence, when resource analysis cannot analyze

an input program, the resource analysis is not allowed to return a trivial sound bound 𝑓 (𝑥) ≔ ∞.
Instead, the resource analysis returns no inference results. «

In contrast to static analysis, data-driven analysis can infer a candidate cost bound for any
program. Another advantage is that data-driven analysis only needs a black-box access to the
source code, making the analysis applicable to third-party programs whose source code is not
publicly available. However, data-driven analysis does not guarantee soundness of inferred
cost bounds, because the analysis does not rigorously reason about worst-case behaviors of
the program. Also, a finite dataset of cost measurements used in data-driven analysis may not
contain worst-case inputs, making it challenging to infer the true worst-case costs.

Like static resource analysis, interactive resource analysis is sound since user-supplied can-
didate cost bounds are (automatically or interactively) verified. Furthermore, interactive analy-
sis has greater reasoning power than static analysis: it can analyze more complicated programs
and derive more complicated symbolic bounds. However, in exchange for its soundness and
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expressive power, interactive analysis sacrifices full automation, which is achieved by static
and data-driven analyses.

1.2 Hybrid Resource Analysis

1.2.1 Motivation

In this thesis, to overcome the limitations of individual analysis techniques, I propose and de-
velop hybrid resource analysis, which integrates two (or more) resource-analysis techniques
with complementary strengths and weaknesses. In hybrid resource analysis, the user first spec-
ifies which techniques should analyze which code fragments and quantities in the source code.
Next, hybrid analysis performs the two constituent techniques on their designated code frag-
ments and quantities. Finally, the two inference results are combined into an overall cost bound
of the entire program. By integrating two complementary analysis techniques, hybrid resource
analysis retains their strengths while mitigating their respective weaknesses.

Technical challenge The primary technical challenge of hybrid analysis is the design of
the interface between the two constituent analysis techniques. The interface specifies (i) rep-
resentations of cost bounds inferred by the two analyses and (ii) what information (if any) is
exchanged between the two analyses during their inference of cost bounds. Firstly, the cost
bounds inferred by the two analyses must have compatible representations such that they can
be composed together to yield an overall cost bound. Secondly, some resource-analysis tech-
niques impose numerical constraints on cost bounds to define a set of accepted bounds. Con-
sequently, to successfully compose such a cost bound with another cost bound inferred by a
different analysis, the latter bound must satisfy the numeric constraints imposed by the former
bound. Therefore, the two analyses must take into account each other’s numeric constraints
on bounds.

Application To illustrate the benefit of hybrid resource analysis in a real-world use case,
consider a cloud-service provider who wishes to estimate resource usage of a client’s program
to optimize resource allocation on the cloud. One reasonable choice of resource-analysis tech-
niques is static resource analysis as it offers soundness guarantees. The soundness guarantees
are beneficial to the service provider because they can rest assured that they will never acci-
dentally under-provision resources. Without the soundness guarantees, it is possible that the
client’s program consumes more resources than anticipated. In such a case, the provider may
need to rerun the program from scratchwithmore resources, violating service-level agreements
on timely execution of the program. However, any single static analysis technique cannot be
used to automatically infer cost bounds of all programs due to the incompleteness of static re-
source analysis. If a static analysis technique of the provider’s choice fails to infer a cost bound
for a program, the cloud-service provider is left with no clues to guide the resource allocation
and scheduling for the program.

Data-driven resource analysis, on the other hand, can always infer a candidate cost bound
for any program from its finitelymany cost measurements. Thesemeasurements are often read-
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ily available, especially when the same program is repeatedly executed onmany inputs (e.g., the
serverless cloud service AWS Lambda). However, data-driven analysis provides no soundness
guarantees of inferred cost bounds. Even if the statistical model adds an extra buffer on top of
maximum observed costs in the dataset, it may still fail to yield a sufficiently conservative cost
bound desired by the cloud-service provider.

Hybrid resource analysis lets the cloud-service provider integrate static and data-driven
analyses, thereby striking a desirable balance between soundness (achieved by static analysis)
and completeness (achieved by data-driven analysis). For example, the provider can apply static
analysis to all code fragments that are amenable to static analysis, and data-driven analysis to
the rest of the source code. The cost bounds inferred by static and data-driven analyses are then
combined into an overall bound. Oftentimes, even if static analysis fails to analyze the entire
program, it is still capable of analyzing a non-trivial amount of code fragments. So it makes
sense to apply static analysis wherever possible in the source code, retaining its soundness
guarantees as much as possible.

Meanwhile, data-driven analysis yields reasonable (but not necessarily sound) cost bounds
for those code fragments that cannot be handled by static analysis. Even though cost bounds
inferred by data-driven analysis are not guaranteed to be sound, they are sensible inference re-
sults derived using mathematically principled methods (e.g., Bayesian statistics) from observed
cost measurements and a statistical model incorporating the user’s domain knowledge. Thus,
data-driven resource analysis is no less useful than, for example, weather forecasting based
on observed data and a weather model, where forecasts never come with guarantees but are
nonetheless helpful in our lives.

As I empirically demonstrate in this thesis, hybrid resource analysis returns more accurate
cost bounds (i.e., the inferred cost bounds are closer to the ground-truth bound) than purely
data-driven analysis, thanks to the integration of static analysis. In summary, hybrid resource
analysis can infer cost bounds for program that purely static analysis cannot handle, while
obtaining more accurate bounds than purely data-driven analysis.

The thesis statement is therefore:

Thesis Statement Hybrid resource analysis, which integrates two resource-analysis tech-

niques with complementary strengths and weaknesses, can (i) analyze programs and infer symbolic

cost bounds beyond the reach of automatic resource analysis (i.e., static and data-driven analyses);

and (ii) add more automation to interactive resource analysis.

1.2.2 Hybrid AARA

This section introduces the first hybrid resource analysis: Hybrid AARA.

Static and data-driven resource analyses Two approaches to automatic resource analysis
are static analysis and data-driven resource analysis. Static analysis analyzes the source code of
a program to infer its symbolic cost bound. Data-driven analysis first runs a program on many
inputs to collect cost measurements and then statistically infers a symbolic cost bound from the
dataset of cost measurements. They both automatically infer cost bounds.

4



Static and data-driven resource analyses have complementary strengths and weaknesses.
Static analysis is sound but incomplete in general for a Turing-complete programming language
(§6.3.3). If static analysis cannot reason about a given program, the analysis returns no inference
results (Remark 1.1.1). In such a case, users must either rewrite their code or resort to interactive
resource-analysis techniques [19, 52, 150, 178, 180, 222]. Both of these workarounds require
expertise in programming languages and resource analysis, which is a fundamental barrier to
adopting static resource analysis for a wider spectrum of applications.

On the other hand, data-driven analysis can infer a candidate cost bound for any program
as long as a dataset of cost measurements is available. When viewed as a decision procedure,
data-driven analysis is complete: given a ground-truth cost bound, data-driven analysis can
correctly conclude that the bound is indeed valid (§6.3.3). In addition to the completeness,
another advantage of data-driven analysis is that it does not require access to the source code
of a program—only the inputs and outputs of the program need to be observable.

However, data-driven resource analysis comes with its own set of challenges. First, the
analysis is sensitive to the given dataset, and data collection can be difficult. For example,
inputs generated uniformly at random are unlikely to trigger worst-case behaviors in many
programs. Second, commonly used statistical techniques for inferring bounds from cost datasets
lack robustness (i.e., the inference result has a positive probability of being a sound worst-case
cost bound even if the dataset does not contain worst-case inputs) and accuracy (i.e., how close
the inference result is to a sound worst-case cost bound). Existing data-driven techniques [60,
74, 94, 127, 131, 195, 234] use optimization, and as I demonstrate with experiments (§7.6), bounds
derived in this way are prone to being unsound. Prior works also do not quantify any notion
of uncertainty in the inferred bounds.

Bayesian resource analysis The first contribution of this work is the design and implemen-
tation of Bayesian resource analyses for worst-case cost bounds (§7.3). They perform Bayesian
inference (§7.1), as opposed to optimization, to statistically infer cost bounds.

Bayesian resource analyses have two advantages over optimization-based ones, which are
widely used in the literature of data-driven resource analysis [60, 94, 127, 234]. Firstly, Bayesian
resource analyses are generally more customizable than optimization-based ones, as users can
express domain knowledge in the form of probabilistic models. Secondly, Bayesian resource
analyses return whole posterior distributions of inferred cost bounds, providing greater ro-
bustness and richer information about the uncertainty in inference results.

I present two new Bayesian resource analyses: BayesWC (§7.3.3) and BayesPC (§7.3.4). In
BayesWC, for each input size present in the runtime-cost data, we conduct Bayesian inference
to infer likely values of worst-case costs that are no less than the observed costs. By treating
these two costs separately, BayesWC accounts for the possibility that worst-case costs have
not been observed in the runtime data. The inferred worst-case costs from BayesWC produce
optimization problems that can be solved to obtain cost bounds.

BayesPC, on the other hand, conducts Bayesian inference to directly infer cost bounds,
bypassing optimization altogether. Probabilistic models in BayesPC model not only the worst-
case costs of individual input sizes but also coefficients of symbolic bounds. Hence, compared
to BayesWC, BayesPC allows users to construct richer and more holistic probabilistic models.
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In empirical evaluation (§7.6), cost bounds inferred by BayesWC and BayesPC are shown to
be more accurate than those inferred by an optimization-based data-driven baseline. However,
because they ignore the source code and exclusively rely on data-driven analysis, BayesWC
and BayesPC can still fail to infer sound cost bounds in several important benchmarks.

Hybrid AARA The main contribution of this work is the development of a new hybrid
resource-analysis—Hybrid AARA—that integrates static and data-driven resource analyses via
a user-adjustable interface (§7.4). Hybrid AARAmitigates the incompleteness of static resource
analysis and improves the robustness and accuracy of data-driven resource analysis. The user-
adjustable interface lets the user annotate the source code to specify which code fragments are
subject to which analysis techniques. To the best of my knowledge, Hybrid AARA is the first
to perform such hybrid resource analysis. A main research challenge is designing a principled
interface between static and data-driven resource analyses that enables a modular integration
to combine the respective strengths of both approaches.

For the static part of the hybrid resource analysis, I build on Automatic Amortized Resource
Analysis (AARA) [113, 114, 116, 122], a type-based state-of-the-art technique that automatically
infers polynomial cost bounds of functional programs. Resource-Aware ML (RaML) [117, 118]
is an implementation of AARA for analyzing OCaml programs. AARA supports advanced lan-
guage features such as recursive types [99], side effects [158], and higher-order functions [134].
Two distinguishing features of AARA are the ability to handle non-monotone resources (e.g.,
memory) and the ability to account for amortization effects. As a type-based technique, AARA is
naturally compositional, and automatic cost-bound inference is reduced to off-the-shelf linear-
program (LP) solving, even if the derived bounds are higher-degree polynomials.

For the data-driven part of Hybrid AARA, I present a new type system that combines the
two Bayesian data-driven resource-analysis methods (BayesPC and BayesWC) with Conven-
tional AARA. Their integration rests on two key technical innovations. For Hybrid AARA
with BayesWC, it combines the optimization problems produced by the data-driven Bayesian
inference with the linear constraints derived using Conventional AARA type inference to ob-
tain and solve a joint linear program (§7.4.1). For Hybrid AARA with BayesPC, it integrates
constraints from Conventional AARA into the probabilistic cost bound models of BayesPC
(§7.4.2). Bayesian inference within this model leverages recent innovations from the sampling
algorithm literature that allow Hamiltonian Monte Carlo (HMC) sampling to be restricted to a
convex polytope defined by AARA’s linear constraints [47, 49, 50, 171].

To establish the soundness of Hybrid AARA, I first prove that its inferred bounds are sound
with respect to runtime-cost data used in the analysis (Thm. 7.4.1). Additionally, I prove the
statistical soundness that the inferred bounds converge to a sound bound if the analysis is
repeated with a successively growing set of runtime-cost data that contains worst-case inputs
with nonzero probability (Thm. 7.4.2).

Application Hybrid AARA (and its special case of fully data-driven analysis) using Bayesian
inference returns a collection of cost bounds that approximate the posterior distribution. Even
if the proportion of sound cost bounds in the posterior distribution is less than 100%, Hybrid
AARA using Bayesian inference is useful for applications that can tolerate occasional underesti-
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mates of the worst-case cost. One such application is job scheduling in cloud computing, where
the cloud-service provider would like to have a reasonably accurate (but not necessarily sound
at all times) estimate of the resources required to run the job. The job’s cost use may respect the
tighter bounds in the posterior sample, but if it happens to run out of computational resources,
then the cloud-service provider can rerun the job with more resources. Other applications of
Hybrid AARA with Bayesian inference include auto-grading of students’ programming assign-
ments and annotating software libraries to help users of the library understand its performance
characteristics.

Implementation and evaluation My collaborators and I have implemented a prototype of
Hybrid AARA (§7.5) on top of RaML [117, 118]. In an empirical evaluation (§7.6), I compare fully
data-driven analyses and Hybrid AARA on a curated set of benchmarks that pose challenges to
static, data-driven, and hybrid analyses. Hybrid AARA outperforms fully data-driven analyses
both when considering soundness and tightness of the bounds.

Contributions In summary, the work on Hybrid AARA makes the following contributions.
1. I present novel Bayesian data-driven resource analyses (BayesWC in §7.3.3; BayesPC in

§7.3.4) to infer posterior probability distributions over program cost bounds.
2. I present Hybrid AARA: a novel type-inference system that combines BayesWC and

BayesPC with Conventional AARA (§7.4.1 and §7.4.2).
3. I formulate and prove two notions of soundness for Hybrid AARA (Thms. 7.4.1 and 7.4.2)
4. I implement a prototype ofHybridAARAby extending Resource-AwareML (RaML) [117].
5. I evaluate Hybrid AARA and fully data-driven resource analyses on a challenging bench-

mark set, showing examples of improvements in robustness and accuracy (§7.6).

1.2.3 Resource Decomposition

In this section, I first discuss limitations of Hybrid AARA. I then introduce the second hybrid
resource analysis: resource decomposition.

Limitations of Hybrid AARA The first hybrid resource analysis, Hybrid AARA (§7.4), has
two major limitations. The first limitation is that Hybrid AARA can only express and infer
polynomial cost bounds. As a result, Hybrid AARA cannot express, let alone infer, an asymp-
totically tight bound of the form 𝑐𝑛 log𝑛 (for some constant 𝑐 ∈ Q≥0) for MergeSort, because
the bound involves a non-polynomial construct (i.e., log). To infer non-polynomial cost bounds
within Hybrid AARA, the only way is to use fully data-driven analysis (which is a special case
of Hybrid AARA) as it can statistically infer symbolic bounds of arbitrary shapes as long as
the corresponding optimization/probabilistic-inference problems can be automatically solved.
Alternatively, the user needs to use interactive resource analysis [19, 52, 150, 178, 180, 222],
which typically offers more expressive logics and cost bounds at the expense of automation.

The second limitation of Hybrid AARA is that two constituent resource analyses combined
by Hybrid AARA must infer quantities of the same resource metric (e.g., running time and
memory). Consequently, given a recursive function 𝑃 (𝑥), Hybrid AARA is unable to infer the
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following two quantities using different analysis techniques and then take their product as an
overall cost bound: (i) a recursion-depth bound of the function 𝑃 (𝑥); and (ii) a cost bound of a
single recursive call of 𝑃 (𝑥). This is because the recursion depth and the cost of a recursive call
are distinct resource metrics: the former counts the number of recursive calls, while the latter
counts the computational cost of a code fragment.

The root cause of these two limitations is the interface between two constituent analyses
combined by Hybrid AARA. The interface is the resource-annotated type adopted from Con-
ventional AARA. Resource-annotated types augment standard functional types with polyno-
mial potential functions indicating how much potential (i.e., fuel) is available to pay for com-
putational cost. Resource-annotated types are used to encode cost bounds inferred by two con-
stituent analyses of Hybrid AARA, and an overall cost bound is obtained by plugging resource-
annotated types statistically inferred by one analysis into a resource-annotated typing tree from
the other analysis (Conventional AARA).

The first limitation of Hybrid AARA stems from the fact that resource-annotated types only
capture polynomial cost bounds. It is challenging to extend resource-annotated types to loga-
rithm because polynomials and logarithm do not compose well with each other (without sacri-
ficing automatic cost-bound inference). The second limitation of Hybrid AARA arises because
all resource-annotated types within an input program 𝑃 must have the same resource metric.
It is impossible to let resource-annotated types in the program 𝑃 have one resource metric and
other types have another resource metric. Such heterogeneous resource metrics would make it
impossible to compose resource-annotated types within the program 𝑃 .

Resource decomposition The first contribution of thiswork is a newhybrid-resource-analysis
technique—resource decomposition—that integrates different resource analyses in amore flexible
manner than Hybrid AARA. Resource decomposition overcomes the two limitations of Hybrid
AARA, albeit with a trade-off2. Thanks to the greater flexibility, resource decomposition can
coherently integrate more diverse resource analyses than Hybrid AARA: static analyses, data-
driven analyses, and manual/interactive analyses. By contrast, due to its interface design based
on resource-annotated types, Hybrid AARA is more or less specific to the integration of Con-
ventional AARA and data-driven analyses.

The key idea is to transform the original program into a new program that contains addi-
tional constructs that allow different resource analyses to communicate and collaborate with
one another. To conduct resource decomposition, a user (or an automatic tool) first identifies
custom quantities, called resource components, which will be bounded using some resource-
analysis method. Examples of resource components include the resource consumption of an
auxiliary function, the total cost of all calls to a function, and the maximal recursion depth of a
group of function calls.

Once the resource components of a program 𝑃 (𝑥) are identified, the resource-decomposition
framework automatically generate a resource-guarded program 𝑃rg(𝑥, r) that facilitates the ex-
change of information between different analyses. The newnumeric parameters r ≔ (𝑟1, . . . , 𝑟𝑚)
are resource guards, one for each resource component, that provide a control-flow skeleton that

2Although resource decomposition overcomes the two limitations of Hybrid AARA, it does not strictly improve
on Hybrid AARA. §8.8.3 describes resource composition’s own drawbacks that Hybrid AARA does not have.
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simplifies the resource analysis of 𝑃rg.
My collaborators and I prove the following soundness theorem of the framework (§8.4): if

𝑓 (𝑥, r) is a sound cost bound for the resource-guarded program 𝑃rg and if𝑔𝑖 (𝑥) is a sound bound
for the resource component 𝑟𝑖 (𝑖 = 1, . . . ,𝑚), then 𝑓 (𝑥, 𝑔1(𝑥), . . . , 𝑔𝑚 (𝑥)) is a sound cost bound
for the original program 𝑃 . The proof of this theorem is based on a novel denotational cost
semantics of a resource-sensitive programming language Rpcf (§8.1 and §8.2), which equips
call-by-value Pcf with resource effects, and a binary logical-relation argument.

Instantiations The second contribution of this work is the design and implementation of
three instantiations of resource decomposition that demonstrate the efficacy of the technique.
They respectively integrate the following pairs of resource analyses:

1. Automatic Amortized Resource Analysis (AARA) [114, 122] and novel Bayesian data-
driven resource analysis (§8.5);

2. AARA and an existing interactive resource analysis based on interactive theorem proving
(Iris with time credits [52, 168]) (§8.6);

3. Bayesian data-driven resource analysis and another interactive resource analysis based
on SMT solving (TiML [222]) (§8.7).

By integrating static and data-driven analyses, the first instantiation of resource decomposi-
tion is able to derive tight bounds for challenging programs that existing automatic resource
analyses cannot infer. A representative example is the bound 𝑛 log𝑛 +𝑚 log𝑛 for a program
that first constructs a balanced binary search tree from a list of 𝑛 elements and then performs
𝑚 lookups on this tree. A key innovation is to conduct Bayesian inference on dynamically col-
lected runtime data to derive bounds on a function’s recursion depth, which is a challenging
task for static analyses. Bayesian inference relies on a domain-specific probabilistic model that
infers whether the worst-case recursion depth scales linearly (𝑛) or logarithmically (log𝑛) in
the size 𝑛 of a program input. This probabilistic model infers correct recursion-depth bounds
of functions such as MergeSort and QuickSort, which have similar average-case but different
worst-case behaviors.

Evaluation To empirically evaluate the effectiveness of the first instantiation, my collabora-
tors and I have curated a set of 13 challenging benchmark programs, for most of which AARA
and/or Hybrid AARA fail to derive asymptotically tight bounds, or any bounds at all. The
benchmarks include sorting algorithms, repeated operations on balanced and unbalanced bi-
nary search trees, and graph algorithms. Using randomly generated inputs for the data-driven
analysis, this instantiation infers sound and asymptotically tight cost bounds for most of the
benchmarks.

To showcase the efficacy of the second instantiation, I use it to analyze Kruskal’s algorithm.
By combining a manually verified bound for a union-find data structure [52] with an automatic
analysis (AARA), Hybrid AARA successfully infers a sound cost bound involving the inverse
Ackermann function, which would be too difficult to derive fully automatically. Likewise, I
demonstrate the third instantiation on quicksort where the comparison function has a loga-
rithmic cost in the maximum input number. The integration of SMT-based resource analysis
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with Bayesian analysis enables us to infer a symbolic bound involving logarithm, which SMT
solvers do not handle well.

Contributions To summarize, thework on resource decompositionmakes the following con-
tributions:

1. I propose resource decomposition as a general framework that enables the integration of
static, data-driven, automatic, and manual resource-analysis methods (§8.3).

2. I prove that resource decomposition delivers sound resource bounds if all integrated anal-
yses are sound, using a denotational semantics of a resource-sensitive programming lan-
guage Rpcf and a logical-relation argument (Thm. 8.4.1).

3. I develop three concrete instantiations of resource decomposition that each cover distinct
combinations of static, data-driven, and manual resource analyses (§8.5–8.7).

4. I empirically demonstrate the efficacy of resource decomposition on a challenging set of
benchmark programs that are beyond the reach of existing resource analyses (§8.5–8.7).

1.3 Outline

Structure of the thesis This thesis is structured as follows.
• §2 provides an overview of the primary contribution of this thesis, namely two approaches
to hybrid resource analysis: Hybrid AARA and resource decomposition.

• §3 introduces a cost-aware functional programming language, which is equipped with
annotations tick 𝑞 (𝑞 ∈ Q) to indicate resource usage. Conventional AARA [112, 113, 116]
analyzes programs written in this programming language.

• §4 introduces Conventional AARA, specifically univariate polynomial AARA [113]. It is a
type-based resource-analysis technique that automatically infers univariate polynomial
cost bounds of functional programs. Conventional AARA serves as a basis of Hybrid
AARA (§7).

• §5 discusses existing works related to this thesis.
• §6 formulates resource analysis as decision problems (§6.2) and proves their undecid-
ability (§6.3). I present both (i) existing undecidability results by Gajser [87, 88], where
input programs are partial (i.e., possibly non-terminating); and (ii) new results obtained
by adapting Gajser [87, 88] to a setting where input programs are total (i.e., terminat-
ing on all inputs). Additionally, I prove polynomial-time completeness of Conventional
AARA (§6.4).

• §7 describes Bayesian data-driven resource analysis and Hybrid AARA. Hybrid AARA
uses a type-based interface between constituent analysis techniques, and the design of
this interface is inspired by Conventional AARA.

• §8 describes resource decomposition and its three concrete instantiations that each inte-
grate different pairs of static, data-driven, and interactive resource analyses.

• §9 presents optimization of program-input generators to improve the inference accuracy
of data-driven resource analysis.
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• §10 summarizes hybrid resource analysis and discusses future directions.

Publications This thesis is based on the following three publications:
1. Long Pham and Jan Hoffmann. Typable Fragments of Polynomial Automatic Amortized

Resource Analysis [186]. Published at CSL 2021.
2. Long Pham, Feras A. Saad, and Jan Hoffmann. Robust Resource Bounds with Static Anal-

ysis and Bayesian Inference [188]. Published at PLDI 2024.
3. Long Pham, Yue Niu, Nathan Glover, Feras A. Saad, and Jan Hoffmann. Integrating Re-

source Analyses via Resource Decomposition [189]. Under submission.
The first paper proves polynomial-time completeness of AARA. The second paper presents

Bayesian data-driven analysis and the first hybrid resource analysis, Hybrid AARA. The third
paper (under submission) presents the second hybrid resource analysis, resource decomposi-
tion, and its three instantiations. Yue Niu, Nathan Glover, and I collaborated on the theoretical
foundation of resource decomposition in the third paper.
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Chapter 2

Overview

This chapter provides an overview of two approaches to hybrid resource analysis: Hybrid
AARA (§2.1) and resource decomposition (§2.2). The two approaches differ in how the resource
analysis of a whole program is divided between two constituent resource-analysis techniques.
In Hybrid AARA, the resource analysis is divided at the level of code fragments: the user spec-
ifies which analysis technique analyzes the cost of which code fragment. Meanwhile, resource
decomposition can divide the resource analysis of a program into (i) the analysis of the recur-
sion depth; and (ii) the analysis of the cost of a single recursive call.

2.1 Hybrid AARA

In this section, I review static and data-driven resource analyses, identify their shortcomings,
and outline how the first hybrid resource analysis, Hybrid AARA, works. I use the implemen-
tation of QuickSort in OCaml (Listing 2.1) as a running example. The goal is to automatically
derive a symbolic worst-case cost bound for the function quicksort. Let the resource metric
of interest be the time cost of executing the comparisons complex_compare hd pivot in the
function partition. I consider different versions of the function complex_compare. For exam-
ple, if the cost of evaluating complex_compare hd pivot is bounded by 1, then the worst-case
cost of quicksort xs is 𝑛(𝑛 − 1)/2, where 𝑛 is the length of the list xs.

Static resource analysis A predominant method for automatically deriving symbolic worst-
case bounds is static resource analysis. Hybrid AARA builds on Automatic Amortized Resource
Analysis (AARA) [112, 116, 117, 118] (§4), a compositional type-based static analysis technique.

Resource-Aware ML (RaML [117, 118]) is an implementation of AARA that derives polyno-
mial bounds for a subset of OCaml. The compositionality of AARA ensures that RaML can
derive a bound for the function quicksort if it can derive a bound for complex_compare.
Assuming each comparison has cost 1, RaML correctly infers the tight bound 𝑛(𝑛 − 1)/2 for
quicksort in less than 0.1 s. Similarly, assume that the argument of quicksort is a list of
lists and that complex_compare is a lexicographical comparison whose worst-case is 𝑘 , where
𝑘 is the length of the first argument list. Then RaML infers the tight bound 𝑚𝑛(𝑛 − 1)/2 for
quicksort in less than 0.2 s, where𝑚 is the maximum length of the inner lists. This analysis

13



1 let rec partition pivot xs =
2 match xs with
3 | [] → ([], [])
4 | hd :: tl →
5 let lower, upper = partition pivot tl in
6 if complex_compare hd pivot then
7 (hd :: lower, upper)
8 else (lower, hd :: upper)

9 let rec quicksort xs =
10 match xs with
11 | [] → []
12 | hd :: tl →
13 let lower, upper = Raml.stat (partition hd tl) in
14 let lower_sorted = quicksort lower in
15 let upper_sorted = quicksort upper in
16 append lower_sorted (hd :: upper_sorted)

Lst. 2.1: QuickSort in OCaml. The function complex_compare in line 6 is intractable to static
resource analysis. The annotation Raml.stat in line 13 indicates data-driven resource analysis
on partition.

is non-trivial because of the nonstructural recursion: to derive a cost bound, it is not enough
to separately analyze the cost of the partition function and the number of recursive steps. We
must also analyze how the function partition changes input sizes, relaying the size-change
information to the next recursive call of quicksort.

Because resource analysis is undecidable (§6.3), however, even the most sophisticated static
resource-analysis techniques are incomplete: there remain programs that cannot be analyzed
automatically. For instance, AARA fails if the control flow depends on mutable data or complex
loop conditions. Examples of operations that depend on mutable data include garbage-collector
operations and system calls (e.g., accessing files and networks), whose running time depends
on the system state. Also, programs such as the function round [112, §5.4.3] and the linear-
time median-of-medians-based selection algorithm [36] cannot be analyzed by AARA. This is
because AARA would need to infer infinitely many typing judgments for the function round
and reason about mathematical properties of medians for the median-of-medians selection al-
gorithm. Such limitations are not specific to AARA: every static resource-analysis technique
has unsupported language features or iteration patterns that make the analysis feel brittle for
non-expert users.

Data-driven resource analysis One way to overcome the incompleteness of static analysis
is data-driven analysis. Existing data-driven techniques first collect execution costs for different
inputs and then solve an optimization problem to fit a symbolic cost bound on the data [60,
74, 94, 127, 195, 234]. Although these optimization-based approaches are fast, they can infer
unsound cost bounds and do not quantify the uncertainty over the unknown cost bounds.

To showcase such an approach, suppose that quicksort uses the aforementioned compara-
tor compare_dist and that the cost varies between 0.5 and 1.0 for different inputs. Fig. 2.1a
shows the inferred quadratic cost bound (blue line) of data-driven optimization-based resource
analysis adapted from [60, 94, 234], given a randomly generated dataset of measured costs of
quicksort (black dots). Any worst-case cost bound must lie above all the measured costs and
minimize the total 𝐿1 distance between the curve and runtime data. This optimization problem
can be framed as a linear program (Opt; §7.3.2). Optimization fails to infer the correct worst-
case cost bound (red line), because randomly generated data sets rarely contain worst-case
inputs of the function quicksort.

To mitigate the shortcomings of such greedy optimizations, I introduce Bayesian data-
driven resource analyses (BayesWC and BayesPC; §7.3.3 and §7.3.4). Bayesian resource analy-
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Figure 2.1: Hybrid resource analysis on QuickSort infers more accurate bounds than purely
data-driven analyses.

sis enables a user to express their domain knowledge in the form of a probabilistic model that
specifies how observed runtime samples are probabilistically generated. It returns an entire
probability distribution over the corresponding cost bounds given observed samples. In par-
ticular, we condition the probabilistic model on observed cost data and compute the posterior
distribution of cost bounds by running sampling-based probabilistic inference algorithms. For
quicksort, Fig. 2.1b shows the posterior distribution over cost bounds from Bayesian resource
analysis. The blue line indicates the median cost bound and the light-blue shade is the 10–
90th percentile range. Most of the cost bounds in the posterior distribution are closer to the
true worst-case bound (red line) as compared to optimization-based approach in Fig. 2.1a. In
fact, 28/1000 bounds drawn from the posterior distribution are sound. Although this fraction is
small, it is already a substantial improvement over optimization.

Hybrid AARA A central contribution of this work is the design, implementation, and evalu-
ation of Hybrid AARA (§7.4), which integrates two novel Bayesian resource-analysis methods
(BayesWC and BayesPC) and a simple optimization-based data-driven baseline (Opt) into Con-
ventional AARA. Hybrid AARA is modular: a user freely specifies which code fragments are
analyzed by which of data-driven and static analyses. Therefore, Hybrid AARA covers a spec-
trum ranging from fully data-driven to fully static analyses.

Consider again the example of quicksort where the comparator is compare_dist, which
is intractable for static analysis and has a cost varying between 0.5 and 1.0. If we perform data-
driven analysis on the comparator and static analysis on the rest of the code, Hybrid BayesWC
amounts to (i) inferring the worst-case constant cost of the comparator by data-driven analysis;
and (ii) incorporating the inferred cost into Conventional AARA. All 1000/1000 cost bounds
drawn from the posterior distribution are sound (the analysis time in a prototype of Hybrid
AARA is 66.2 s).

In the previous example, the interface between the data-driven analysis and the static anal-
ysis is particularly simple since the cost of evaluating quicksort does not depend on the result
of the comparison function. Many examples fall into this category, for which Hybrid AARA
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enables the analysis of code that is intractable for purely static methods while clearly outper-
forming purely data-driven methods. However, an empirical evaluation of Hybrid AARA (§7.6)
focuses on a different category of benchmarks for which the integration of data-driven methods
is technically challenging and the benefits of a hybrid analysis are less clear.

Challenges for Hybrid AARA Let us revisit the quicksort example, using the comparator
compare_dist. But this time, let us assume that the user marks the call to partition for
data-driven analysis instead of the call to complex_compare. Data-driven analysis can derive a
linear cost bound for the function partition, but how do we use this information to derive a
bound for quicksort using AARA? We would need additional information on the size of the
result of partition. However, it is not clear what exact information we need. For example, it is
insufficient for analyzing quicksort to statistically bound the size of each component in the
result of partition.

Amain technical innovation of Hybrid AARA is the design of a principled interface between
data-driven and static analyses that can handle such challenging cases. BayesWC and Opt are
integrated into AARA by developing a type-inference system that combines the underlying LP
problems. Integrating BayesPC into AARA poses a significant challenge because the former
relies on sampling algorithms to approximate posterior distributions of resource coefficients,
instead of LP problems as in AARA. To overcome this challenge, my collaborators and I leverage
an innovative sampling algorithm that allows Hamiltonian Monte Carlo (HMC) sampling [40]
to be restricted to a convex polytope [50, 171].

Fig. 2.1c shows the posterior distribution over bounds fromHybrid BayesWC on quicksort
with the data-driven analysis of partition. The 10–90th percentile range (blue shade) is situ-
ated above the true worst-case bound (red line) for all input sizes between 0 and 200. In fact,
471/1000 samples drawn from the posterior distribution in Hybrid BayesWC are theoretically
sound bounds for all input sizes, in contrast to the 28/1000 bounds for purely data-driven anal-
ysis with BayesWC (Fig. 2.1b) and 0/1000 bounds for data-driven resource analysis with Opt
(Fig. 2.1a).

My collaborators and I have empirically evaluated Hybrid AARA on challenging and re-
alistic benchmarks where data-driven analysis is applied to non-trivial code that stresses the
interface between data-driven and static analysis (§7.6). The benchmarks demonstrate that
(i) Bayesian resource analysis returns more accurate cost bounds than optimization-based anal-
ysis; and (ii) Hybrid AARA returns more accurate cost bounds than fully data-driven analysis.
Notable among the benchmarks is the linear-time median-of-medians selection algorithm [36].
Conventional AARA cannot statically analyze this program, as it is challenging to reason about
how the median of medians influences the partition function. Fully data-driven analysis does
not infer a sound cost bound, either, as the worst-case behavior of the partition function rarely
occurs in all recursive calls. By integrating static and data-driven analyses, Hybrid AARA suc-
cessfully infers a sound worst-case cost bound that neither fully data-driven nor fully static
analyses can.
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1 let rec merge_sort xs =
2 let _ = Raml.tick 1.0 in
3 match xs with | [] →[]
4 | [ x ] → [ x ]
5 | _ → let lo, hi = split xs in
6 let lo_sorted = merge_sort lo in
7 let hi_sorted = merge_sort hi in
8 merge lo_sorted hi_sorted

(a) MergeSort.

1 let rec bubble_sort xs =
2 let _ = Raml.tick 1.0 in
3 let is_xs_sorted, xs_swapped =
4 traverse_and_swap xs in
5 if is_xs_sorted then
6 xs_swapped
7 else
8 bubble_sort xs_swapped

(b) BubbleSort.

Lst. 2.2: MergeSort and BubbleSort in OCaml. (a) The call Raml.tick 1.0 indicates the cost of
1.0 for every function call. (b) The function traverse_and_swap (line 4) traverses the input xs
and returns two outputs: (i) whether xs is sorted; and (ii) the result of swapping all out-of-order
pairs of consecutive elements in xs.

2.2 Resource Decomposition

In this section, I illustrate limitations of (Conventional and Hybrid) AARA and outline how
the second hybrid resource analysis, resource decomposition, overcomes the limitations. I use
MergeSort (Listing 2.2a) and BubbleSort (Listing 2.2b) as running examples.

The resource-decomposition technique applies to arbitrary resource metrics (e.g., time, en-
ergy, andmemory) that can be specified by the user. I also allow non-monotone resourcemetrics
such as stack or heap usage, where resources can not only be consumed but also be freed up. For
such metrics, we are interested in bounds on the high-water mark of the resource use rather
than the net cost. Throughout this section, the resource metric of interest is the number of
function calls performed during evaluation, including all recursive calls and helper functions,
as an illustrative metric. Under this resource metric, MergeSort and BubbleSort respectively
have cost bounds

𝑓 (𝑥) = 1 + 3.5|𝑥 | + 3.5|𝑥 | ⌈log2( |𝑥 |)⌉ 𝑓 (𝑥) = 1 + 2|𝑥 | + |𝑥 |2, (2.2.1)

where |𝑥 | is the length of an input list 𝑥 .

Limitations of Conventional and Hybrid AARA MergeSort and BubbleSort are both
challenging for automatic static resource analysis. To infer a resource bound for MergeSort,
static analysis must infer that the input list is always split in half. This property is then used to
conclude that (i) the recursion depth scales logarithmically; and (ii) the cost across all recursive
calls at the same depth scales linearly. For BubbleSort, the analysis must infer that the num-
ber of out-of-order pairs of consecutive list elements decreases in each recursive call, which
requires a semantic understanding of the code. In Listing 2.2b, BubbleSort repeatedly traverses
an input list and swaps out-of-order pairs of elements, until the input list is sorted. Thus, the
termination condition of BubbleSort in Listing 2.2b is semantic: the program only terminates
when a certain condition holds in the input list.

Automatic Amortized Resource Analysis (AARA) [112, 116] fails to infer desirable cost
bounds for MergeSort and BubbleSort. RaML [117, 118], which implements AARA, automati-
cally infers a loose bound

𝑓 (𝑥) = 1 − 2.5|𝑥 | + 3.5|𝑥 |2 (2.2.2)
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1 let rec merge_sort xs =
2 let _ = Raml.mark0 1.0 in
3 let _ = Raml.tick 1.0 in
4 let result =
5 match xs with | [] →[]
6 | [ x ] → [ x ]
7 | _ → let lo, hi = split xs in
8 let lo_sorted = merge_sort lo in
9 let hi_sorted = merge_sort hi in
10 merge lo_sorted hi_sorted
11 in let _ = Raml.mark0 (-1.0)
12 in result

(a) Resource-decomposed MergeSort.

1 let rec merge_sort xs r =
2 let _ = Raml.tick 1.0 in
3 let r1 = decrement_r r in
4 let result, r_final =
5 match xs with | [] →([], r1)
6 | [ x ] → ([ x ], r1)
7 | _ →
8 let (lo, hi) = split xs in
9 let lo_sorted, r2 = merge_sort lo r1 in
10 let hi_sorted, r3 = merge_sort hi r2 in
11 (merge lo_sorted hi_sorted, r3)
12 in (result, increment_r r_final)

(b) Resource-guarded MergeSort.

Lst. 2.3: MergeSort with a resource component for tracking the recursion depth.

for MergeSort, instead of an asymptotically tight 𝑂 (𝑛 log𝑛) bound. The reason is that AARA
can only express polynomial bounds. AARA fails to infer any bounds for BubbleSort altogether
because the size of the input list does not decrease at each recursive step. What decreases in
BubbleSort is the number of out-of-order pairs of list elements. However, AARA cannot spot
this semantic property of BubbleSort to conclude its termination, much less infer its cost bound.

Furthermore, Hybrid AARA (§4) faces the same challenge as Conventional AARA. Hybrid
AARA fails to infer an asymptotically tight𝑂 (𝑛 log𝑛) bound forMergeSort and an𝑂 (𝑛2) bound
for BubbleSort, unless they are analyzed by fully data-driven resource analysis (which is a
special case of Hybrid AARA). Hybrid AARA is designed in such a way that

1. Hybrid AARA inherits the set of expressible symbolic bounds from Conventional AARA;
2. A recursion pattern (i.e., the recursion depth or the number of recursive calls) must be

analyzed by Conventional AARA, as opposed to data-driven analysis, if a user chooses to
use both static and data-driven analyses.

Since Conventional AARA cannot express an asymptotically tight𝑂 (𝑛 log𝑛) bound forMerge-
Sort and cannot reason about the recursion pattern of BubbleSort, neither can Hybrid AARA,
unless we resort to fully data-driven analysis.

MergeSort and BubbleSort have been selected to illustrate the limitations of (Conventional
and Hybrid) AARA, but these limitations (or similar ones) are common in automatic resource
analyses to enable compositionality and scalability. Automatic resource analysis is an undecid-
able problem (§6.3), so all practical analysis techniques must make trade-offs between efficiency
and expressiveness. This results in syntactic limitations for source programs and in restrictions
on the mathematical constructs (e.g., logarithm) that can appear in symbolic bounds.

Key insight The main contribution of this work is a hybrid-resource-analysis technique that
overcomes the limitations of Conventional and Hybrid AARA. The technique soundly and sys-
tematically combines automatic, data-driven, and interactive analyses via a different interface
design between constituent analyses.

To illustrate a key insight of the technique, consider a modified version of MergeSort in
Listing 2.3b. This version is obtained by augmenting the original program (Listing 2.2a) with a
nonnegative numeric variable r, called a resource guard. This variable is intended to track the
recursion depth of MergeSort. At the start of the function body, the variable r is decremented
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let rec
prims x =
<body>

Original Program (𝑃 )
let rec
prims x r1 r2 r3 =
<body’’>

Resource-Guarded Program (𝑃rg)

Runtime
Dataset

let rec
prims x =
<body’>

Resource-Decomposed
Program (𝑃rd)

7 + 2|𝑥 |·𝑟1 + 4|𝑥 |·𝑟2·𝑟3 + 3|𝑥 |·𝑟3 + 4|𝑥 |
Inferred Cost Bound

Automated

Transformation

Resource

Decomposition

Standard

AARA

Data Collection

Inferred Symbolic Expression
𝑟1 = 𝑔1 (𝑥) = 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3 |𝑥 |)

𝑐0 𝑐1 𝑐2 𝑐3
Posterior Distributions over Parameters

Bayesian Inference on 𝑟1 = 𝑔1 (𝑥)
𝑟2

𝑟3

Figure 2.2: Example workflow of resource decomposition, instantiated with AARA and
Bayesian data-driven analysis. First, a program 𝑃 is annotated to specify quantities to be ana-
lyzed by Bayesian inference. The resulting resource-decomposed program 𝑃rd is transformed
(automatically) to a resource-guarded program 𝑃rg. It extends 𝑃 with numeric program vari-
ables (r1, r2, and r3), called resource guards, to track the quantities specified in 𝑃rd. AARA
infers a cost bound of 𝑃rg, while Bayesian inference infers symbolic bounds of resource compo-
nents. An overall bound of the original program 𝑃 is obtained by inserting resource-component
bounds into AARA’s inferred bound.

(line 3). If an attempt to decrement r is made when its value is zero, then an exception is raised.
The decremented resource guard r is then passed on to the recursive calls (lines 9 and 10).
Finally, its output value is incremented (line 12) before it is returned as the second output of
the current function call.

For this modified MergeSort, AARA infers a symbolic resource bound

𝑓 (𝑥, 𝑟 ) = 1 + 3.5𝑟 · |𝑥 |, (2.2.3)

where 𝑟 is the resource guard (a nonnegative number) and |𝑥 | is the size of the input list xs.
The modified program is related to the original version as follows: as long as the resource guard
r is initialized to at least the recursion depth of MergeSort (i.e., 1 + ⌈log2( |𝑥 |)⌉), the modified
code successfully terminates (i.e., it does not raise an exception), returns the same output as the
original code, and incurs the same cost.

Resource decomposition My collaborators and I have developed resource decomposition as
a way to systematically exploit the insight illustrated with the modified code of MergeSort. To
derive a bound for the original function, we first derive the bound 𝑓 (𝑥, 𝑟 ) = 1 + 3.5𝑟 · |𝑥 | for
the modified function. Next, we use a different analysis to infer a cost bound (say 𝑔(𝑥)) for
𝑟 in terms of the original input 𝑥 , and substitute the result in 𝑓 to obtain the overall bound
𝑓 (𝑥) = 1 + 3.5𝑔(𝑥) · |𝑥 |, which is proved to be sound for the original program.

Workflow Fig. 2.2 shows the overall workflow of resource decomposition. Given a program
𝑃 (𝑥), the user or an automatic tool first decides on a set of𝑚 ≥ 1 resource components, i.e., the
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quantities that the resource guards should track. The program 𝑃 (𝑥) is then (manually or auto-
matically) instrumented with code annotationsmarkℓ 𝑞, where ℓ is a label that uniquely identi-
fies a resource component and𝑞 ∈ Q1denotes howmuch to increment the resource component’s
counter, such that their high-water marks (i.e., the highest values reached so far) are equal to
the user-specified resource components. Let 𝑃rd(𝑥) denote the resulting resource-decomposed

program.
Next, the decomposed program 𝑃rd(𝑥) is automatically translated to a resource-guarded pro-

gram 𝑃rg(𝑥, r) by augmenting the former with resource guards r = (𝑟1, . . . , 𝑟𝑚) as extra in-
put variables, one for each user-specified resource component. In contrast to the annotations
markℓ 𝑞 for resource components, the resource guards r count down, i.e., they are decremented
whenever the corresponding resource components are incremented. If the resource-guarded
program 𝑃rg attempts to decrement a resource guard that is zero, the program raises an ex-
ception. We then conduct resource analyses (possibly using different techniques) on (i) the
resource-guarded program 𝑃rg to derive a symbolic cost bound 𝑓 (𝑥, r) for the cost of program
𝑃 ; (ii) the resource components of 𝑃rd to derive their symbolic bounds 𝑟𝑖 = 𝑔𝑖 (𝑥) (𝑖 = 1, . . . ,𝑚).
Finally, we substitute the resource components’ symbolic bounds 𝑔𝑖 (𝑥) for the resource guards
𝑟𝑖 (𝑖 = 1, . . . ,𝑚) in the bound 𝑓 (𝑥, r), obtaining a cost bound 𝑓 (𝑥,𝑔1(𝑥), . . . , 𝑔𝑚 (𝑥)) for the orig-
inal program 𝑃 .

The automatic translation from resource-decomposed programs to the corresponding resource-
guarded ones is formalized in §8.3. The soundness of this translation is formulated and proved
in §8.4: if 𝑓 (𝑥, r) is a sound bound for the resource-guarded program 𝑃rg(𝑥, r) and each bound
𝑔𝑖 (𝑥) is a sound bound for the 𝑖th resource component 𝑟𝑖 (𝑖 = 1, . . . ,𝑚), then their composition
𝑓 (𝑥, 𝑔1(𝑥), . . . , 𝑔𝑚 (𝑥)) is a sound overall cost bound of the original program 𝑃 (𝑥).

Instantiation I In §8.5, I instantiate the resource-decomposition framework with AARA and
a data-driven resource analysis that focuses specifically on the recursion depths of functions.
The rationale of this design is that, on the one hand, AARA struggles with non-trivial recur-
sion patterns such as the logarithmic recursion depth of MergeSort and non-size-decreasing
recursion of BubbleSort. On the other hand, recursion depths are particularly well-suited for a
data-driven analysis since it is common for the recursion depth to grow linearly or logarithmi-
cally in the size of a single parameter of a function, as opposed to, say, a complex multivariate
polynomial. This reduces the search space and enables us to design an effective analysis that can
infer a logarithmic recursion-depth bound for MergeSort and a linear recursion-depth bound
for BubbleSort.

I illustrate the workflow of resource decomposition by describing how this instantiation
infers tight bounds for MergeSort and BubbleSort. For MergeSort, we begin by introducing a
resource component for the recursion depth. To this end, we insert annotations Raml.mark0 in
the source code of MergeSort (Listing 2.2a), resulting in the resource-decomposed code (List-
ing 2.3a). Here, the suffix 0 in Raml.mark0 indicates which resource component we manipulate

1Here, the number 𝑞 inmarkℓ 𝑞 is a rational number. However, in the formalization of resource decomposition
in §8, the number 𝑞 is required to be an integer. This is because, in a functional programming language already
equipped with lists, integers can easily be encoded as lists (i.e., unary encoding). On the other hand, to encode
rational numbers, I would need to introduce a new type to the programming language. Nonetheless, conceptually,
it is not difficult to extend the type of 𝑞 from integers to rational numbers.
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(a) Posterior resource bounds for MergeSort.

0 500 1000
Input Size

0

500

1000

1500

2000

Re
cu

rs
io

n
D

ep
th

Recursion Depth

0 500 1000
Input Size

0.0

0.5

1.0

1.5

2.0

To
ta

lC
os

t

×106 Total Cost

(b) Posterior resource bounds for BubbleSort.

Figure 2.3: Inferred bounds for MergeSort and BubbleSort. (a) In the left and right plots, the
ground truth is 1+ ⌈log2( |𝑥 |)⌉ and 1+ 3.5|𝑥 | + 3.5|𝑥 | ⌈log2( |𝑥 |)⌉, respectively. (b) In the left and
right plots, the ground truth is |𝑥 | and 1 + 2|𝑥 | + |𝑥 |2, respectively.

(here we only have one). At the start of the function body (line 2), the annotation Raml.mark0
1.0 increments a recursion-depth counter by one, and at the end of the function body (line 11),
the annotation Raml.mark0 (-1.0) decrements the counter by one. Thus, if the counter starts
with zero, its high-water mark is equal to the recursion depth of the function merge_sort.

We then perform a novel Bayesian data-driven resource analysis to infer a symbolic bound
𝑔1 of the resource component (i.e., recursion depth). We first construct a dataset D of the
resource component’s runtime measurements by running the resource-decomposedMergeSort
(Listing 2.3a) on various inputs. We then statistically infer a recursion-depth bound from the
dataset D by Bayesian inference. A custom probabilistic model, which is another contribution
of this work, performs Bayesian model averaging [110] among two models of recursion depths:
(i) the linear bound 𝑐0 + 𝑐1𝑛; and (ii) the logarithmic bound 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3𝑛), where
𝑐0, . . . , 𝑐3 ∈ R≥0 are coefficients to be inferred. The left plot of Fig. 2.3a displays the posterior
distribution approximated by 12000 drawn recursion-depth bounds. Here, the red dashed line
is the ground-truth bound 1 + ⌈log2( |𝑥 |)⌉, the blue line is the median posterior cost bound,
and the light-blue shade shows the 5–95th percentile range of the posterior samples. All 12,000
posterior samples have the correct asymptotic complexity, that is, logarithmic bounds rather
than linear ones.

To infer an overall cost bound of MergeSort, the resource-decomposed code (Listing 2.3a) is
automatically translated to the corresponding resource-guarded code (Listing 2.3b). Specifically,
the function merge_sort in Listing 2.3a is augmented with a resource guard r. As described,
AARA infers a quadratic bound 𝑓 (𝑥, 𝑟 ) = 1 + 3.5𝑟 · |𝑥 |. Finally, we substitute the inferred
logarithmic recursion-depth bound for the resource guard r, deriving an asymptotically tight
𝑂 (𝑛 log𝑛) bound. The right plot of Fig. 2.3b displays the posterior distribution of overall cost
bounds forMergeSort, which are obtained by substituting the posterior recursion-depth bounds
into the symbolic bound inferred by AARA.

All 12000/12000 posterior cost bounds have the form 𝑐 |𝑥 | log|𝑥 |, instead of the asymptoti-
cally looser bound 𝑐 |𝑥 |2 that AARA infers. Furthermore, 7136/12000 (59.5%) posterior samples
for the recursion depth are soundwith respect to the ground-truth bound𝑔1(𝑥) = 1+⌈log2( |𝑥 |)⌉
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for the resource-guard r. This percentage immediately translates to the soundness proportion
of 59.5% for the overall cost bound because, by the soundness guarantee of resource decompo-
sition, the symbolic bound 𝑓 (𝑥, 𝑔1(𝑥)) is sound for the overall cost whenever 𝑔1 is sound.

For BubbleSort, I perform a similar analysis by having a resource guard track the recursion
depth of bubble_sort. Using the same Bayesian model as MergeSort, I obtain 12000/12000
(100%) posterior samples of linear (rather than logarithmic) bounds for the recursion depth.
Furthermore, 8762/12000 (73.0%) posterior samples are sound with respect to the ground-truth
recursion-depth bound of𝑔1(𝑥) = |𝑥 |. Substituting the linear recursion-depth bounds 𝑟1 = 𝑔1(𝑥)
for the resource guard r in the overall cost bound 𝑓 (𝑥, 𝑟1) = 1+ 2𝑟1 + 𝑟1 · |𝑥 | inferred by AARA,
I obtain quadratic cost bounds 𝑓 (𝑥) = 1 + 2|𝑥 | + |𝑥 | · |𝑥 |. Fig. 2.3b displays the posterior
distributions of recursion-depth bounds (left) and overall cost bounds (right) for BubbleSort.

Instantiation II In §8.6, I showcase another instantiation of resource decomposition that
integrates AARA and Iris with time credits [168], an interactive resource analysis for OCaml
programs that is implemented in the Coq proof assistant [29]. I use this instantiation to analyze
Kruskal’s algorithm for minimum spanning trees, which uses a union-find data structure. A
precise cost bound of this data structure involves the inverse Ackermann function, making the
bound too difficult to derive by automatic resource analysis. Existing work by Charguéraud and
Pottier [52] has derived a precise bound for a union-find data structure in Coq, and I use AARA
to automatically analyze the remaining code to mitigate the burden of interactive resource
analysis.

Instantiation III §8.7 presents an instantiation of resource decomposition that integrates
Bayesian data-driven analysis with semi-automatic analysis TiML [222], where user-supplied
candidate cost bounds are automatically verified by an SMT solver. I demonstrate this instan-
tiation on quicksort where the comparison function has a logarithmic cost in the maximum
integer in an input list. As SMT solvers have difficulty reasoning about arithmetic in the pres-
ence of logarithm, TiML cannot automatically verify symbolic cost bounds involving logarithm.
Hence, I delegate a resource analysis of the comparison function to Bayesian data-driven anal-
ysis, which successfully infers logarithmic cost bounds with a high soundness probability.

Resource analysis with resource decomposition The resource-composition framework
is very general and not specific to AARA. It can be used to combine more than two analyses to,
for instance, integrate an automatic technique with both data-driven and interactive analyses.
For instance, we can combine Hybrid AARA (§7) with our new Bayesian analysis for bounding
the recursion depth and a recurrence solver.
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Chapter 3

Cost-Aware Programming Language

This chapter presents a cost-aware functional programming language used in resource analysis
of programs. The language is equipped with a construct tick to indicate resource usage of
programs. §3.1 presents the syntax of the language, and §3.2 presents the cost semantics, which
augments big-step operational semantics with costs.

3.1 Syntax

Expressions LetX be a countable set of variable symbols. Expressions 𝑒 in the programming
language are formed by a grammar in Listing 3.1.

The language offers standard constructs of functional programming: constructors and de-
structors for algebraic data types (i.e., unit, product, sum, and list types) and higher-order func-
tions. The grammar adopts let-normal form [113], where constructors (e.g., tuples) and de-
structors (e.g., pattern matching) operate only on variables1, as opposed to expressions more
generally. Let-normal form simplifies the presentation of operational semantics and a type sys-
tem. For instance, in a pattern matching case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} for sums,
its operational semantics does not need to evaluate 𝑥 ∈ X, since it is a variable, rather than an
expression that can further evaluate.

In a function definition fun 𝑓 𝑥 = 𝑒 , the function body 𝑒 is allowed to mention the function
variable2𝑓 ∈ X, thereby defining a recursive function. To define and then use a function, we
place a function definition inside a let-binding (e.g., let 𝑦 = (fun 𝑓 𝑥 = 𝑒1) in 𝑒2).

A construct share 𝑥 as 𝑥1, 𝑥2 in 𝑒 indicates variable sharing: two copies of a variable
𝑥 ∈ X, denoted by fresh variables 𝑥1, 𝑥2 ∈ X, are spawned and used inside an expression 𝑒 .
We need this construct to ensure that variables (except functions) are affine: they are used at
most once in a program. In static resource analysis AARA [112, 113, 116], program variables are
equipped with potential, which can be viewed as resources or money to pay for computational

1Let-normal form is similar to but different from A-normal form [80, 199]: the former requires subexpressions
inside constructors and destructors to be variables, whereas the latter allows them to be variables and constants.

2The function variable 𝑓 comes from the set X of variable symbols. Hence, there is no distinction between
function variables and variables in the syntax. Their (slight) difference manifests itself only when a type system
is introduced: function variables have arrow types, while variables do not necessarily have arrow types.
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𝑒 ::= ⟨ ⟩ | 𝑧 unit and integer; 𝑧 ∈ Z
| 𝑥 variable;𝑥 ∈ X
| left · 𝑥 | right · 𝑥 | case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} sums
| ⟨𝑥1, 𝑥2⟩ | case 𝑥 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒} products
| [ ] | 𝑥1 :: 𝑥2 | case 𝑥 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} lists
| fun 𝑓 𝑥 = 𝑒 | 𝑓 𝑥 functions; 𝑓 ∈ X
| let 𝑥 = 𝑒1 in 𝑒2 let-binding
| share 𝑥 as 𝑥1, 𝑥2 in 𝑒 variable sharing
| tick 𝑞 resource consumption;𝑞 ∈ Q

Lst. 3.1: Expressions 𝑒 in a cost-aware functional programming language.

cost. Because potential must not be duplicated, variables with a positive amount of potential
must not be used more than once. Hence, to use the same variable 𝑥 ∈ X multiple times, it
is first duplicated in the source code, and each of its copies is assigned potential separately.
Alternatively, if the programming language incorporates remainder contexts [135, 137], which
track the leftover potential of program variables, program variables are no longer required to
be affine, allowing us to omit the construct share 𝑥 as 𝑥1, 𝑥2 in 𝑒 from the grammar.

Let-normal form coupled with the construct share 𝑥 as 𝑥1, 𝑥2 in 𝑒 is called share-let-normal

form. The syntax restriction of share-let-share-normal form does not affect the expressive
power of the language [116, 118]. It is possible to automatically transform arbitrary expres-
sions to share-let-normal form [112, §7.1.1]. Indeed, this automatic transformation is done by
a static resource-analysis tool Resource-Aware ML (RaML) [117, 118], which is an implementa-
tion of AARA for OCaml programs.

A construct tick 𝑞 indicates resource usage: it increments a cost counter by 𝑞 ∈ Q, which is
possibly negative, and returns the unit element ⟨ ⟩. If 𝑞 ≥ 0, the construct tick 𝑞 means 𝑞 units
of resources are consumed. Otherwise, if 𝑞 < 0, the construct means |𝑞 | units of resources are
freed up. To specify a particular resource metric, the user (manually or automatically) inserts
tick 𝑞 throughout their code. As the tick metric lets us consider arbitrary resource metrics, it is
a standard practice in the literature of static resource analysis [64, 118, 168, 180, 218].

If all 𝑞’s in tick 𝑞 are non-negative, such resource metrics (e.g., running time) are said to be
monotone. Conversely, if we have 𝑞 < 0, it means resources can be freed up, and such resource
metrics (e.g., memory) are non-monotone.

Programs A program is given by a closed expression (i.e., it contains no free variables).
In real-world functional programming languages (e.g., OCaml), a program is represented as

a pair of
1. A finite set of (possibly mutually recursive) function definitions fun 𝑓 𝑥 = 𝑒 (for all 𝑓 ∈ 𝐹 ),

where 𝐹 is a finite set of function variables; and
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𝑣 ::= ⟨ ⟩ | 𝑧 unit and integer; 𝑧 ∈ Z
| left · 𝑣 | right · 𝑣 | ⟨𝑣1, 𝑣2⟩ sums and product
| [ ] | 𝑣1 :: 𝑣2 lists
| closure(𝑉 ; 𝑓 , 𝑥 .𝑒) function closure; 𝑓 , 𝑥 ∈ X

Lst. 3.2: Values 𝑣 in a cost-aware functional programming language.

2. A main expression 𝑒main to execute or analyze.
This representation of a program can be transformed to a closed expression by concatenating
function definitions by let-bindings and also duplicating function definitions if necessary. For
instance, consider a program 𝑃 where (i) two functions 𝑓1 and 𝑓2 call each other and (ii) a main
expression 𝑒main mentions both 𝑓1 and 𝑓2. The program 𝑃 can be transformed to a single closed
expression:

𝑃 ≔ let 𝑓1 = (fun 𝑓1 𝑥 = (let 𝑓2 = (fun 𝑓2 𝑥 = 𝑒2) in 𝑒1)) in
let 𝑓2 = (fun 𝑓2 𝑥 = 𝑒2) in
𝑒main.

(3.1.1)

Terminology Theword “function” refers to either a mathematical function or a (computable)
function written in some programming language. In this thesis, I mostly simply say functions
because it is usually clear from the context whether I refer to mathematical functions or func-
tions defined inside programs. For instance, when I say that resource analysis returns a worst-
case cost bound as a function 𝑓 (𝑥) parametric in a program input 𝑥 , the function 𝑓 is treated as
a mathematical function that is not coded in any particular programming language.

3.2 Cost Semantics

Values Values (i.e., runtime expressions that do not further evaluate) are formed by the gram-
mar in Listing 3.2. A value closure(𝑉 ; 𝑓 , 𝑥 .𝑒) is a function closure, where 𝑉 is an environment
(i.e., a mapping from variable symbols to their values), 𝑓 ∈ X is a function variable, 𝑥 is an input
variable, and 𝑒 is an expression defining the function 𝑓 . When a function definition fun 𝑓 𝑥 = 𝑒

is created and contains a free variable 𝑦 ∈ X that is defined outside this function definition, the
value of 𝑦 is stored in the environment 𝑉 of a function closure.

Resource monoids Computational cost of programs is described by pairs (ℎ, 𝑟 ) ∈ Q2
≥0. The

first component ℎ ∈ Q≥0 is the high-water-mark cost (i.e., the peak cost that is reached during
the execution). That is, ℎ is the minimum amount of resources necessary for evaluating the
expression 𝑒 successfully (i..e, without running out of resources). The second component 𝑟 ∈
Q≥0 is the amount of remaining resources after feeding ℎ many resources to the execution.
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Thus, the net cost is given by ℎ − 𝑟 . Under monotone resource metrics (i.e., all occurrences of
tick 𝑞 satisfy 𝑞 ≥ 0), we have 𝑟 = 0, and hence the peak cost is equal to the net cost.

Pairs (ℎ, 𝑟 ) of high-water-mark costs ℎ ∈ Q≥0 and remaining resources 𝑟 ∈ Q≥0 form a
monoid [112, 116], which is called the resource monoid.
Definition 3.2.1 (Resource monoid). Pairs (ℎ, 𝑟 ) ∈ Q2

≥0 form the resource monoid

RM ≔ (Q2
≥0, (0, 0), ⊕), (3.2.1)

where the binary operator ⊕ is defined as

(ℎ1, 𝑟1) ⊕ (ℎ2, 𝑟2) ≔
{
(ℎ1 + ℎ2 − 𝑟1, 𝑟2) if 𝑟1 ≤ ℎ2
(ℎ1, 𝑟2 + 𝑟1 − ℎ2) otherwise,

(3.2.2)

and (0, 0) is the identity of the operator ⊕.
The binary operator ⊕ in Defn. 3.2.1 is used to combine the costs of two sequentially com-

posed expressions. To illustrate the intuition behind Eq (3.2.2), consider two expressions 𝑒1 and
𝑒2 to be executed one after another, each with the costs of (ℎ1, 𝑟1) ∈ Q2

≥0 and (ℎ2, 𝑟2) ∈ Q2
≥0,

respectively. Suppose 𝑟1 ≤ ℎ2, that is, the remaining resources after running the expression
𝑒1 are insufficient to run the expression 𝑒2. In this case, to successfully run the expression 𝑒1
followed by the expression 𝑒2, we should ensure that the expression 𝑒2 receives at least ℎ2 re-
sources. Hence, we need to supply ℎ1 + (ℎ2 − 𝑟1) resources to the sequential composition of the
two expressions. Also, after running the sequential composition, the remaining resources are
𝑟2. Thus, when 𝑟1 ≤ ℎ2, the combined cost of the sequential composition is (ℎ1+ (ℎ2−𝑟1), 𝑟2), as
in the first line of Eq (3.2.2). The second line of Eq (3.2.2) can be justified by similar reasoning.

The operator ⊕ can be defined more succinctly as

(ℎ1, 𝑟1) ⊕ (ℎ2, 𝑟2) ≔ (ℎ1 +max(ℎ2 − 𝑟1, 0), 𝑟2 +max(𝑟1 − ℎ2, 0)) . (3.2.3)

The operator is associative, but is not commutative, as demonstrated by

(2, 1) ⊕ (1, 0) = (2, 0) (1, 0) ⊕ (2, 1) = (3, 2). (3.2.4)

Judgment A big-step cost semantics of the programming language is given by a judgment

𝑉 ⊢ 𝑒 ⇓ 𝑣 | (ℎ, 𝑟 ), (3.2.5)

where 𝑉 is an environment (i.e., a mapping from variable symbols to their values), 𝑒 is an
expression, and 𝑣 is an output value of evaluating the expression 𝑒 under the environment 𝑉 .
Additionally, (ℎ, 𝑟 ) ∈ Q2

≥0 is an element of the resource monoid for evaluating the expression 𝑒
under the environment𝑉 . The evaluation judgment (3.2.5) is inductively defined in Listing 3.3,
where the call-by-value evaluation strategy is adopted.

The only inference rules in Listing 3.3 that manipulate costs are E:Let and E:Tick. The rule
E:Let concerns a let-binding let 𝑥 = 𝑒1 in 𝑒2, where we first evaluate expression 𝑒1, bind its
output value to variable 𝑥 , and then evaluate expression 𝑒2. The operator ⊕ of the resource
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monoid (Defn. 3.2.1) is used to combine costs (ℎ𝑖, 𝑟𝑖) of expression 𝑒𝑖 (𝑖 = 1, 2). The rule E:Tick
states that, given an expression tick 𝑞, if 𝑞 ≥ 0, then the high-water-mark cost is ℎ ≔ 𝑞, and
𝑟 ≔ 0 resources remain after evaluating the expression. Conversely, if 𝑞 < 0, the high-water-
mark cost is ℎ ≔ 0, and |𝑞 | resources are freed up, yielding 𝑟 ≔ |𝑞 |.

It is possible to define the high-water-mark cost (but not the net cost) of non-terminating
programs. For instance, if a non-terminating program (e.g., a web server) uses a bounded
amount of memory throughout its execution, its high-water-mark cost is finite and hence is
well-defined. To formally define high-water-mark costs in the presence of non-termination, we
could modify the evaluation judgment Eq (3.2.5) such that it is allowed to stop the evaluation
at an arbitrary point, recording the high-water-mark cost so far [112, 135]. An overall high-
water-mark cost would be defined as the maximum high-water-mark cost reached at any point
during the execution.

In this thesis, however, we are not concerned with non-terminating programs, since data-
driven resource analysis, which is a key component of this thesis, requires programs to termi-
nate. If programs do not terminate, we cannot measure their high-water-mark costs to be used
in statistical analysis, even if their high-water-mark costs are known to be finite theoretically.
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E:Var
𝑣 =𝑉 (𝑥)

𝑉 ⊢ 𝑥 ⇓ 𝑣 | (0, 0)

E:Unit

𝑉 ⊢ ⟨ ⟩ ⇓ ⟨ ⟩ | (0, 0)

E:Int
𝑧 ∈ Z

𝑉 ⊢ 𝑧 ⇓ 𝑧 | (0, 0)

E:Sum:L
𝑣 =𝑉 (𝑥)

𝑉 ⊢ left · 𝑥 ⇓ left · 𝑣 | (0, 0)

E:Sum:R
𝑣 =𝑉 (𝑥)

𝑉 ⊢ right · 𝑥 ⇓ right · 𝑣 | (0, 0)

E:Case:Sum:L
𝑉 (𝑥) = left · 𝑣1 𝑉 , 𝑥1 ↦→ 𝑣1 ⊢ 𝑒1 ⇓ 𝑣 | (ℎ, 𝑟 )

𝑉 ⊢ case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} ⇓ 𝑣 | (ℎ, 𝑟 )

E:Case:Sum:R
𝑉 (𝑥) = right · 𝑣2 𝑉 , 𝑥2 ↦→ 𝑣2 ⊢ 𝑒2 ⇓ 𝑣 | (ℎ, 𝑟 )

𝑉 ⊢ case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} ⇓ 𝑣 | (ℎ, 𝑟 )

E:Prod
𝑣1 =𝑉 (𝑥1) 𝑣2 =𝑉 (𝑥2)
𝑉 ⊢ ⟨𝑥1, 𝑥2⟩ ⇓ ⟨𝑣1, 𝑣2⟩ | (0, 0)

E:Case:Prod
𝑉 (𝑥) = ⟨𝑣1, 𝑣2⟩ 𝑉 , 𝑥1 ↦→ 𝑣1, 𝑥2 ↦→ 𝑣2 ⊢ 𝑒 ⇓ 𝑣 | (ℎ, 𝑟 )

𝑉 ⊢ case 𝑥 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒} ⇓ 𝑣 | (ℎ, 𝑟 )

E:List:Empty

𝑉 ⊢ [ ] ⇓ [ ] | (0, 0)

E:List:Cons
𝑣1 =𝑉 (𝑥1) 𝑣2 =𝑉 (𝑥2)

𝑉 ⊢ (𝑥1 :: 𝑥2) ⇓ (𝑣1 :: 𝑣2) | (0, 0)

E:Case:List:Empty
𝑉 (𝑥) = [ ] 𝑉 ⊢ 𝑒1 ⇓ 𝑣 | (ℎ, 𝑟 )

𝑉 ⊢ case 𝑥 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} ⇓ 𝑣 | (ℎ, 𝑟 )

E:Case:List:Cons
𝑉 (𝑥) = 𝑣1 :: 𝑣2 𝑉 , 𝑥1 ↦→ 𝑣1, 𝑥2 ↦→ 𝑣2 ⊢ 𝑒2 ⇓ 𝑣 | (ℎ, 𝑟 )
𝑉 ⊢ case 𝑥 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} ⇓ 𝑣 | (ℎ, 𝑟 )

E:Fun

𝑉 ⊢ fun 𝑓 𝑥 = 𝑒 ⇓ closure(𝑉 ; 𝑓 , 𝑥 .𝑒) | (0, 0)

E:App
𝑉 ⊢ 𝑓 ⇓ closure(𝑈 ;𝑔,𝑦.𝑒) | (0, 0) 𝑈 ,𝑔 ↦→ closure(𝑈 ;𝑔,𝑦.𝑒), 𝑦 ↦→ 𝑉 (𝑥) ⊢ 𝑒 ⇓ 𝑣 | (ℎ, 𝑟 )

𝑉 ⊢ 𝑓 𝑥 ⇓ 𝑣 | (ℎ, 𝑟 )

E:Let
𝑉 ⊢ 𝑒1 ⇓ 𝑣1 | (ℎ1, 𝑟1) 𝑉 , 𝑥 ↦→ 𝑣1 ⊢ 𝑒2 ⇓ 𝑣2 | (ℎ2, 𝑟2)

𝑉 ⊢ let 𝑥 = 𝑒1 in 𝑒2 ⇓ 𝑣2 | (ℎ1, 𝑟1) ⊕ (ℎ2, 𝑟2)

E:Share
𝑉 (𝑥) = 𝑣 𝑉 , 𝑥1 ↦→ 𝑣, 𝑥2 ↦→ 𝑣 ⊢ 𝑒 ⇓ 𝑣 ′ | (ℎ, 𝑟 )

𝑉 ⊢ share 𝑥 as 𝑥1, 𝑥2 in 𝑒 ⇓ 𝑣 ′ | (ℎ, 𝑟 )

E:Tick

𝑉 ⊢ tick 𝑞 ⇓ ⟨ ⟩ | (max(0, 𝑞),max(0,−𝑞))

Lst. 3.3: Cost semantics.
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Chapter 4

Automatic Amortized Resource Analysis

This chapter introduces state-of-the-art static resource analysis Automatic Amortized Resource
Analysis (AARA) [55, 112, 116, 118, 122, 126, 156]. It is a type-based resource-analysis technique
that automatically infers polynomial cost bounds of functional programs, where cost bounds
are embedded inside types. AARA serves as the foundation of the first hybrid resource analysis,
Hybrid AARA (§7). Being a type-based technique, AARA is compositional: for every expres-
sion 𝑒 , its cost bound is given by composing the cost bounds of 𝑒’s constituent subexpressions.
This compositionality of AARA lends itself to the design of Hybrid AARA, which integrates
inference results of two analysis techniques performed on different code fragments.

First, §4.1 gives an overview ofAARA. It is followed by the formulation of resource-annotated
types (§4.2) and type system (§4.3). Finally, §4.4 describes howAARA automatically infers poly-
nomial cost bounds.

I focus on univariate (polynomial) AARA [113], which can express univariate polynomial
cost bounds. For instance, given two values 𝑣1 and 𝑣2, univariate AARA can express a cost
bound |𝑣1 |2+ |𝑣2 |2, where |𝑣𝑖 | is the size of value 𝑣𝑖 (𝑖 = 1, 2) and each term (e.g., |𝑣1 |2 and |𝑣2 |2) is
a univariate polynomial. A more expressive variant of AARA is multivariate AARA [116], and
it can capture multivariate polynomial cost bounds such as |𝑣1 | · |𝑣2 |, where a term can involve
multiple variables. Since univariate AARA has a simpler notation than multivariate AARA, this
chapter only introduces univariate AARA. Nonetheless, in the implementation and evaluation
of hybrid resource analysis, my collaborators and I build on RaML [117, 118], which implements
full-fledged multivariate AARA.

4.1 Overview

This section describes the potential method of amortized resource analysis, which underlies
AARA, and illustrates how AARA encodes cost bounds using potential functions assigned to
program inputs and outputs.

Potential method AARA automates the potential method from amortized analysis of algo-
rithms and data structures by Sleator and Tarjan [208, 209]. Every variable 𝑥 ∈ X in the source
code of a program is assigned a polynomial potential function parametric in the size of 𝑥 ’s value.
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1 let rec partition (p : int) (x : int list) =
2 match x with
3 | [] → ([], [])
4 | hd :: tl →
5 let lower, upper = partition p tl in
6 let _ = Raml.tick 1.0 in
7 if hd <= p then (hd :: lower, upper)
8 else (lower, hd :: upper)

(a) partition

let rec quicksort (x : int list) =
match x with
| [] → []
| hd :: tl →

let lower, upper = partition hd tl in
let lower_sorted = quicksort lower in
let upper_sorted = quicksort upper in
append lower_sorted (hd :: upper_sorted)

(b) quicksort

Lst. 4.1: QuickSort in RaML [117, 118], which is an implementation of AARA for analyzing
OCaml programs. The resource metric of interest is the number of integer comparisons. (a)
The expression Raml.tick 1.0 in line 6 increments a cost counter by one.

Potential can be viewed as fuel or money to pay for computational cost. The goal of the poten-
tial method is to assign potential functions such that (i) the potential is always non-negative
throughout a program execution and (ii) for every step of computation, the pre-state potential
is larger than or equal to the post-state potential plus the cost of computation. Under these two
conditions, the initial total potential of the programs (i.e., the combined potential function of
all input variables) is a worst-case bound on the total computational cost.

Resource-annotated types To encode polynomial potential functions, AARA augments stan-
dard functional-programming types with polynomial coefficients of potential functions, result-
ing in resource-annotated types. To illustrate the types, consider the partition function that
partitions an integer list around an integer pivot. Listing 4.1a displays an implementation of
the function partition in Resource-Aware ML (RaML) [117, 118], an implementation of AARA
for analyzing resource usage of OCaml programs. Our goal is to derive a worst-case bound on
the number of comparisons during an evaluation of partition, namely 𝑛, where 𝑛 is the input
list length.

In AARA, we type an expression partition (𝑝, 𝑥), where 𝑝 is a pivot and 𝑥 is an input list,
as follows:

{𝑝 : int, 𝑥 : 𝐿1(int)}; 0 ⊢ partition (𝑝, 𝑥) : ⟨𝐿0(int) × 𝐿0(int), 0⟩. (4.1.1)

A resource-annotated type 𝐿𝑞 (int) indicates that an integer list stores𝑞 ∈ Q≥0 units of potential
per element. Hence, in the typing context of the typing judgment (4.1.1), the resource-annotated
type 𝐿1(int) of variable 𝑥 encodes a linear potential function

Φ(𝑣 : 𝐿1(int)) = 1 · |𝑣 |, (4.1.2)

where a list 𝑣 is a value of variable 𝑥 at runtime and |𝑣 | denotes the length of the list 𝑣 . Also,
the annotation 0 to the left of the turnstile (i.e., ⊢) indicates that 0 additional constant potential
is stored in the typing context. In total, the input potential in the typing judgment (4.1.1) is
1 · |𝑥 | + 0. Likewise, the output resource-annotated type ⟨𝐿0(int) × 𝐿0(int), 0⟩ means: (i) the
two output lists of partition (𝑝, 𝑥) store 0 potential; and (ii) 0 additional constant potential
remains in the output. In summary, the typing judgment (4.1.1) states that, if we start with the
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linear input potential 1 · |𝑥 |, the expression partition (𝑝, 𝑥) runs successfully without running
out of potential, with zero potential remaining in the output of the expression.

A worst-case bound for the high-water-mark cost is given by the input potential function in
the judgment (4.1.1), namely 1 · |𝑥 |. This bound also serves as a bound for the net cost.
Remark 4.1.1 (Cost bounds parametric in input and output sizes). Instead of an input potential
function, we could use the difference between the input and output potential functions as a possibly

tighter bound for the net cost. However, the resulting bound is now parametric in not only the input

size but also the output size. «

AARA is naturally compositional because resource-annotated typing judgments assign po-
tential functions to both the input and output of program expressions. Consequently, to derive
a cost bound of two sequentially composed expressions 𝑒1 and 𝑒2, it suffices to derive their re-
spective typing judgments such that the expression 𝑒1’s output potential is larger than or equal
to the input potential required by the expression 𝑒2. To achieve compositionality, other static
resource-analysis techniques (e.g., recurrence relations [64, 223]) explicitly track not only costs
but also output sizes of expressions. By contrast, in AARA, potential functions stored in the
input and output of an expression 𝑒 tell us both 𝑒’s cost bound and how the output size relates
to the input size. Hence, AARA does not need to separately track costs and output sizes.

To illustrate how resource-annotated types can be composed, assume we have two nested
calls to partition as in the following function 𝑓 :

fun 𝑓 𝑥 = let ⟨𝑥1, 𝑥2⟩ = partition (42, 𝑥) in partition (1, 𝑥1) (4.1.3)

In the second function call partition (1, 𝑥1), we can use the previous typing judgment (4.1.1)
for the function partition. However, for the first function call partition (42, 𝑥), we use the
typing judgment

{𝑝 : int, 𝑥 : 𝐿2(int)}; 0 ⊢ partition (𝑝, 𝑥) : ⟨𝐿1(int) × 𝐿1(int), 0⟩. (4.1.4)

It assigns a resource-annotated type 𝐿1(int) to the two output lists such that they have enough
potential to pay for the subsequent computation. Let 𝑣 , 𝑣1, 𝑣2 be values of variables 𝑥 , 𝑥1, 𝑥2,
respectively. The intuition is that the input potential Φ(𝑣 : 𝐿2(int)) = 2 · |𝑣 | of the typing
judgment (4.1.1) is used to cover both the cost (i.e., 1 · |𝑣 |) and the potential of the result (i.e.,
1 · |𝑣1 | + 1 · |𝑣2 |) of the first function call. It relies on the fact |𝑣1 | + |𝑣2 | = |𝑣 |, which AARA’s type
system implicitly figures out. The potential Φ(𝑣1 : 𝐿1(int)) = 1 · |𝑣1 | stored in the first output
list covers the cost of the second function call partition (1, 𝑥1).

Type inference In general, a resource-annotated typing judgment of partition (𝑝, 𝑥) can
be expressed with linear constraints over polynomial coefficients of potential functions:

{𝑝 : int, 𝑥 : 𝐿𝑞1 (int)};𝑞0 ⊢ partition (𝑝, 𝑥) : ⟨𝐿𝑟1 (int) × 𝐿𝑟2 (int), 𝑟0⟩
subject to 𝑞1 ≥ 1 + 𝑞′, 𝑞′ ≥ 𝑟1, 𝑞′ ≥ 𝑟2, 𝑞0 ≥ 𝑟0.

(4.1.5)

The type system of AARA emits similar linear constraints during type inference. The con-
straints, which are all linear, are then automatically solved with an off-the-shelf linear-program
(LP) solver (e.g., CLP [82]). If the linear constraints are solvable (i.e., they have a solution), the
solution yields a polynomial potential function of a program input, which in turn serves as a
polynomial cost bound.
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Polynomial AARA Although the resource-annotated type of the partition function only
stores linear potential functions, AARA can encode polynomial potential functions and there-
fore polynomial cost bounds while retaining compositionality and type inference with linear
constraint solving [113, 116]. In (polynomial) AARA, resource annotations inside resource-
annotated types record polynomial coefficients of potential functions.

For illustration, consider the function quicksort (Listing 4.1b). In terms of the number of
comparisons, the worst-case cost of quicksort is 𝑛(𝑛 − 1)/2, where 𝑛 is the input list length.
This cost bound is expressed by the following typing judgment in AARA:

{𝑥 : 𝐿(0,1) (int)}; 0 ⊢ quicksort𝑥 : ⟨𝐿(0,0) (int), 0⟩. (4.1.6)

Here, the resource-annotated type 𝐿(0,1) (int) assigns a quadratic potential function

Φ(𝑣 : 𝐿(0,1) (int)) = 0 ·
(
|𝑣 |
1

)
+ 1 ·

(
|𝑣 |
2

)
, (4.1.7)

where |𝑣 | is the input list length. More generally, the vector ®𝑞 in a resource-annotated type
𝐿®𝑞 (int) stores coefficients 𝑞𝑖 associated with binomial coefficients

(𝑛
𝑖

)
(𝑖 = 1, . . . | ®𝑞 |) in the

ascending order of polynomial degrees.

4.2 Resource-Annotated Types

This section describes resource-annotated types of univariate AARA, which encode univariate
polynomial potential functions parametric in input sizes.

Types Resource-annotated types 𝐴 in univariate AARA are formed by the grammar

𝐴 F ⟨𝑎, 𝑞⟩ constant potential
𝑎 ::= unit | int | 𝐴1 +𝐴2 | 𝑎1 × 𝑎2 polynomial types;𝑞1, 𝑞2 ∈ Q≥0, 𝑑 ∈ N
| 𝐿®𝑞 (𝑎) list type; ®𝑞 ∈ Q𝑑≥0
| 𝐴1 → 𝐴2 arrow type.

In a type ⟨𝑎, 𝑞⟩ , 𝑞 ∈ Q ≥ 0 denotes the amount of constant potential stored in the type, and 𝑎 is a
resource-annotated type that excludes constant potential. A tuple ®𝑞 ∈ Q𝑑≥0 records coefficients
of degree-𝑑 (𝑑 ∈ N) polynomial potential functions, except their constant (i.e., degree-zero)
potential, in the ascending order of polynomial degrees. In a resource-annotated sum type
⟨𝑎1, 𝑞1⟩+⟨𝑎2, 𝑞2⟩, the constant potential 𝑞1, 𝑞2 ∈ Q≥0 on the two sides are allowed to be different.
Consequently, we can express a fine-grained cost bound that is parametric in both the numbers
of left-tagged and right-tagged values (e.g., Boolean values).
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Potential functions The amount of potential stored in a value 𝑣 according to a resource-
annotated type 𝑎 is denoted by Φ(𝑣 : 𝑎) and is defined as follows:

Φ(⟨ ⟩ : unit) = Φ(𝑧 : int) ≔ 0 𝑧 ∈ Z (4.2.1)
Φ(left · 𝑣 : 𝐴1 +𝐴2) ≔ 𝑞1 + Φ(𝑣 : 𝑎1) where 𝐴1 = ⟨𝑎1, 𝑞1⟩ (4.2.2)

Φ(right · 𝑣 : 𝐴1 +𝐴2) ≔ 𝑞2 + Φ(𝑣 : 𝑎2) where 𝐴2 = ⟨𝑎2, 𝑞2⟩ (4.2.3)
Φ(⟨𝑣1, 𝑣2⟩ : 𝑎1 × 𝑎2) ≔ Φ(𝑣1 : 𝑎1) + Φ(𝑣2 : 𝑎2) (4.2.4)

Φ( [ ] : 𝐿®𝑞 (𝑎)) ≔ 0 (4.2.5)

Φ(𝑣1 :: 𝑣2 : 𝐿®𝑞 (𝑎)) ≔ 𝑞1 + Φ(𝑣1 : 𝑎) + Φ(𝑣2 : 𝐿⊳( ®𝑞) (𝑎)) where ®𝑞 = (𝑞1, . . . , 𝑑𝑑) (4.2.6)
Φ(𝑣 : 𝐴1 → 𝐴2) ≔ 0. (4.2.7)

In Eq (4.2.6), the shift operator ⊳ on tuples ®𝑞 ∈ Q𝑑≥0 is used to derive an appropriate resource
annotation for the tail 𝑣2 of a list 𝑣1 :: 𝑣2. The operator is defined as

⊳(𝑞1, . . . , 𝑞𝑑) ≔ (𝑞1 + 𝑞2, . . . , 𝑞𝑑−1 + 𝑞𝑑 , 𝑞𝑑). (4.2.8)

It is possible to show that a length-𝑛 list [𝑣1, . . . , 𝑣𝑛] of type 𝐿®𝑞 (𝑎) has potential

Φ( [𝑣1, . . . , 𝑣𝑛] : 𝐿®𝑞 (𝑎)) =
𝑑∑︁
𝑖=1

𝑞𝑖

(
𝑛

𝑖

)
+

𝑛∑︁
𝑖=1

Φ(𝑣𝑖 : 𝑎) where ®𝑞 = (𝑞1, . . . , 𝑞𝑑). (4.2.9)

It is a degree-𝑑 polynomial parametric in the list length 𝑛 if Φ(𝑣𝑖 : 𝑎) = 0 holds for 𝑖 = 1, . . . , 𝑛.
Polynomial potential functions expressible in AARA are linear combinations of binomial

coefficients
(𝑛
𝑖

)
(𝑖 = 0, . . . , 𝑑), rather than powers 𝑛𝑖 (𝑖 = 1, . . . , 𝑑), where the coefficients in the

linear combinations are non-negative:
𝑑∑︁
𝑖=0

𝑞𝑖

(
𝑛

𝑖

)
(𝑞0, . . . , 𝑞𝑑 ∈ Q≥0). (4.2.10)

The coefficients 𝑞𝑖 (𝑖 = 0, . . . , 𝑑) must be non-negative such that the outputs of potential func-
tions are non-negative1. Binomial coefficients are more suitable as a basis of polynomial po-
tential functions’ space because non-negative linear combinations (i.e., linear combinations
with non-negative coefficients) of binomial coefficients are a strict superset of those of powers.
For instance, non-negative linear combinations of powers cannot express a polynomial bound(𝑛
2
)
= 𝑛(𝑛− 1)/2 of the function quicksort (Eq (4.1.6)), as we would need a negative coefficient

in a linear combination of powers. Meanwhile, every power 𝑛𝑑 (𝑑 ∈ N) can be expressed as a
non-negative linear combination of binomial coefficients (Lem. 6.4.3).

Eq. (4.2.7) states that function closures store zero potential. The type system of AARA
requires the environment 𝑉 inside a function closure closure(𝑉 ; 𝑓 , 𝑥 .𝑒) to carry zero potential.
This allows the same function closure to be called arbitrarily many times. However, a downside
is that we cannot freely define functions. We can only create function closures that only use
potential inside input variables, but not potential stored inside environments.

1A polynomial potential function Φ(𝑥) = ∑𝑑
𝑖=0 𝑞𝑖

(
𝑛
𝑖

)
can have non-negative outputs for all inputs 𝑥 even if some

coefficients 𝑞𝑖 are negative. However, if the coefficients are allowed to be negative, it is non-trivial to automatically
check whether a given polynomial potential function is non-negative for all inputs. Hence, for simplicity, AARA
requires all coefficients in linear combinations to be non-negative.
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4.3 Type System

This section presents a type system of univariate AARA [113] and its soundness theorem. I
introduce the following meta-variables to be used in the type system:

T ::= {𝐴1,𝑖 → 𝐴2,𝑖 | 𝑖 ∈ 𝐼 } set of resource-annotated arrow types; 𝐼 ⊆ N

a ::= 𝑎 | T
A ::= ⟨a, 𝑞⟩ 𝑞 ∈ Q≥0.

A set T of resource-annotated types can only appear at the outermost level. It cannot be placed
inside 𝑎, such as 𝐿®𝑞 (T ).

Judgment A resource-annotated typing judgment of univariate AARA is

Γ; 𝑝 ⊢ 𝑒 : ⟨a, 𝑞⟩, (4.3.1)

where Γ is a resource-annotated typing context, 𝑝 ∈ Q≥0 is constant potential of the typing con-
text, a is a resource-annotated type (or a set of resource-annotated arrow types) of the output,
and 𝑞 ∈ Q≥0 is constant potential stored in the output. The typing context Γ maps a variable
𝑥 ∈ X to a resource-annotated type 𝑎 if 𝑥 is not a function (i.e., the type 𝑎 is not of the form
𝐴1 → 𝐴2). Conversely, if 𝑓 ∈ X is a function variable, then the typing context Γ maps the
function 𝑓 to a (possibly infinite) set T𝑓 of resource-annotated types.

The typing context Γ assigns sets of resource-annotated types, as opposed to single types,
to functions in order to achieve resource-polymorphic recursion [112]. It means that, to justify a
resource-annotated type of a recursive function 𝑓 , we are allowed to use a different resource-
annotated type of the function 𝑓 ’s recursive call. Furthermore, by assigning multiple resource-
annotated arrow types to a function 𝑓 , different call sites of the function 𝑓 are allowed to use
different types.

The typing judgment (4.3.1) means, given a well-typed environment 𝑉 : Γ that carries po-
tential 𝑝 + Φ(𝑉 : Γ), if expression 𝑒 evaluates to value 𝑣 , then 𝑣 is well typed with respect to a
resource-annotated type (or a set thereof) a and carries 𝑞 + Φ(𝑣 : a) units of potential. Here, I
define

Φ(𝑣 : a) ≔
{
Φ(𝑎) if a = 𝑎

0 otherwise,
(4.3.2)

where Φ(𝑎) in the first line is defined in Eqs. (4.2.1)–(4.2.7). Additionally, the potential Φ(𝑉 : Γ)
of an environment 𝑉 is defined as

Φ(𝑉 : Γ) ≔
∑︁

𝑥∈dom(𝑉 )
Φ(𝑉 (𝑥) : Γ(𝑥)) . (4.3.3)

Syntax-directed rules Listing 4.2 displays syntax-directed typing rules of univariate AARA.
The rule T:List:Empty states that we can type the empty list [ ] with any resource-annotated
list type 𝐿®𝑞 (𝑎). This is sensible because the empty list carries zero potential regardless of re-
source annotations. The rule T:List:Cons states that, to prepend an element 𝑥1 to a list 𝑥2

34



such that the resulting list has a resource annotation ®𝑞, we need a judgment 𝑥2 : 𝐿⊳®𝑞 and con-
stant potential 𝑞1 ∈ Q≥0 in the typing context. Here, the shift operator ⊳ (Eq (4.2.8)) is used to
compute the resource annotation of a list’s tail. Dually, in the rule T:Case:List, if we perform
pattern matching on a list 𝑥 : 𝐿 ®𝑝 , its potential is split into the potential stored inside the tail
𝑥2 : 𝐿⊳®𝑝 (𝑎) and the constant potential 𝑝1. By Eq (4.2.6), pattern matching of lists preserves the
total potential.

The rule T:Fun concerns function definitions. It derives a type ⟨T , 0⟩, where T is a (possibly
infinite) set of resource-annotated arrow types. The premise of the rule T:Fun states that, to
justify each arrow type in the set T , we can assign any arrow type in the set to the recursive
call, and this type is allowed to be different from the original arrow type being justified. The
typing context |Γ | in the premise of T:Fun is obtained by removing all resource annotations
in the original resource-annotated typing context Γ, except those resource annotations inside
arrow types. Formally, we define

|Γ | ≔ {𝑥 : |𝑎 | | 𝑥 : 𝑎 ∈ Γ} ∪ {𝑥 : T | (𝑥 : T) ∈ Γ}, (4.3.4)

where |𝑎 | is defined as

|unit| = unit |int| = int (4.3.5)
|⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩| = ⟨|𝑎1 |, 0⟩ + ⟨|𝑎2 |, 0⟩ |𝑎1 × 𝑎2 | = |𝑎1 | × |𝑎2 | (4.3.6)

|𝐿®𝑞 (𝑎) | = 𝐿0( |𝑎 |) |𝐴1 → 𝐴2 | = 𝐴1 → 𝐴2. (4.3.7)

The rule T:Var:Fun is used to select a type from a set T of resource-annotated arrow types
for functions. This rule is used before we apply the rule T:App, which expects a typing judgment
𝑓 : 𝐴1 → 𝐴2 as opposed to 𝑓 : T . Additionally, the rule T:Var:Fun is necessary when we want
to embed functions inside data types. For instance, suppose we wish to create a list 𝑥 : 𝐿®𝑞 (𝐴1 →
𝐴2) of functions. To prepend a function variable 𝑓 : T to the list 𝑥 , we must extract the type
𝐴1 → 𝐴2 from the set T using the rule T:Var:Fun, provided that 𝐴1 → 𝐴2 ∈ T holds.

The rule T:Share splits the potential in variable 𝑥 : a between variables 𝑥1 : a1 and 𝑥2 :
a2. The sharing of potential is denoted by a . (a1, a2), and is defined in Listing 4.3. The
rules SH:Fun and SH:Set allow resource-annotated arrow types to be duplicated freely. This is
because well-typed functions do not contain free variables equipped with potential, as enforced
by the rule T:Fun.

The rules T:Tick:Pos and T:Tick:Neg type the construct tick 𝑞 (𝑞 ∈ Q). If 𝑞 ≥ 0, the rule
T:Tick:Pos requires 𝑞 constant potential in the typing context, and the leftover potential in the
output is zero. Conversely, if 𝑞 < 0, the rule T:Tick:Neg requires zero potential in the typing
context, and −𝑞 units of potential become available in the output.

Structural rules Listing 4.4 displays structural typing rules of univariate AARA. The rules
T:Sub and T:Sup mention the subtyping relation 𝑎1 <: 𝑎2 between resource-annotated types.
It means that the type 𝑎1 is a subtype of the type 𝑎2, that is, any variable 𝑥 : 𝑎1 can be treated
as 𝑥 : 𝑎2. The subtyping relation is defined in Listing 4.5. The rule T:Relax is used to inject
additional potential into the typing context and the output type.
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Soundness The soundness of univariate AARA relates the typing judgment (4.3.1) and the
cost-semantics evaluation judgment (3.2.5). The soundness means that, if an expression 𝑒 is
well-typed in univariate AARA, then when we run the expression 𝑒 under a well-typed envi-
ronment𝑉 , the output 𝑣 is also well typed, provided that the expression 𝑒 terminates. Further-
more, if the environment 𝑉 carries potential as specified by its resource-annotated type, the
output 𝑣 also carries potential as specified by its resource-annotated type.

Thm. 4.3.1 formally states the soundness of univariate AARA. The theorem mentions well-
typed values 𝑣 : a and well-typed environments 𝑉 : Γ. They are defined in Listing 4.6. When-
ever values and environments are well-typed, the notations Φ(𝑣 : a) (Eq (4.3.2)) and Φ(𝑉 : Γ)
(Eq (4.3.3)) are well-defined. Furthermore, if a = T is a set of resource-annotated arrow types,
a function closure 𝑣 : T must exhibit the cost behavior according to the resource-annotated
types in the set T when the function 𝑣 is applied (V:Set). This property of well-typed function
closures is necessary to make the inductive proof of Thm. 4.3.1 go through.
Theorem 4.3.1 (Soundness of univariate AARA [113]). Consider (i) a well-typed expression 𝑒

such that Γ; 𝑝 ⊢ 𝑒 : ⟨a, 𝑞⟩ and (ii) a well-typed environment𝑉 such that𝑉 : Γ. If𝑉 ⊢ 𝑒 ⇓ 𝑣 | (ℎ, 𝑟 ),
then we have 𝑣 : a. Furthermore, we have

Φ(𝑉 : Γ) + 𝑝 ≥ ℎ Φ(𝑉 : Γ) + 𝑝 − Φ(𝑣 : a) − 𝑞 ≥ ℎ − 𝑟 . (4.3.8)

That is, Φ(𝑉 : Γ) + 𝑝 is a bound on the high-water-mark cost ℎ, and Φ(𝑉 : Γ) + 𝑝 − Φ(𝑣 : a) − 𝑞
is a bound on the net cost ℎ − 𝑟 .

Limited expressiveness of univariate AARA Although multivariate polynomials (e.g.,
(𝑛1+𝑛2)2) can always be bounded by univariate polynomials (e.g., 2𝑛21+2𝑛22), univariate AARA
is strictly less expressive than multivariate AARA: there exists a program that can be typed in
multivariate AARA but not in univariate AARA. For instance, consider the append function
that takes two lists 𝑥 and 𝑦 and concatenates them. Suppose we want the output of the func-
tion append to store super-linear potential (e.g., quadratic potential). Since the output of the
function append has length |𝑥 | + |𝑦 |, to equip the output with quadratic potential, the two in-
put lists should store a total of ( |𝑥 | + |𝑦 |)2 units of potential. This is a multivariate polynomial
potential function, which is bounded above by a univariate polynomial 2|𝑥 |2 + 2|𝑦 |2. However,
the function append cannot be typed this way in univariate AARA [112, 113, 116].

4.4 Type Inference

Cost bounds of programs are given by potential functions encoded by the inputs’ resource-
annotated types. Hence, cost-bound inference amounts to inference of resource-annotated
types of AARA. Just like functional programming’s type inference, AARA’s type inference
works by solving constraints, specifically numeric linear constraints over polynomial coeffi-
cients of potential functions.

Workflow The user first supplies a functional program 𝑃 (i.e., a closed expression) to be
analyzed, which typically has an arrow type. Additionally, the user specifies a maximum poly-
nomial degree 𝑑 ∈ N of cost bounds considered by AARA. The type-inference engine first
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transforms the program 𝑃 to share-let-normal form [118] and infers unannotated types (i.e.,
without resource annotations) by the Hindley-Milner type inference [109, 170].

Next, the type-inference engine walks through the program 𝑃 , constructing its typing tree
according toAARA’s typing rules (Listings 4.2 and 4.4). Resource-annotated types (e.g., 𝐿®𝑞 (int))
appearing in this typing tree are created by augmenting unannotated types (e.g., 𝐿(int)) with
resource annotations (e.g., ®𝑞) consisting of non-negative numeric variables. These numeric
variables represent polynomial coefficients of potential functions assigned to variables.

AARA’s typing rules induce linear constraints over (symbolic) resource annotations. For
instance, the rules T:List:Cons and T:Case:List induce linear constraints that encode the shift
operator ⊳. The rule T:Share induces a linear constraint to ensure that the potential is correctly
split between two copies of a variable (Listing 4.3). The rule T:Tick:Pos for the construct tick 𝑞
(𝑞 ≥ 0) induces a linear constraint that the typing context must store 𝑞 units of potential such
that it can pay for the computational cost of running the expression tick 𝑞.

Let𝐶 be a set of linear constraints extracted from the typing trees of the program 𝑃 : 𝑎1 →
𝑎2. RaML [117, 118], an implementation of multivariate AARA, creates a lexicographic linear

program 𝐿 where (i) the constraints are𝐶; and (ii) the objective is to minimize the resource an-
notations of the input resource-annotated type 𝑎1 in a lexicographic order of their polynomial
degrees. That is, we first optimize the sum of all resource annotations of the highest degree sub-
ject to the constraints𝐶 , fixing the resource annotations to their optimal values. We repeat the
same step for the remaining resource annotations in the descending order of their polynomial
degrees.

Alternatively, the objective of the linear program 𝐿 can be to minimize a weighted sum of
all coefficients, with higher weights assigned to higher-degree coefficients. This objective is
adopted in an earlier version of RaML [112].

Finally, the linear program 𝐿 is fed to a linear-program solver (e.g., CLP [82]). If the linear
program 𝐿 has a solution, it translates to a resource-annotated input type 𝑎1 with concrete
resource annotations. It serves as a worst-case polynomial cost bound of the program 𝑃 ’s high-
water-mark cost.

Resource-polymorphic recursion In the typing judgment (4.3.1), the typing context Γ as-
signs to each function variable 𝑓 a possibly infinite set T𝑓 of resource-annotated arrow types.
We let the set T𝑓 contain multiple types to enable resource-polymorphic recursion: a type of
a function 𝑓 can be justified using a different type for 𝑓 ’s recursive call. Furthermore, some
functions require infinite sets T of resource-annotated arrow types. For example, a recursive
function round : 𝐿(int) → 𝐿(int) in Hoffmann [112, §5.4.3] requires an infinite set of types

T ≔ {⟨𝐿𝑞 (int), 0⟩ → ⟨𝐿𝑞 (int), 0⟩ | 𝑞 = 2𝑘 , 𝑘 ∈ N}, (4.4.1)

where the type derivation of round : ⟨𝐿𝑞 (int), 0⟩ → ⟨𝐿𝑞 (int), 0⟩ requires the type round :
⟨𝐿2𝑞 (int), 0⟩ → ⟨𝐿2𝑞 (int), 0⟩ (𝑞 ∈ N) for the recursive call, resulting in an infinite chain of
arrow types.

Infinite sets of resource-annotated types pose a challenge to automatic type inference: we
cannot algorithmically infer infinitely many types one by one. To overcome this challenge, we
can either (i) restrict the sets of resource-annotated arrow types to be finite or (ii) develop a
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finite encoding of infinite sets of resource-annotated arrow types. AARA [112, 113, 116] and
its implementation RaML [117, 118] adopt the first idea, where resource-monomorphic recur-

sion eventually kicks in to terminate the type-inference algorithm. On the other hand, Kahn
[135, §8] pursues the second idea, using linear maps (i.e., transformations represented by ma-
trices) to encode infinite sets of resource-annotated types (e.g. Eq (4.4.1)). However, the idea
of linear maps is not a strict improvement over the original AARA. Since linear maps cannot
represent non-linear transformations (e.g., min) of resource annotations, there exist functions
whose types can be algorithmically inferred by the original AARA and RaML but not by linear
maps.

In the algorithmic type inference in univariate AARA [113], a key idea is to express a
resource-annotated arrow type of a function 𝑓 as the (component-wise) sum of two resource-
annotated arrow types of the same user-specified polynomial degree 𝑑 ∈ N: (i) 𝑓 : a1 → a2
under the tick metric, where the cost is indicated by the construct tick in the source code of the
function 𝑓 ; and (ii) 𝑓 : a1,cf → a2,cf under the cost-free metric, where the computational cost of
running the function 𝑓 is zero. The first tick-metric type is shared by all call sites of the func-
tion 𝑓 in the source code, whereas the second cost-free type is specific to each call site. Thus,
by varying cost-free types of 𝑓 from call site to call site, we can also create multiple distinct
tick-metric types of 𝑓 , one for each call site. Furthermore, a cost-free type 𝑓 : a1,cf → a2,cf
is derived resource-monomorphically: a recursive call to 𝑓 is assigned the same cost-free type
a1,cf → a2,cf as the original call.
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T:Var

𝑥 : a; 0 ⊢ 𝑥 : ⟨a, 0⟩

T:Var:Fun
(𝐴1 → 𝐴2) ∈ T

𝑓 : T ; 0 ⊢ 𝑓 : ⟨𝐴1 → 𝐴2, 0⟩

T:Unit

·; 0 ⊢ ⟨ ⟩ : ⟨unit, 0⟩

T:Int
𝑧 ∈ Z

·; 0 ⊢ 𝑧 : ⟨int, 0⟩

T:Sum:L
𝑥 : 𝑎; 𝑝 ⊢ 𝑥 : 𝐴1

𝑥 : 𝑎; 𝑝 ⊢ left · 𝑥 : ⟨𝐴1 +𝐴2, 0⟩

T:Sum:R
𝑥 : 𝑎; 𝑝 ⊢ 𝑥 : 𝐴2

𝑥 : 𝑎; 𝑝 ⊢ right · 𝑥 : ⟨𝐴1 +𝐴2, 0⟩

T:Case:Sum
Γ, 𝑥1 : 𝑎1; 𝑝1 + 𝑝0 ⊢ 𝑒1 : A Γ, 𝑥2 : 𝑎2; 𝑝2 + 𝑝0 ⊢ 𝑒2 : A

𝑥 : ⟨𝑎1, 𝑝1⟩ + ⟨𝑎2, 𝑝2⟩, Γ;𝑝0 ⊢ case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} : A

T:Prod

𝑥1 : 𝑎1, 𝑥2 : 𝑎2; 0 ⊢ ⟨𝑥1, 𝑥2⟩ : ⟨𝑎1 × 𝑎2, 0⟩

T:Case:Prod
Γ, 𝑥1 : 𝑎1, 𝑥2 : 𝑎2; 𝑝 ⊢ 𝑒 : A

𝑥 : 𝑎1 × 𝑎2, Γ;𝑝 ⊢ case 𝑥 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒} : A

T:List:Empty

·; 0 ⊢ [ ] : ⟨𝐿 ®𝑞 (𝑎), 0⟩

T:List:Cons
®𝑞 = (𝑞1, . . . , 𝑞𝑑 )

𝑥1 : 𝑎, 𝑥2 : 𝐿⊳( ®𝑞) (𝑎);𝑞1 ⊢ 𝑥1 :: 𝑥2 : ⟨𝐿 ®𝑞 (𝑎), 0⟩

T:Case:List
Γ; 𝑝0 ⊢ 𝑒1 : A ®𝑝 = (𝑝1, . . . , 𝑝𝑑 ) Γ, 𝑥1 : 𝑎, 𝑥2 : 𝐿⊳( ®𝑝 ) (𝑎); 𝑝1 + 𝑝0 ⊢ 𝑒2 : A

𝑥 : 𝐿 ®𝑝 (𝑎), Γ;𝑝0 ⊢ case 𝑥 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} : A

T:Fun
∀(⟨𝑎1, 𝑞1⟩ → 𝐴2) ∈ T . ( |Γ |, 𝑓 : T , 𝑥 : 𝑎1;𝑞1 ⊢ 𝑒 : 𝐴2)

Γ; 0 ⊢ fun 𝑓 𝑥 = 𝑒 : ⟨T , 0⟩

T:App
Γ; 0 ⊢ 𝑓 : ⟨⟨𝑎1, 𝑝1⟩ → 𝐴2, 0⟩

Γ, 𝑥 : 𝑎1; 𝑝1 ⊢ 𝑓 𝑥 : 𝐴2

T:Let
Γ1; 𝑝0 ⊢ 𝑒1 : ⟨a1, 𝑝1⟩ Γ2, 𝑥 : a1; 𝑝1 ⊢ 𝑒2 : A2

Γ1, Γ2; 𝑝0 ⊢ let 𝑥 = 𝑒1 in 𝑒2 : A2

T:Share
a . (a1, a2) Γ, 𝑥1 : a1, 𝑥2 : a2;𝑞 ⊢ 𝑒 : A

Γ, 𝑥 : a;𝑞 ⊢ share 𝑥 as 𝑥1, 𝑥2 in 𝑒 : A

T:Tick:Pos
𝑞 ≥ 0

·;𝑞 ⊢ tick 𝑞 : ⟨unit, 0⟩

T:Tick:Neg
𝑞 < 0

·; 0 ⊢ tick 𝑞 : ⟨unit,−𝑞⟩

Lst. 4.2: Syntax-directed typing rules of univariate AARA. The sharing relation a . (a1, a2)
used in T:Share is defined in Listing 4.3.
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SH:Unit

unit . (unit, unit)

SH:Int

int . (int, int)

SH:Prod
𝑎1 . (𝑎1,1, 𝑎1,2) 𝑎2 . (𝑎2,1, 𝑎2,2)
(𝑎1 × 𝑎2) . (𝑎1,1 × 𝑎2,1, 𝑎1,2 × 𝑎2,2)

SH:Sum
𝐴𝑖 = (𝑎𝑖 , 𝑞𝑖 ) 𝑎𝑖 . (𝑎𝑖,1, 𝑎𝑖,2) 𝑞𝑖 = 𝑞𝑖,1 + 𝑞𝑖,2 𝐴𝑖, 𝑗 = (𝑎𝑖, 𝑗 , 𝑞𝑖, 𝑗 ) (𝑖 = 1, 2, 𝑗 = 1, 2)

(𝐴1 +𝐴2) . (𝐴1,1 +𝐴2,1, 𝐴1,2 +𝐴2,2)

SH:List
®𝑞 = ®𝑞1 + ®𝑞2 𝑎 . (𝑎1, 𝑎2)
𝐿 ®𝑞 (𝑎) . (𝐿 ®𝑞1 (𝑎1), 𝐿 ®𝑞2 (𝑎2))

SH:Fun

(𝐴1 → 𝐴2) . (𝐴1 → 𝐴2, 𝐴1 → 𝐴2)

SH:Set

T . (T ,T)

Lst. 4.3: Sharing of resource annotations a . (a1, a2).

T:Sub
Γ; 𝑝 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩ 𝑎 <: 𝑎′

Γ; 𝑝 ⊢ 𝑒 : ⟨𝑎′, 𝑞⟩

T:Sup
Γ, 𝑥 : 𝑎;𝑝 ⊢ 𝑒 : A 𝑎′ <: 𝑎

Γ, 𝑥 : 𝑎′; 𝑝 ⊢ 𝑒 : A

T:Weak
Γ1;𝑞 ⊢ 𝑒 : A

Γ1, Γ2;𝑞 ⊢ 𝑒 : A

T:Relax
Γ; 𝑝2 ⊢ 𝑒 : ⟨a, 𝑞2⟩ 𝑝1 ≥ 𝑝2 𝑝1 − 𝑞1 ≥ 𝑝2 − 𝑞2

Γ; 𝑝1 ⊢ 𝑒 : ⟨a, 𝑞1⟩

Lst. 4.4: Structural rules of univariate AARA. The subtyping relation 𝑎1 <: 𝑎2 in T:Sub and
T:Sup is defined in Listing 4.5.

S:Unit

unit <: unit

S:Int

int <: int

S:Sum
𝑎𝑖 <: 𝑎𝑖+2 𝑞𝑖 ≥ 𝑞𝑖+2 (𝑖 = 1, 2)
⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩ <: ⟨𝑎3, 𝑞3⟩ + ⟨𝑎4, 𝑞4⟩

S:Prod
𝑎1 <: 𝑎3 𝑎2 <: 𝑎4
𝑎1 × 𝑎2 < 𝑎3 × 𝑎4

S:List
®𝑞1 ≥ ®𝑞2 𝑎1 <: 𝑎2
𝐿 ®𝑞1 (𝑎1) <: 𝐿 ®𝑞2 (𝑎2)

S:Fun
𝐴3 <: 𝐴1 𝐴3 <: 𝐴4

𝐴1 → 𝐴2 <: 𝐴3 → 𝐴4

Lst. 4.5: Subtyping relation 𝑎1 <: 𝑎2.
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V:Unit

⟨ ⟩ : unit

V:Int
𝑧 ∈ Z
𝑧 : int

V:Sum:L
𝑣 : 𝑎1

left · 𝑣 : ⟨𝑎1, 𝑞1⟩ +𝐴2

V:Sum:R
𝑣 : 𝑎2

right · 𝑣 : 𝐴1 + ⟨𝑎2, 𝑞2⟩

V:Prod
𝑣1 : 𝑎1 𝑣2 : 𝑎2
⟨𝑣1, 𝑣2⟩ : 𝑎1 × 𝑎2

V:List:Empty

[ ] : 𝐿 ®𝑞 (𝑎)

V:List:Cons
𝑣1 : 𝑎 𝑣2 : 𝐿 ®𝑞 (𝑎)
𝑣1 :: 𝑣2 : 𝐿 ®𝑞 (𝑎)

V:Fun
closure(𝑉 ; 𝑓 , 𝑥 .𝑒) : T (𝐴1 → 𝐴2) ∈ T

closure(𝑉 ; 𝑓 , 𝑥 .𝑒) : 𝐴1 → 𝐴2

V:Set
𝑉 : Γ Γ; 0 ⊢ fun 𝑓 𝑥 = 𝑒 : ⟨T , 0⟩

closure(𝑉 ; 𝑓 , 𝑥 .𝑒) : T

V:Cont
dom(𝑉 ) = dom(Γ) ∀𝑥 ∈ dom(𝑉 ).𝑉 (𝑥) : Γ(𝑥)

𝑉 : Γ

Lst. 4.6: Well-typed values and environments in univariate AARA.
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Chapter 5

Related Work

This chapter reviews existing works related to the thesis. §5.1 discusses existing theoretical
result about undecidability of resource analysis, language-based characterization of complexity
classes, and language-based cost models. §5.2 discusses existing resource-analysis techniques,
including static, data-driven, and interactive analyses.

5.1 Computability, Complexity, and Cost Models

This section discusses existing theoretical results about resource analysis.

Undecidability of resource analysis Various resource-analysis problems of Turing ma-
chines have been shown to be undecidable in the literature. Hájek [103] studies (un)decidability
(and classification in the arithmetic hierarchy) of resource analysis of multi-tape Turing ma-
chines. Hájek [103] first proves that it is undecidable (more precisely, Π0

1-complete) whether a
multi-tape Turing machine halts within 𝑛 + 1 steps on inputs of length 𝑛. Additionally, Hájek
[103] shows that it is undecidable (more precisely, Σ0

2-complete) whether a multi-tape Turing
machines runs in polynomial time with any polynomial degree 𝑑 ∈ N or a fixed polynomial
degree 𝑑 ≥ 1.

Hoffmann [112] shows that it is undecidable whether a given Turing machine terminates in
constant (and also polynomial) time on all input strings.

Gajser [88] organizes and extends existing undecidability results. Gajser [88] first introduces
two classes of resource-analysis decision problems: (i) HALT𝑇 (𝑛) , where 𝑇 (𝑛) is a fixed target
symbolic bound (e.g., 2𝑛 + 3); and (ii) HALTF , where F is a (possibly infinite) set of target
bounds (e.g., all polynomials). Gajser [88] then derives necessary (and sometimes also sufficient)
conditions on the symbolic bounds𝑇 (𝑛) and F for undecidability of resource analysis. Notably,
Gajser [88] analyzes not only multi-tape Turing machines but also one-tape Turing machines,
where the latter is more challenging to analyze than the former. One-tape Turing machines
pose a unique technical challenge because multi-tape Turing machines can simulate a one-tape
Turing machine while counting its number of steps at the same time, whereas one-tape Turing
machines are not capable of such multi-tasking.
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Although input Turing machines under resource analysis are allowed to be partial (i.e., pos-
sibly non-terminating) in the aforementioned works, it is sometimes more sensible to require
input Turing machines to be total (i.e., terminating on all inputs). In this thesis, the restriction
to total Turing machines is motivated by data-driven analysis, which requires Turing machines
to terminate in order to collect cost measurements. Gajser [87] remarks that its undecidability
proofs, which are for partial Turing machines, can be adapted to the setting of total Turing
machines. However, it does not describe how the undecidability proofs should be modified.

Implicit computational complexity Implicit computational complexity (ICC) is a research
field whose goal is to design programming languages that exactly characterize certain complex-
ity classes (e.g., PTIME and PSPACE) by imposing syntactic restrictions on programs [65, 66].
These syntactic restrictions are implicit (hence the name implicit computational complexity)
because they do not explicitly mention the resource usage of programs. To characterize a com-
plexity class 𝐶 , a programming language 𝐿 must be designed such that (i) every program ex-
pressible in the language 𝐿 belongs to the complexity class𝐶 ; and (ii) every computable function
in the complexity class 𝐶 is simulated by some program in the language 𝐿.

Bellantoni and Cook [28] propose a programming language (dubbed BC [65]) that charac-
terizes the set of polynomial-time computable functions. Built on the language of primitive
recursive functions [142], the language BC restricts primitive recursion, which can lead to ex-
ponentially growing functions, by introducing two classes of function parameters: normal and
safe parameters. Primitive recursion is allowed to be performed on normal arguments, but not
safe arguments. In a recursive function, the output of a recursive call is a safe argument. Hence,
we are not allowed to perform another (inner) recursion on the recursive call’s output.

Hofmann [119] extends the language BC to a higher-order primitive recursion. In the lan-
guage of primitive recursive functions [142], on which BC is based, all functions are first-order:
they map natural numbers to natural numbers. In higher-order primitive recursion (as in Sys-
tem T of Gödel), the primitive-recursion operator is allowed to return higher-order functions.
In the language SLR, normal and safe parameters are tracked by a type system equipped with
a type modality □ from the modal logic S4. If we stop here, the resulting language contains
exponential-time functions [65, 154]. To further trim the set of expressible programs, Hofmann
[119] additionally imposes a linear constraint on the usage of higher-order functions.

Although the languages BC and SLR exactly capture polynomial-time functions, they can-
not express some real-world polynomial-time algorithms (e.g., insertion sort [120]). This is
because these algorithms apply (inner) primitive recursion to the output of the outer primitive
recursion’s recursive call, but such nested recursion is disallowed in BC and SLR.

To fix this issue, Hofmann [120] introduces a language commonly known as Linear Func-
tional Programming Language (LFPL) in the literature [20, 121, 122]. To prune super-polynomial-
time computation, LFPL ensures that all computation is non-size-increasing while permitting
nested recursion. To prevent output sizes from growing excessively, LFPL uses a diamond type
⋄ to represent a resource, which is spawned by primitive recursion and can be used to pay for
a type constructor. The idea of a type capturing resources has led to the development of a type
system for inferring polynomial cost bounds, namely Automatic Amortized Resource Analysis
(AARA) [113, 116, 122]. LFPL has been extended to EXPTIME by replacing primitive recursion
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with general recursion [126].
Atkey [20] develops dependent type systems that capture polynomial-time computation.

One of the two dependent type systems in Atkey [20] incorporates ideas from LFPL.
Another major line of research on ICC stems from linear logic [91]. In logics, computation

is represented by proof reduction, which is a process of iteratively simplifying proofs. Linear-
logic-based approaches to ICC differ from type-based approaches (e.g., SLR and LFPL) in how
they avoid unfettered complexity explosion: the former controls duplication of function argu-
ments, while the latter controls the depth of recursion [65, §2]. Soft linear logic by Lafont [149],
light linear logic by Girard [92], light affine logic by Asperti and Roversi [18], and bounded lin-
ear logic by Girard et al. [93] all capture polynomial-time computation. Some linear logics have
been translated to programming languages (e.g., Baillot and Mogbil [26], Gaboardi and Rocca
[85] for PTIME and Gaboardi et al. [86] for PSPACE).

Language-based cost models Traditionally, computational costs (e.g., time and space) are
defined on machines (e.g., Turing machines and the PRAM model [84]). However, for resource
analysis of programs, it is more convenient to work with computational costs directly defined
in languages (e.g., 𝜆-calculi and programming languages). A language-based cost model is said
to be reasonable if this model and Turing machine’s cost model can simulate each other with a
polynomial overhead in time and a constant overhead1in space [210].

Although a natural cost model for the vanilla 𝜆-calculus is the number of 𝛽-reductions, it
is non-trivial to prove that it is a reasonable cost model because substitutions in the 𝜆-calculus
lead to exponential size explosion of expressions [5]. A workaround is to encode 𝜆-terms more
compactly by allowing subexpressions to be shared. Blelloch and Greiner [34, 35] present a
language-based cost model of the weak call-by-value 𝜆-calculus, proving that it can be mapped
to the cost model of the PRAM. Subsequent works extend language-based cost models to other
evaluation strategies, such as strong call-by-value evaluation by Accattoli and Dal Lago [6],
Accattoli et al. [7], Biernacka et al. [32]. Forster et al. [83] present a mechanized proof that the
weak call-by-value 𝜆 calculus and Turing machines can simulate each other with a polynomial
overhead in time. More recently, Accattoli et al. [8] present a language-based cost model that
accounts for logarithmic space usage.

5.2 Resource Analysis

This section discusses existing resource-analysis techniques. They are classified into three cat-
egories: static analysis (§5.2.1), data-driven analysis (§5.2.2), and interactive analysis (§5.2.3).

5.2.1 Static Resource Analysis

This section reviews the literature of static resource analysis, which automatically infers sym-
bolic cost bounds by analyzing the source code of input programs.

1While Slot and van Emde Boas [210] require the space overhead to be constant, Accattoli et al. [8] allow the
space overhead to be linear.
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AARA Automatic Amortized Resource Analysis (AARA) is a type-based resource-analysis
technique that automatically infers polynomial cost bounds. AARA automates the potential
method of amortized analysis [208, 209, 213], and AARA’s types encode the amount of potential
stored inside program variables. Type inference in AARA is fully automatic because all numeric
constraints are linear and hence can be solved a linear-program (LP) solver (e.g., CLP [82]).

The development of AARA was inspired by the resource-capturing type ⋄ used to control
size growth in LFPL [120, 121]. Hofmann and Jost [122] present the first version of AARA
that infers linear bounds on heap space usage of first-order functional programs. Subsequently,
Hoffmann and Hofmann [113] develop univariate polynomial AARA, and Hoffmann et al. [116]
develop multivariate polynomial AARA. Resource-Aware ML (RaML) [117, 118] is an imple-
mentation of multivariate polynomial AARA for analyzing OCaml programs. AARA has been
adapted to infer exponential bounds [135, 136] and logarithmic bounds [126, 156, 157]. How-
ever, it has remained a challenge to develop an AARA-like type system that can automatically
infer symbolic bounds where polynomials and logarithm coexist (e.g., 𝑂 (𝑛 log𝑛) for Merge-
Sort). Hoffmann and Jost [114] give a survey on AARA.

AARA is the only type-based resource analysis capable of automatic bound inference. Other
type-based approaches that are capable of automatic verification, but not automatic inference,
are discussed in §5.2.3.

Numerous advanced programming features have been incorporated into AARA. Examples
include refinement types [143, 144], higher-order functions [134], side effects [158], lazy evalu-
ation [205, 217], and recursive types [99]. Beyond functional programming, AARA has been ex-
tended to various programming paradigms: imperative programs [43], parallel programs [115],
probabilistic programs [157, 177, 220], and session-typed concurrent programs [69, 70].

Hybrid AARA [188] (§7) builds on AARA. The type system of AARA is extended such that
user-specified code fragments are allowed to be treated as black boxes (i.e., leaves in typing
trees). These code fragments are analyzed by non-AARA resource analysis (e.g., data-driven
resource analysis) to infer their resource-annotated types, which are then plugged into the typ-
ing tree inferred by AARA. Thus, resource-annotated types serve as an interface between two
constituent analysis techniques combined by Hybrid AARA. A technical challenge in Hybrid
AARA is that resource-annotated types inferred by data-driven analysis (e.g., Bayesian data-
driven analysis) must respect the linear constraints produced by AARA’s type system.

Resource decomposition (§8) addresses a drawback of polynomial AARA andHybrid AARA:
they can only automatically infer polynomial cost bounds. By integrating static and data-driven
analyses, resource decomposition achieves automatic inference of cost bounds where polyno-
mials and logarithm coexist (e.g.,𝑂 (𝑛 log𝑛) forMergeSort), albeit at the expense of soundness.
Automatic inference of such bounds has been an open challenge in purely static resource anal-
ysis. ATLAS [126, 156, 157] is a variant of AARA that automatically infers logarithmic cost
bounds (i.e., 𝑂 (log𝑛)) for splay-tree operations. However, ATLAS cannot infer more sophisti-
cated cost bounds such as𝑂 (𝑛2 log𝑛), because ATLAS uses potential functions tailored to splay
trees. More generally, it is an open challenge to design a family of potential functions that (i) ad-
mit both polynomials and logarithm; (ii) are closed under some operations (e.g., resource-an-
notation sharing and constructors and destructors of data types); and (iii) are amenable to au-
tomated reasoning. To overcome this challenge, resource decomposition decomposes resource
analysis into two analysis techniques, where one of them (e.g., data-driven analysis) infers log-
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arithmic parts of an overall cost bound.

Recurrence relations Recurrence relations are equations defining the symbolic cost bound
of a function 𝑓 in terms of the symbolic cost bounds of 𝑓 ’s recursive calls. Wegbreit [223], the
first to study static resource analysis, adopts a recurrence-relation-basedmethod. Grobauer [97]
describes how to automatically extract recurrence relations fromDependentML programs [231].
Program-analysis tools that use recurrence relations include CiaoPP [108, 159, 201, 202] and
COSTA [9, 10, 11]. The correctness of recurrence-relation extraction has been formulated and
proved using logical relations in Cutler et al. [64], Danner et al. [68], Kavvos et al. [139]. Solving
recurrence relations has been investigated in Breck et al. [37], Farzan and Kincaid [77], Kincaid
et al. [140, 141].

Term rewriting Term rewrite systems are a low-level programming model where terms are
repeatedly transformed according to rewrite rules. Term rewrite systems serve as an abstract
and unifying model of functional programming free of language-specific details. Resource anal-
ysis of term rewrite systems has been investigated [22, 23, 123, 174]. A resource-analysis tool
TcT [24] first translates programs (e.g., OCaml functional programs and object-oriented byte-
code) to term rewrite systems and then conducts resource analysis.

Ranking functions Given a loop or a recursive function, a ranking function is a numeric
function that is bounded below and strictly decreases after each iteration or each recursive call.
Although ranking functions are typically derived to prove termination, they can also be used to
derive cost bounds. Existing works include KoAT [38, 39, 90], Loopus [206], and CoFloCo [81].
Chatterjee et al. [53] investigate inference of non-polynomial bounds from ranking functions.
COSTA [9, 10, 11] uses ranking functions to solve recurrence relations.

Invariant generation Invariants are logical formulas that always hold at certain program
points every time they are visited. Analysis methods developed by Gulavani and Gulwani [101],
Gulwani et al. [102], Zuleger et al. [235] obtain invariants by abstract interpretation and extract
symbolic cost bounds from the invariants.

SPEED [102] leverages counters to statically infer symbolic cost bounds of imperative pro-
grams. Counters track the number of timeswe follow back-edges in a call graph (i.e., the number
of loop iterations and recursive calls) at runtime. SPEED employs a linear-invariant generation
tool to infer linear bounds on the counters. An overall cost bound is obtained by summing and
multiplying the counters’ linear bounds appropriately.

Although counters in SPEED and resource guards in resource decomposition (§8) are simi-
lar, they have two differences. Firstly, counters in SPEED only track back-edges in a call graph,
while resource guards in resource decomposition can track any custom quantities (e.g., recur-
sion depths of functions) as long as they can be expressed as high-water marks of annotations
mark and unmark (§8.1.1). Secondly, SPEED requires counters’ symbolic bounds to be linear
due to its reliance on linear-invariant generation tools, while resource guards in resource de-
composition can be substituted with any symbolic bounds, including non-polynomial bounds.
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5.2.2 Data-Driven Resource Analysis

This section reviews the literature of data-driven resource analysis. It first runs an input pro-
gram on many inputs to construct a dataset of cost measurements and then statistically infers
a symbolic cost bound from the dataset.

Experimental algorithmics Pioneered by Mcgeoch [167], experimental algorithmics [73,
133, 165, 166, 173, 200] is a research field that concerns the inference of algorithmic complexity,
particularly asymptotic complexity, from experiment data. The goal of experimental algorith-
mics is to supplement pen-and-paper analysis of asymptotic complexity of algorithmswith their
empirical analysis.

Data-driven resource analysis Program profilers that run an input program on many in-
puts to infer a symbolic cost bound include the trend profiler [94], algorithmic profiling [234],
and input-sensitive profiling [60]. Huang et al. [127] present data-driven resource analysis that
first automatically extracts a large number of features from an input program and then per-
forms sparse polynomial regression to infer a polynomial cost bound in terms of a few features.
Rogora et al. [195] develop a language of symbolic cost bounds that come with deterministic
and probabilistic conditionals.

Chambon et al. [51] apply optimization-based data-driven resource analysis to Python pro-
grams to construct a coding benchmark suite BigO(Bench). The benchmark suite contains
(i) coding problem descriptions collected from an online competitive programming platform;
(ii) human solutions; and (iii) their complexity (in terms of running time and space usage).
BigO(Bench) is used to evaluate the ability of large language models (LLMs) to reason about
program complexity and synthesize code with desirable complexity.

Instead of treating input program as black boxes, data-driven resource analysis can be aug-
mented with information from the source code. For example, Demontiê et al. [74] present a
more fine-grained data-driven analysis technique than input-sensitive profiling [60]. Given an
imperative program 𝑃 , instead of performing data-driven analysis on the entire program 𝑃 , their
technique performs data-driven analysis on each loop in the program 𝑃 . An overall cost bound
of the program 𝑃 is the sum of individual loops’ cost bounds.

Dynaplex [131] first infers a recurrence relation of a recursive program from its execution
traces by optimization and then solves the recurrence relation by the master theorem.

Rustenholz et al. [197, 198] use machine learning (specifically sparse linear regression and
evolutionary-search-based symbolic regression) to guess candidate solutions to recurrence re-
lations and then formally verify them by SMT solvers.

These data-driven techniques all use optimization (e.g., polynomial regression) to statis-
tically infer symbolic bounds. Furthermore, these techniques do not let the user adjust how
conservative inferred symbolic bounds are based on the user’s domain knowledge.

5.2.3 Interactive Resource Analysis

This section reviews the literature of interactive resource analysis. The user first provides a
candidate cost bound. The bound can be either automatically verified by SMT solvers (e.g.,
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Z3 [72] is used in TiML [222]) or interactively verified by collaborating with a proof assistant
(e.g., Agda [182] is used in calf [180], and Coq [29] is used in Iris with time credits [52, 168]).

Automatic verification Among type-based resource analyses, AARA is the only one capable
of automatic bound inference. Other type-based analyses are capable of automatic verification,
but lack automatic inference. Such analyses all use refinement types or indexed types annotated
with information about resources. Examples include typed assembly language [62], TiML [222],
Liquid Haskell [104], liquid resource types [143, 144], and sized types [21, 218].

Interactive verification The literature offers a large body of work on manual (or semi-
automatic) inference and verification of cost bounds. For example, potential-based reason-
ing has been integrated with (concurrent) separation logic [19, 52, 168, 172] and higher-order
logic [178]. Other techniques are based on dependent types [67, 98, 150, 180]. Relational cost
analysis [54, 55] is a refinement-type system for reasoning about symbolic bounds on a differ-
ence in costs between two programs.

In a cost-aware logical framework (calf) [180], a program is instrumented with an extra
input variable, called a clock, to track the recursion depth. Although clocks in calf and re-
source guards in resource decomposition (§8) behave similarly, they have two major differ-
ences. Firstly, clocks are motivated by the need to ensure termination of programs in total type
theory, while resource guards are motivated by the desire to integrate complementary analysis
methods. Secondly, clocks track recursion depths, while resource guards track a wider variety
of user-specified quantities.

5.3 Input Generation

This section reviews the literature on worst-case input generation and property-based testing.

5.3.1 Worst-Case Input Generation

Given a program, worst-case inputs refer to program inputs that trigger the worst-case costs of
the program, given a fixed (but possibly large) input size. Many techniques have been developed
to identify worst-case inputs, with or without soundness guarantees. These techniques are
classified into two families:

1. Techniques that identify worst-case execution paths by symbolic execution and obtain
the corresponding worst-case program inputs by SMT solving; and

2. Techniques that perform fuzzing to explore the space of program inputs and return inputs
with the highest costs.

Symbolic execution Burnim et al. [42] propose WISE, the first technique for worst-case
input generation. Given a target program 𝑃 , WISE first exhaustively explores the space of small
program inputs by symbolic execution, identifying execution paths that incur the highest cost.
These execution paths are then generalized into a pattern𝐺 (called a branch-policy generator)
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that determines which branch of an if-else statement in the source code should be taken in order
to achieve the worst-case cost. The branch dictated by the generator𝐺 must be taken whenever
the same if-else statement is encountered during program execution and both branches are
feasible. Next, for a larger input size, the program 𝑃 is symbolically executed while following
an execution path 𝜋 according to the generator𝐺 . Finally, the execution path 𝜋 is solved using
an SMT solver.

SPF-WCA [160] extendsWISE by extending generators from branch policies to path policies.
Unlike branch policies in WISE [42], path policies in SPF-WCA [160] take into account the
history of past branch choices.

Wang and Hoffmann [219] develop a type-based approach to worst-case input generation.
Unlike WISE [42] and SPF-WCA [160], whose outputs are not guaranteed to be worst-case
inputs, type-guided worst-case input generation [219] guarantees that the returned program
inputs are worst-case inputs. In this approach, given a program 𝑃 , Conventional AARA is
performed to derive a resource-annotated typing tree of the program 𝑃 . For a fixed input size,
the program 𝑃 is symbolically executed while traversing the resource-annotated typing tree.
The goal of symbolic execution is to find an execution path 𝜋 where no potential is discarded
according to the typing tree. Once such an execution path 𝜋 is discovered, a corresponding
program input is derived by solving 𝜋 ’s path constraints.

Fuzzing Resource-guided fuzzing runs a genetic algorithm in the space of program inputs,
where the objective is to maximize the computational cost of a target program. Being heuristic-
based, fuzzing does not guarantee its outputs to be worst-case program inputs. SlowFuzz [185]
is the first fuzzer that aims to generate worst-case program inputs. Subsequent works on
resource-guided fuzzing include PerfFuzz [155], Saffron [152], andMemLock [226]. Badger [181]
is a hybrid approach toworst-case input generation, combining symbolic execution and fuzzing.

Wu andWang [230] observe that worst-case input generation of a target program 𝑃 is equiv-
alent to maximum-a-posteriori (MAP) estimation of a probabilistic model/program 𝜋 whose
density is equal to the cost of the program 𝑃 . They develop DSE-SMC, which combines Se-
quential Monte Carlo (SMC) with an evolutionary algorithm (e.g., a genetic algorithm).

Pattern fuzzing Wei et al. [224] extend resource-guided fuzzing from fixed-size program
inputs to patterns of variable-length inputs (e.g., sorted lists and lists of identical elements),
resulting in so-called pattern fuzzing. They first present a domain-specific language (DSL) of
program-input generators, which are programs producing values of varying sizes. The output
values of a generator are used to collect cost measurements of a target program and infer its
asymptotic complexity. Wei et al. [224] then develop a pattern fuzzer called Singularity. Their
empirical evaluation shows that pattern fuzzing is more scalable than fuzzing of fixed-size data
structures as target input sizes grow larger.

Although the generators developed in §9 also adopt the idea of pattern fuzzing, they differ
from the generators in Singularity [224] in three aspects. Firstly, the generators in §9 are prob-
abilistic: every time they are executed, they can generate different values of a user-specified
size. In fact, the probabilistic generators have a small yet positive probability of deviating from
the standard behavior: the generators instead sample integers from a broad interval. That is,
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once a target size is fixed, any value of that size has a positive probability of being produced
by probabilistic generators. On the other hand, Singularity’s generators are deterministic: they
always produce the same values every time they are executed. Secondly, the generators in §9
can handle all algebraic data types, whereas the generators in Singularity only support integers,
lists, and graphs by default. As a consequence of this difference in the supported types, the two
kinds of generators differ in how they build larger values from smaller ones. The generators
in §9 build larger values using data constructors, while Singularity’s generators do so using
operators (e.g., arithmetic operations, length of lists, append, and list concatenation). Lastly,
the generators in §9 can generate values of any target size as long as it is feasible. By contrast,
Singularity’s generators may only be able to generate data structures of certain sizes (e.g., lists
of odd lengths [224, §2.2]).

5.3.2 Property-Based Testing

Property-based testing (PBT) is a program-testing paradigm where a user writes a program
specification of the form 𝑄1(𝑥) =⇒ 𝑄2(𝑦), where a precondition 𝑄1(𝑥) (𝑥 is an input) and
a postcondition 𝑄2(𝑦) (𝑦 is an output) are written in the same programming language as the
program under test [95, 151]. Given a program 𝑃 (𝑥) under test, a PBT tool generates many
program inputs, checking whether the specification 𝑄1(𝑥) =⇒ 𝑄2(𝑦) holds for each input-
output pair (𝑥, 𝑃 (𝑥)).

PBT was pioneered by the tool QuickCheck developed by Claessen and Hughes [57] for
Haskell. QuickCheck [57] offers built-in generators for some types (e.g., integer lists), but it
also allows a user to define custom generators.

The generators developed in §9 are different from QuickCheck in their expressiveness. §9
defines a (fairly restrictive) language of generators for an arbitrary target algebraic data type.
An optimization algorithm (specifically a genetic algorithm) automatically searches this space
of generators for a worst-case-input generator. Meanwhile, QuickCheck does not offer a gen-
erator out of the box for an arbitrary data type, especially a user-defined one. Claessen and
Hughes [57] state that, although they could use polytypic typing to automatically synthesize
a generator for an arbitrary algebraic data type, they choose not to do so. This is because it
is difficult to automatically synthesize a high-quality generator (i.e., a generator that satisfies
a precondition 𝑄1(𝑥) with a high probability). In return, QuickCheck lets the user define cus-
tom generators in Haskell, which is a Turing-complete language. Thus, QuickCheck is more
expressive than the language of generators in §9.

The second difference between the generators in §9 and QuickCheck is how the user spec-
ifies a target size. In §9, the size of a value is given by the number of data constructors (i.e.,
fold𝑡 (·) for a type name 𝑡 ). Meanwhile, QuickCheck does not formally define the size of a
value—the user defines an appropriate size measure and incorporates it into a custom genera-
tor.
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Chapter 6

Expressiveness of Resource Analysis

This chapter discusses negative and positive theoretical results on the expressiveness of re-
source analysis. It is natural to ask whether resource analysis can analyze all programs in a
Turing-complete programming language. To study (un)decidability of resource analysis, I first
frame it as a decision problem in three different ways. Resource analysis, when viewed as a
decision problem, has been proved to be undecidable in the literature [88, 103, 112]. Hence, for
any resource-analysis technique, if it is sound, then it must be incomplete. Furthermore, I prove
a stronger result: resource analysis remains undecidable even if we assume that input programs
terminate on all inputs (i.e., we can run programs on any input and measure the resource usage
when the programs terminate).

§6.1 sets the stage by defining Turing machines and halting problems. §6.2 then frames re-
source analysis as decision problems. Finally, §6.3 presents existing results on the undecidabil-
ity of resource analysis [88, 103, 112] and proves stronger undecidability results when resource
analysis are only applied to total Turing machines.

Next, §6.4 shows that a typable fragment of static resource analysis AARA is polytime com-

plete: for any polytime function 𝑓 , there exists a program 𝑃𝑓 with the same input-output behav-
ior and cost as the function 𝑓 such that the program 𝑃𝑓 is typable in AARA. The proof assumes
that the polynomial time bound of the function 𝑓 is known. A key proof idea is to encode a
working tape of a Turing machine as a list of length 𝑓 (𝑛), where 𝑛 is the input length, in such a
way that the list can be typed in AARA. The idea of encoding a cost bound as a list also appears
in the development of the second hybrid resource analysis, resource decomposition (§8).

The word “completeness” in incompleteness (§6.3) and polytime completeness (§6.4) refers to
properties of two different objects: the former is a property of resource-analysis techniques,
while the latter is a property of a class of programs.

6.1 Setting the Stage

This section sets the stage by first defining one-tape and multi-tape Turing machines and then
introducing halting problems. I introduce both one-tape and multi-tape Turing machines be-
cause halting problems are formulated using one-tape Turing machines, while decision prob-
lems of resource analysis are formulated using multi-tape Turing machines (§6.2). In §6.3, I
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reduce a halting problem to resource-analysis decision problems, thereby proving their unde-
cidability.

One-tape Turing machines Turing machines are used as a computational model to formu-
late and prove undecidability of resource analysis. I first introduce one-tape Turing machines,
which are used to formulate halting problems.
Definition 6.1.1 (One-tape Turing machine [207]). A one-tape Turing machine𝑀 is a 7-tuple

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject), (6.1.1)

where

• 𝑄 is a finite set of states.

• Σ is a finite alphabet of input symbols, and Γ ⊇ Σ∪ {⊥} is a finite alphabet of tape symbols

The tape alphabet Γ contains all input symbols Σ and the blank symbol ⊥ ∉ Σ.
• 𝛿 : 𝑄 × Γ → 𝑄 × Γ × {left, right} is the transition function.

• 𝑞0 ∈ 𝑄 is the initial state; 𝑞accept ∈ 𝑄 is the accept state; and 𝑞reject ∈ 𝑄 is the reject state.

These three states are all distinct.

A one-tape Turing machine 𝑀 comes with a semi-infinite read-write tape. In the initial
configuration, an input string𝑤 ∈ Σ∗ is placed on the tape (to the left of the semi-infinite tape).
Also, the initial state of the machine is 𝑞0, and the read/write head is positioned on the first cell
of the tape (i.e., on the first symbol of the input string𝑤 ). The rest of the tape is filled with the
blank symbol ⊥ ∈ Γ.

The one-tape Turing machine 𝑀 runs as follows. In each step, let 𝑎 ∈ Σ be the character
in the cell currently under the tape head and 𝑞 ∈ 𝑄 be the current state 𝑞 ∈ 𝑄 of the machine.
The machine then overwrites the current cell (if necessary), updates the machine’s state, and
moves the head to the left or right according to the output 𝛿 (𝑎, 𝑞) of the transition function.
This step is repeated until the machine enters either 𝑞accept ∈ 𝑄 or 𝑞reject ∈ 𝑄 . If the accept state
𝑞accept is reached, the input word 𝑤 is accepted. If the reject state 𝑞reject is reached, the input
word𝑤 is rejected. It is possible that the Turing machine runs forever, in which case the input
𝑤 is neither accepted nor rejected.

The running time of a Turing machine𝑀 for an input𝑤 is given by the number of steps the
machine𝑀 makes on the input𝑤 before termination (if it does).

Multi-tape Turing machines Next, I introduce multi-tape Turing machines, which oper-
ate on a read-only input tape and (one or more) read-write working tapes. Multi-tape Turing
machines are used to formulate decision problems of resource analysis (§6.2).
Definition 6.1.2 (Multi-tape Turingmachine [207]). Amulti-tape Turing machine𝑀 is a 7-tuple

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject), (6.1.2)

just like in one-tape Turing machines (Defn. 6.1.1), except that the multi-tape Turing machine 𝑀

operates on 𝑘 ≥ 2 tapes. One tape is a read-only input semi-infinite tape that stores an input

𝑤 ∈ Σ∗, and the remaining 𝑘 − 1 tapes are read-write working semi-infinite tapes. The transition

function is now 𝛿 : 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘−1×{left, right}𝑘−1, where 𝑘 is the number of tapes (including
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the read-only input tape). Multi-tape Turing machines operate on all tapes (i.e., writing to them

and moving their tape heads) in a single step.

Multi-tape Turing machines do not generalize one-tape Turing machines. The former has a
read-only input tape and (one or more) read-write working tapes, while the latter has a single
tape that stores the input and also acts as a working tape. It is possible to show that one-tape
and multi-tape Turing machines are equally expressive because they can simulate each other,
although their simulation does not preserve running time.

Halting problems A standard halting problem is to decide whether a given one-tape Turing
machine𝑀 halts on a given input𝑤 :

HALT1 ≔ {⟨𝑀,𝑤⟩ | one-tape Turing machine𝑀 halts on input𝑤}. (6.1.3)
HALT1 is undecidable [207, §5.1]. That is, there exist no Turing machines that accept every
⟨𝑀,𝑤⟩ ∈ HALT1 and reject every ⟨𝑀,𝑤⟩ ∉ HALT1.

To prove that a decision problem is undecidable, a common strategy is to reduce a known
undecidable problem (e.g., HALT1) to the problem at hand. To prove undecidability of resource
analysis (§6.3), I reduce the following variant of the halting problem, which is also undecidable,
to resource analysis’s decision problems.
Theorem 6.1.1 (Variant of the halting problem). Consider a variant of the halting problem:

HALT1
𝜖 ≔ {⟨𝑀⟩ | one-tape Turing machine𝑀 halts on input 𝜖}, (6.1.4)

where ⟨𝑀⟩ denotes an encoding of a Turing machine 𝑀 and 𝜖 is the empty string. The language

HALT1
𝜖 is undecidable.

Thm. 6.1.1 is proved by reducing the standard halting problem HALT1 (6.1.3) to HALT1
𝜖 .

6.2 Decision Problems of Resource Analysis

To study (un)decidability of resource analysis, I frame it as a decision problem. Resource anal-
ysis (e.g., AARA [112, 113, 116]) is a computational problem where answers are symbolic cost
bounds encoded in some format (e.g., coefficients of polynomial cost bounds). Meanwhile, de-
cidability is only defined for decision problems where answers are yes or no.

Without loss of generality, the resource metric of interest is the running time of Turing
machines. The undecidability of resource analysis under the time metric can be extended to
the tick metric, which is more general than the time metric.

6.2.1 Partial Computation

Resource analysis can be framed as a decision problem in three ways. In all formulations, a
resource-analysis decision problem asks whether an input Turing machine 𝑀 has a symbolic
bound 𝑓 ( |𝑤 |) on the running time for all input strings 𝑤 . Here, Turing machines represent
partial computation: they are allowed to run forever. The difference between the three formu-
lations lies in how target symbolic bounds are chosen: the first formulation fixes a single target
bound, while the second formulation considers a set of target bounds, and the third formulation
treats a target bound as an input.
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First formulation Wefirst fix a symbolic cost bound 𝑓 ( |𝑤 |) (e.g., 2|𝑤 |+3), where |𝑤 | denotes
the length of an input string𝑤 to a Turing machine. The decision problem asks, given a Turing
machine𝑀 , whether it will halt within 𝑓 ( |𝑤 |) steps for all input strings𝑤 .
Definition 6.2.1 (First resource-analysis decision problem). Given a symbolic bound 𝑓 : N →
Q≥0, a resource-analysis decision problem HALTpar

𝑓
is defined as

HALTpar
𝑓

≔ {⟨𝑀⟩ | ∀𝑤 ∈ Σ∗.multi-tape TM𝑀 halts within 𝑓 ( |𝑤 |) steps on input𝑤}, (6.2.1)

where Σ is an input alphabet of Turing machines (TM). Note that this decision problem concerns

multi-tape Turing machines as opposed to one-tape ones.

Existing resource-analysis techniques, which infer symbolic bounds, can be retrofitted to
answer the decision problem HALTpar

𝑓
. For example, for AARA, if a symbolic bound 𝑓 ( |𝑤 |) is

a polynomial bound of degree 𝑑 ∈ N, we run AARA on an input program with the polynomial
degree 𝑑 . If AARA returns a polynomial bound 𝑔( |𝑤 |), we compare the coefficients of polyno-
mials 𝑓 and 𝑔. If 𝑔 is smaller than or equal to 𝑓 in all coefficients, then it means that 𝑓 ( |𝑤 |) is a
sound cost bound of an input program/Turing machine, thanks to the soundness guarantee of
AARA (Thm. 4.3.1). Otherwise, if AARA fails to infer any polynomial bound 𝑔 or the polyno-
mial 𝑔 inferred by AARA is larger than the polynomial 𝑓 in some coefficient, then we report no
to the decision problem (although we cannot draw any definitive conclusions about the input
program/Turing machine).

Second formulation In the second formulation of resource analysis as a decision problem,
we fix a (possibly infinite) set 𝐹 of symbolic cost bounds of typeN→ Q≥0. The decision problem
then asks whether an input Turing machine 𝑀 has some symbolic cost bound 𝑓 ( |𝑤 |) ∈ 𝐹

on the running time. Thus, the second formulation subsumes the first formulation HALTpar
𝑓

(Defn. 6.2.1) by setting 𝐹 ≔ {𝑓 }. Examples of the set 𝐹 include (i) all constant (i.e., degree-zero
polynomial) bounds; (ii) all polynomials of a fixed degree 𝑑 ∈ N; and (iii) all polynomials (of
any degree).
Definition 6.2.2 (Second resource-analysis decision problem). Given a (possibly infinite) set 𝐹

of symbolic bounds 𝑓 : N→ Q≥0, a resource-analysis decision problem HALTpar
𝐹

is

HALTpar
𝐹

≔ {⟨𝑀⟩ |∃𝑓 ∈ 𝐹 .∀𝑤 ∈ Σ∗.multi-tape TM𝑀 halts within

𝑓 ( |𝑤 |) steps on input𝑤},
(6.2.2)

where Σ is an input alphabet of Turing machines (TM).

Again, we can retrofit existing resource-analysis techniques to answer the decision problem
HALTpar

𝐹
. For example, in AARA, suppose the user specifies a polynomial degree 𝑑 ∈ N. If

AARA successfully infers a polynomial bound, then we return yes to the decision problem.
Otherwise, if AARA fails to infer a polynomial bound (i.e., linear constraints collected from
AARA’s type system are infeasible), we return no to the decision problem.

Third formulation The third formulation is identical to the first one HALTpar
𝑓

(Defn. 6.2.1),
except that a target symbolic bound 𝑓 : N → Q≥0 is given as an extra input of the decision
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problem. Here, we assume that a target symbolic bound 𝑓 can be encoded in some way. For
example, polynomial bounds can be encoded by their coefficients, and computable functions
can be encoded by their corresponding total (i.e., terminating) Turing machines.
Definition 6.2.3 (Third resource-analysis decision problem). Consider a (possibly infinite) set 𝐹
of symbolic cost bounds 𝑓 : N→ Q≥0. A resource-analysis decision problemHALTpar

input,𝐹 is defined

as

HALTpar
input,𝐹 ≔ {⟨𝑀, 𝑓 ⟩ |𝑓 ∈ 𝐹,∀𝑤 ∈ Σ∗.multi-tape TM𝑀 halts within

𝑓 ( |𝑤 |) steps on input𝑤},
(6.2.3)

where Σ is an input alphabet of Turing machines (TM).

All resource-analysis decision problems in Defns. 6.2.1–6.2.3 are undecidable under some
conditions on target cost bounds 𝑓 and 𝐹 (§6.3.1).

6.2.2 Total Computation

In the decision problems 6.2.1–6.2.3, input Turing machines represent partial computation (i.e.,
possibly non-terminating computation). These decision problems on partial computation have
been considered in existing works [88, 103, 112].

However, it is sometimes sensible to require that input Turing machines should be total (i.e.,
they terminate). This requirement is motivated by data-driven resource analysis. Data-driven
analysis runs an input program 𝑃 (𝑥) onmany inputs𝑥1, . . . , 𝑥𝑁 and constructs a datasetD of 𝑃 ’s
cost measurements. To record cost measurements, the program 𝑃 must terminate on all inputs
(or at least those inputs used for constructing the dataset D). Therefore, data-driven resource
analysis is only applicable to terminating programs. In the presence of data-driven analysis,
an interesting theoretical question is: is resource analysis decidable if we assume that data-
driven analysis is applicable (i.e., input programs are guaranteed to terminate)? Put differently,
does the ability to run programs on any inputs and measure their cost measurements upon
termination buy us any additional power in resource analysis?

To this end, I introduce total computation’s counterparts of the resource-analysis decision
problems 6.2.1–6.2.3.
Definition 6.2.4 (First resource-analysis decision problem for toal computation). Given a sym-

bolic bound 𝑓 : N→ Q≥0, a resource-analysis decision problem HALTtot
𝑓

is defined as

HALTtot
𝑓

≔ {⟨𝑀⟩ |∀𝑤 ∈ Σ∗.total multi-tape TM𝑀 halts within

𝑓 ( |𝑤 |) steps on input𝑤},
(6.2.4)

where Σ is an input alphabet of Turing machines (TM).

Definition 6.2.5 (Second resource-analysis decision problem for total computation). Given a

(possibly infinite) set 𝐹 of symbolic bounds 𝑓 : N → Q≥0, a resource-analysis decision problem

HALTtot
𝐹

is

HALTtot
𝐹 ≔ {⟨𝑀⟩ |∃𝑓 ∈ 𝐹 .∀𝑤 ∈ Σ∗.total multi-tape TM𝑀 halts within

𝑓 ( |𝑤 |) steps on input𝑤},
(6.2.5)

where Σ is an input alphabet of Turing machines (TM).
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Definition 6.2.6 (Third resource-analysis decision problem for total computation). Consider
a (possibly infinite) set 𝐹 of symbolic cost bounds 𝑓 : N → Q≥0. A resource-analysis decision

problem HALTtot
input,𝐹 is defined as

HALTtot
input,𝐹 ≔ {⟨𝑀, 𝑓 ⟩ |𝑓 ∈ 𝐹,∀𝑤 ∈ Σ∗.total multi-tape TM𝑀 halts within

𝑓 ( |𝑤 |) steps on input𝑤},
(6.2.6)

where Σ is an input alphabet of Turing machines (TM).

The restriction of input Turing machines to total computation render undecidable problems
problems decidable. For instance, the halting problem HALT1 is trivially decidable (i.e., the
answer is always yes) if we assume that input Turing machines are guaranteed to terminate.
Similarly, it is decidable whether a given Turing machine 𝑀 returns a desirable output on a
given input𝑤 : it suffices to run the Turing machine𝑀 on the input𝑤 until it terminates.

Nonetheless, resource analysis is undecidable (under some conditions on target cost bounds
𝑓 and 𝐹 ) even with the assumption of total computation (§6.3.2). This is because, to check if a
program 𝑃 has a certain cost bound, wemust test the program 𝑃 on all inputs 𝑥 . Due to infinitely
many possible inputs, it is computationally infeasible to test all inputs even if the program 𝑃

terminates on all of them.

6.2.3 Resource Analysis with Fixed Program Inputs

Throughout this thesis, resource analysis concerns symbolic cost bounds 𝑓 (𝑥) that are para-
metric in program inputs 𝑥 . In resource analysis as a computational problem, the goal is to infer
symbolic bounds, and in resource analysis as a decision problem, the goal is to check whether a
given program/Turing machine has a certain symbolic bound. Here, symbolic cost bounds are
not properties of programs on fixed program inputs—the bounds 𝑓 (𝑥) must be sound across all
possible inputs 𝑥 .

Alternatively, one could consider a different variant of resource analysis where program
inputs are fixed. Fixing program inputs simplifies resource analysis, rendering some resource-
analysis decision problems decidable. For example, consider a variant of the decision problem
HALTpar

𝑓
(Defn. 6.2.1) where a program input is provided as an input of the decision problem:

BOUNDEDpar
𝑓

≔ {⟨𝑀,𝑤⟩ | multi-tape TM𝑀 halts within 𝑓 ( |𝑤 |) steps on input𝑤}. (6.2.7)

Assuming that the target symbolic bound 𝑓 : N → Q≥0 is computable, the decision problem
BOUNDEDpar

𝑓
is decidable. To solve the decision problem, we first evaluate 𝑓 ( |𝑤 |) for a given

input string 𝑤 and then run an input Turing machine 𝑀 for 𝑓 ( |𝑤 |) many steps. Likewise, a
similar variant of the decision problem HALTpar

input,𝐹 (Defn. 6.2.3) is decidable.
Some resource-analysis decision problems remain undecidable even if we fix program in-

puts. For example, consider a variant of the second decision problem (Defn. 6.2.2):

BOUNDEDpar
𝐹

≔ {⟨𝑀,𝑤⟩ |∃𝑓 ∈ 𝐹 .multi-tape TM𝑀 halts within
𝑓 ( |𝑤 |) steps on input𝑤}.

(6.2.8)
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If the set 𝐹 of symbolic bounds contains arbitrarily large constant functions, then the decision
problem BOUNDEDpar

𝐹
is equivalent to the halting problem of multi-tape Turing machines (i.e.,

(6.1.3) adapted to multi-tape Turing machines). Hence, BOUNDEDpar
𝐹

is also undecidable.

6.3 Undecidability of Resource Analysis

This section proves undecidability of resource analysis. §6.3.1 first presents existing unde-
cidability results in the literature where input Turing machines are partial (i.e., possibly non-
terminating). §6.3.2 then provides stronger undecidability results where input Turing machines
are total (i.e., terminating). Finally, §6.3.3 discusses soundness and completeness of static, data-
driven, and interactive resource analyses.

6.3.1 Partial Computation

Existing works have proved undecidability of resource-analysis decision problems for partial
computation (§6.2.1). Hájek [103] shows that (i) HALTpar

𝑛+1 is undecidable; and (ii) HALTpar
𝐹

is undecidable if 𝐹 is the set of polynomials (of any degree) or the set of polynomials of a
fixed degree 𝑑 ≥ 1. Hoffmann [112, §1.2] shows that HALTpar

𝑂 (1) (i.e., constant bounds) and
HALTpar

P (i.e., polynomial bounds) are undecidable by reducing the halting problem HALT1
𝜖 .

Gajser [87, 88] proves more general undecidability theorems on the resource-analysis decision
problems HALTpar

𝑓
(Defn. 6.2.1) and HALTpar

𝐹
(Defn. 6.2.2) with some conditions on the target

symbolic bounds 𝑓 and 𝐹 .
Theorem 6.3.1 (Undecidability of HALTpar

𝑓
[87, 88]). The decision problemHALTpar

𝑓
is undecid-

able if and only if ∀𝑛 ∈ N.𝑓 (𝑛) ≥ 𝑛 + 1.
The (necessary and sufficient) condition ∀𝑛 ∈ N.𝑓 (𝑛) ≥ 𝑛 + 1 stems from the fact that

multi-tape Turing machines need at least |𝑤 | + 1 steps to read an entire input string𝑤 and then
halt by entering accept or reject states. If this condition does not hold, let 𝑛0 be a number such
that 𝑓 (𝑛0) ≤ 𝑛0. If a given Turing machine indeed has a bound 𝑓 (𝑛), then any input string
longer than 𝑛0 cannot trigger a different behavior of the Turing machine from strings of length
𝑛0. Hence, to solve the decision problem HALTpar

𝑓
, it suffices to inspect the Turing machine’s

behavior for all input strings𝑤 where |𝑤 | ≤ 𝑛0.
Theorem 6.3.2 (Undecidability of HALTpar

𝐹
[87, 88]). Let 𝐹 ⊆ {𝑓 : N→ Q≥0} be an (infinite) set

of functions that contains arbitrarily large constant functions. Then the decision problemHALTpar
𝐹

is undecidable.

The decision problems HALTpar
𝑓

and HALTpar
𝐹

considered in Thms. 6.3.1 and 6.3.2 are both
about the running time of multi-tape Turing machines. Gajser [87, 88] also studies the one-
tape Turing machine’s counterparts of the decision problems HALTpar

𝑓
and HALTpar

𝐹
, which are

denoted by HALT1,par
𝑓

and HALT1,par
𝐹

, respectively. Gajser [87, 88] then proves that HALT1,par
𝑓

and HALT1,par
𝐹

are undecidable, where the author requires that a target symbolic bound 𝑓 in
HALT1,par

𝑓
should be in Ω(𝑛 log𝑛), in addition to the assumptions in Thms. 6.3.1 and 6.3.2.
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Finally, it follows from Thm. 6.3.1 that the decision problem HALTpar
input,𝐹 (Defn. 6.2.3) is

undecidable under a similar condition on the set 𝐹 .
Theorem 6.3.3 (Undecidability of HALTpar

input,𝐹 ). Consider a (possibly infinite) set 𝐹 of symbolic

cost bounds containing 𝑓 ∈ 𝐹 such that ∀𝑛.𝑓 (𝑛) ≥ 𝑛 + 1. Then the decision problem HALTpar
input,𝐹

is undecidable.

Proof. Assume a set 𝐹 of symbolic cost bounds containing 𝑓 ∈ 𝐹 such that ∀𝑛.𝑓 (𝑛) ≥ 𝑛+1. The
proof goes by reducing HALTpar

𝑓
to HALTpar

input,𝐹 . Given a Turing machine 𝑀 , the pair ⟨𝑀, 𝑓 ⟩
satisfies

⟨𝑀⟩ ∈ HALTpar
𝑓
⇐⇒ ⟨𝑀, 𝑓 ⟩ ∈ HALTpar

input,𝐹 . (6.3.1)

Since HALTpar
𝑓

is undecidable (Thm. 6.3.1), so is HALTpar
input,𝐹 . □

6.3.2 Total Computation

This section proves undecidability of resource-analysis decision problems for total computation
(§6.2.2). It is a stronger result than the undecidability of resource analysis for partial compu-
tation (§6.3.1). Gajser [87, 88] focuses only on undecidability of decision problems HALTpar

𝑓

and HALTpar
𝐹

for partial computation. Nonetheless, Gajser [87] states in passing that its results
and proofs can be adapted to total computation. This section substantiates the claim by for-
mally stating and proving undecidability of resource analysis for total computation. All proofs
in this section are adapted from the proofs in Gajser [87, 88], which are originally for partial
computation.

I start with Lem. 6.3.1 stating that a Turing machine has a constant time bound if it has a
bound 𝑓 where ∃𝑛.𝑓 (𝑛) ≤ 𝑛.
Lemma 6.3.1 (Constant time bound [87, 88]). Consider a symbolic bound 𝑓 : N → Q≥0 such
that ∃𝑛.𝑓 (𝑛) ≤ 𝑛. If a (one-tape or multi-tape) Turing machine 𝑀 has a time bound 𝑓 , then the

machine𝑀 has a constant time bound.

Proof. Let 𝑛0 ∈ N be such that 𝑓 (𝑛0) ≤ 𝑛0. For any input string 𝑤 such that |𝑤 | ≥ 𝑛0, the
machine𝑀 can only read at most 𝑛0 first characters in the input𝑤 , without knowing whether
the (𝑛0 + 1)th character is the blank symbol or not. Therefore, the machine 𝑀 halts in 𝑛0 steps
on all inputs𝑤 such that |𝑤 | ≥ 𝑛0, yielding a constant time bound of 𝑛0. □

Lem. 6.3.2 plays a key role in reducing the halting problem HALT1
𝜖 to resource-analysis

decision problems for total computation.
Lemma 6.3.2. Let 𝑓 : N→ Q≥0 be a symbolic bound such that ∀𝑛.𝑓 (𝑛) ≥ 𝑛 + 1. Also, let 𝑔 be a
computable symbolic bound. Then there exists an algorithm that takes as input a one-tape Turing

machine𝑀 and returns a total multi-tape Turing machine 𝑀̃ such that

𝑀 diverges on input 𝜖 =⇒ ∀𝑤 ∈ Σ∗.𝑀̃ halts in |𝑤 | + 1 steps on input𝑤 (6.3.2)
=⇒ ∀𝑤 ∈ Σ∗.𝑀̃ halts within 𝑓 ( |𝑤 |) steps on input𝑤 (6.3.3)

𝑀 halts on input 𝜖 =⇒ 𝑀̃ runs in at least 𝑔( |𝑤 |) steps for all sufficiently long𝑤. (6.3.4)
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In Eq (6.3.4), sufficiently long 𝑤 means |𝑤 | ≥ 𝑁 for some constant 𝑁 (which is dependent on the

machine𝑀).

Proof. Given a one-tape Turing machine 𝑀 , a multi-tape Turing machine 𝑀̃ works as follows.
Let𝑤 be an input string for the machine 𝑀̃ . The machine 𝑀̃ reads the string𝑤 on the input tape
by moving its head to the right until it reaches the first blank symbol1. At the same time, the
machine 𝑀̃ simulates the one-tape Turing machine𝑀 on the empty string 𝜖 using the working
tape(s) of 𝑀̃ . If the machine𝑀 terminates within |𝑤 | steps (where the number of steps is tracked
by the input-tape head of 𝑀̃), then the machine 𝑀̃ computes 𝑔( |𝑤 |) and then runs 𝑔( |𝑤 |) more
steps. Conversely, if the machine 𝑀 does not terminate within |𝑤 | steps, then the machine 𝑀̃
halts by entering the accept state.

Suppose that the machine 𝑀 diverges on the empty string 𝜖 . Then the machine 𝑀̃ runs in
|𝑤 | + 1 steps on all inputs 𝑤 because the machine 𝑀 fails to terminate within |𝑤 | steps on the
empty string 𝜖 , regardless of how long the input𝑤 is. Therefore, Eqs. (6.3.2) and (6.3.3) hold.

Conversely, suppose that the machine 𝑀 halts on the empty string 𝜖 in 𝑁 steps. Then for
any input 𝑤 such that |𝑤 | ≥ 𝑁 , the machine 𝑀̃ runs in at least 𝑛 + 1 + 𝑔( |𝑤 |) steps. To see
why, the machine 𝑀̃ first runs |𝑤 | steps to read the input 𝑤 while simulating the machine 𝑀
on the empty string 𝜖 for |𝑤 | steps. Because 𝑀 terminates within |𝑤 | ≥ 𝑁 steps, the machine
𝑀̃ computes 𝑔( |𝑤 |) (which is computable by assumption) and then runs 𝑔( |𝑤 |) steps before
halting. Because the computation of 𝑔( |𝑤 |) will require additional steps, the total running time
of the machine 𝑀̃ is more than 𝑛 + 1 + 𝑔( |𝑤 |). Thus, Eq (6.3.4) holds. □

I now present undecidability theorems for the three resource-analysis decision problems
Defns. 6.2.4–6.2.6 for total computation.
Theorem 6.3.4 (Undecidability of HALTtot

𝑓
). Let 𝑓 : N → Q≥0 be a symbolic bound such that

∀𝑛.𝑓 (𝑛) ≥ 𝑛 + 1. Also, let 𝑔 be a computable symbolic bound such that ∀𝑛.𝑔(𝑛) > 𝑓 (𝑛). Then the

decision problem HALTtot
𝑓

for total computation is undecidable.

Proof. The proof goes by reducing the halting problem HALT1
𝜖 , which is known to be unde-

cidable (Thm. 6.1.1), to HALTtot
𝑓
. Given a one-tape Turing machine 𝑀 , we construct a total

multi-tape Turing machine 𝑀̃ according to Lem. 6.3.2. We have

𝑀 diverges on input 𝜖 =⇒ ∀𝑤 ∈ Σ∗.𝑀̃ halts within 𝑓 ( |𝑤 |) steps on input𝑤 (6.3.5)
𝑀 halts on input 𝜖 =⇒ 𝑀̃ runs in at least 𝑔( |𝑤 |) steps for all sufficiently long𝑤, (6.3.6)

where ∀𝑛.𝑔(𝑛) > 𝑓 (𝑛) by assumption. Because it is undecidable whether the one-tape Turing
machine𝑀 halts on the empty string 𝜖 , so is the decision problem HALTtot

𝑓
. □

1As the machine 𝑀̃ is a multi-tape Turing machine, it is capable of simulating the one-tape Turing machine𝑀
and tracking its number of steps at the same time. Otherwise, if the machine 𝑀̃ were a one-tape Turing machine,
it would be unable to perform these two tasks in parallel. As a result of the difference in multi-tasking capabilities
between one-tape and multi-tape Turing machines, the undecidability results of resource analysis for multi-tape
and one-tape Turing machines have slightly different formulations [87, 88].
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Theorem 6.3.5 (Undecidability of HALTtot
𝐹
). Let 𝐹 ⊆ {𝑓 : N → Q≥0} be an infinite set of

functions that contains arbitrarily large constant functions. Additionally, assume that there exists

a computable function 𝑔 such that

∀𝑓 ∈ 𝐹 .∃𝑛0.∀𝑛 ≥ 𝑛0.𝑔(𝑛) > 𝑓 (𝑛). (6.3.7)

That is, a computable function 𝑔 is asymptotically larger than every symbolic bound 𝑓 ∈ 𝐹 . Then
the decision problem HALTtot

𝐹
is undecidable.

Proof. Let 𝐹0 be 𝐹0 ≔ {𝑓 ∈ 𝐹 | ∀𝑛.𝑓 (𝑛) ≥ 𝑛 + 1}. I conduct case analysis on whether the set
𝐹0 is empty or not. In both cases, I reduce the halting problem HALT1

𝜖 , which is undecidable
(Thm. 6.1.1), to the decision problem HALTtot

𝐹
.

Suppose 𝐹0 = ∅. To reduce the halting problem HALT1
𝜖 to HALTtot

𝐹
, given a one-tape Turing

machine𝑀 , we construct a total multi-tape Turing machine 𝑀̃ as follows. Given an input string
𝑤 , the machine 𝑀̃ simulates the machine𝑀 on the empty string 𝜖 for at most |𝑤 | steps, where
the number of steps is tracked by the input-tape head of 𝑀̃ . If the machine 𝑀 halts within |𝑤 |
steps, then the machine 𝑀̃ also halts at the same time. Conversely, if the machine 𝑀 does not
halt within |𝑤 | steps, the machine 𝑀̃ makes one more step and then halts. Consequently, we
have

𝑀 halts on input 𝜖 ⇐⇒ 𝑀̃ has a constant time bound (6.3.8)
⇐⇒ ∃𝑓 ∈ 𝐹 .∀𝑤 ∈ Σ∗.𝑀̃ halts within 𝑓 ( |𝑤 |) steps on input𝑤. (6.3.9)

In Eq (6.3.9), the direction ⇒ follows from the assumption that 𝐹 contains arbitrarily large
constant functions, and the other direction ⇐ follows from Lem. 6.3.1 and the assumption
𝐹0 = ∅ (i.e., ∀𝑓 ∈ 𝐹 .∃𝑛.𝑓 (𝑛) ≤ 𝑛). Since the halting problem HALT1

𝜖 is undecidable, so is the
decision problem HALTtot

𝐹
.

Next, suppose 𝐹0 ≠ ∅. Again, I reduce the halting problem HALT1
𝜖 to HALTtot

𝐹
. Given a

one-tape Turing machine𝑀 , we construct a total multi-tape Turing 𝑀̃ according to Lem. 6.3.2,
where a symbolic bound 𝑓 is chosen arbitrarily from the set 𝐹0. It gives us

𝑀 diverges on input 𝜖 =⇒ ∃𝑓 ∈ 𝐹0 ⊆ 𝐹 .∀𝑤 ∈ Σ∗.𝑀̃ halts within 𝑓 ( |𝑤 |) steps on input𝑤
(6.3.10)

𝑀 halts on input 𝜖 =⇒ 𝑀̃ runs in at least 𝑔( |𝑤 |) steps for all sufficiently long𝑤 (6.3.11)
=⇒ �𝑓 ∈ 𝐹 .∀𝑤 ∈ Σ∗.𝑀̃ halts within 𝑓 ( |𝑤 |) steps on input𝑤.

(6.3.12)

In Eq (6.3.12), the implication follows from the assumption that the computable bound 𝑔 is
asymptotically larger than any 𝑓 ∈ 𝐹 . Since HALT1

𝜖 is undecidable, so is the decision problem
HALTtot

𝐹
. Thus, whether 𝐹0 is empty or not, the decision problem HALTtot

𝐹
is undecidable. □

To apply Thm. 6.3.5 to HALTtot
P (i.e., polynomial bounds), we can set a computable function

𝑔 to be 𝑔(𝑛) ≔ 𝑒𝑛 , which is asymptotically larger than all polynomial functions.
It is important that such a computable and asymptotically large function𝑔 exists. Otherwise,

the decision problem HALTtot
𝐹

can be decidable. For instance, if 𝐹 is the set of all computable
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functions 𝑓 : N→ Q≥0, then HALTtot
𝐹

is trivially decidable (i.e., the answer is always yes). This
is because, if a multi-tape Turing machine𝑀 terminates on all inputs, a symbolic cost bound of
the machine𝑀 is simply𝑀 itself (with a slight modification to return a numeric output instead
of yes or no).
Theorem 6.3.6 (Undecidability of HALTtot

input,𝐹 ). Consider a (possibly infinite) set 𝐹 of symbolic

cost bounds containing 𝑓 ∈ 𝐹 such that ∀𝑛.𝑓 (𝑛) ≥ 𝑛 + 1. Also, let 𝑔 be a computable symbolic

bound such that ∀𝑛.𝑔(𝑛) > 𝑓 (𝑛). Then the decision problem HALTtot
input,𝐹 is undecidable.

Proof. The proof goes by reducing the decision problemHALTtot
𝑓
, which is undecidable (Thm. 6.3.4),

to the decision problem HALTtot
input,𝐹 . □

Beyond the time metric In formulating and proving undecidability of resource analysis, I
have so far focused on the time metric of multi-tape Turing machines. Many existing works on
undecidability focus on the time metric [87, 88, 112]. Fundamentally, because resource analysis
under the time metric is similar to halting problems, the time metric makes resource analysis
amenable to reduction from halting problems, thereby proving undecidability. By contrast, the
space metric of Turing machines is less similar to halting problems than the timemetric: having
finite space usage does not imply termination of Turing machines.

Nonetheless, some of the undecidability proofs can be adapted to space usage of Turing ma-
chines. For example, Lem. 6.3.2, which is the crux of the undecidability of HALTtot

𝑓
(Thm. 6.3.4),

can be modified by replacing the time metric with the space metric of multi-tape Turing ma-
chines. However, it is unclear whether, for example, Thm. 6.3.5 still holds for the space metric.

Finally, since the time metric is a special case of the more general tick metric, resource anal-
ysis for the tick metric is also undecidable under some conditions on target symbolic bounds.
Furthermore, if the user is allowed to specify an arbitrary resource metric using the construct
tick, then we may no longer need requirements such as ∀𝑛.𝑓 (𝑛) ≥ 𝑛 + 1 on a target symbolic 𝑓
in HALTpar

𝑓
and HALTtot

𝑓
. This condition on the symbolic bound 𝑓 is imposed to prevent Turing

machines from becoming trivial to analyze (e.g., failing to read entire inputs as in Lem. 6.3.1).

6.3.3 Soundness and Completeness of Resource Analysis

This section discusses soundness and completeness of static, data-driven, and interactive re-
source analyses.

Defn. 6.3.1 defines soundness and completeness of algorithms for resource-analysis decision
problems.
Definition 6.3.1 (Soundness and completeness of resource analysis). Consider a resource-analysis
algorithm 𝐴 that aims to solve a resource-analysis decision problem 𝐿. The algorithm 𝐴 is said to

be sound if

∀𝑀.𝐴 returns yes =⇒ ⟨𝑀⟩ ∈ 𝐿. (6.3.13)

Dually, the algorithm 𝐴 is said to be complete if

∀𝑀.⟨𝑀⟩ ∈ 𝐿 =⇒ 𝐴 returns yes. (6.3.14)

Thm. 6.3.7 relates soundness, completeness, and decidability of resource analysis.
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Theorem 6.3.7. There exists a total, sound, and complete algorithm 𝐴 that solves a resource-

analysis decision problem 𝐿 if and only if the problem 𝐿 is decidable.

Proof. It follows from the definitions of soundness, completeness, and decidability. If a resource-
analysis decision problem 𝐿 is decidable, it means there exists a total (i.e., terminating) Turing
machine/algorithm 𝐴 such that, for any input Turing machine ⟨𝑀⟩, we have

⟨𝑀⟩ ∈ 𝐿 =⇒ 𝐴 returns yes on ⟨𝑀⟩ (6.3.15)
⟨𝑀⟩ ∉ 𝐿 =⇒ 𝐴 returns no on ⟨𝑀⟩. (6.3.16)

Therefore, the (total) algorithm 𝐴 is sound and complete (Defn. 6.3.1). The other direction of
the bi-implication can be proved similarly. □

Static and data-driven resource analyses As a consequence of Thm. 6.3.7, if a resource-
analysis decision problem 𝐿 is undecidable, then a total resource-analysis algorithm𝐴 cannot be
both sound and complete. In the face of this impossibility result, static and data-driven resource
analyses make different trade-offs between soundness and completeness.

Static resource-analysis techniques (e.g., AARA [112, 113, 116] and COSTA [9, 11]) are usu-
ally sound but incomplete for the six resource-analysis decision problems we have discussed:
Defns. 6.2.1–6.2.3 for partial computation and Defns. 6.2.4–6.2.6 for total computation. These
static techniques reason about worst-case behaviors of programs by examining their source
code. Hence, whenever these techniques successfully verify cost bounds, they comewith proofs
of soundness.

On the other hand, data-driven resource-analysis techniques (e.g., trend profiler [94], al-
gorithmic profiling [234], and input-sensitive profiling [60]) are usually complete but unsound.
For instance, to solve HALTtot

𝑓
with a target symbolic bound 𝑓 , data-driven analysis runs a given

program 𝑃 on finitely many program inputs 𝑥 and checks whether the program 𝑃 halts within
𝑓 ( |𝑥 |) steps. However, data-driven analysis cannot verify that the program 𝑃 has a cost bound
𝑓 by repeatedly testing program inputs 𝑥 . The analysis can only refute the cost bound.
Remark 6.3.8 (Completeness of Bayesian data-driven analysis). Data-driven analysis is com-

plete for the decision problemHALTtot
𝑓

as long as the analysis simply checks the target cost bound 𝑓

with respect to the (finitely many) observed cost measurements of an input Turing machine. How-

ever, some data-driven techniques add an additional buffer on top of observed costs. For example,

BayesWC (§7.3.3) first runs Bayesian inference to infer worst-case costs for those input sizes present

in observed runtime-cost data D. These inferred worst-case costs can be strictly higher than the

maximum observed costs in the observed data D. BayesWC then solves a constrained optimiza-

tion problem to infer a symbolic bound that lies above all the inferred worst-case costs. Thus, if

a ground-truth cost bound 𝑓 is too close to maximum observed costs, BayesWC may reject it as a

candidate cost bound, rendering BayesWC incomplete as a decision procedure for HALTtot
𝑓
.

In fact, for BayesWC, as long as its probabilistic model is carefully designed (i.e., it satisfies

the robustness condition (7.3.9)), a ground-truth cost bound 𝑓 has a positive probability density in

the posterior distribution. However, if a fixed buffer is added on top of maximum observed costs

and then the resulting costs are tested with a target cost bound 𝑓 , such data-driven analysis is not

complete. «
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Remark 6.3.9 (Mathematical soundness of data-driven analysis). The word “sound” can be over-
loaded in data-driven analysis. Although data-driven analysis is not sound as a decision procedure,

it can still be a mathematically sound technique. For example, in Bayesian data-driven resource

analysis (§7.3), Bayesian inference is conducted to infer cost bounds using (i) a (user-customizable)

probabilistic model 𝜋 ; and (ii) observed cost measurements D of an input program. As Bayesian

inference relies on Bayes’ rule, its inference results are mathematically sound with respect to the

underlying statistical model 𝜋 and observed data D. «

Interactive resource analysis Defn. 6.3.1 of soundness and completeness is inapplicable to
interactive resource analysis, where the user collaborates with an interactive theorem prover
to prove a cost bound in a program logic (e.g., calf [180] and Iris with time credits [168]).
Defn. 6.3.1 is only applicable to algorithms, while interactive resource analysis is a proof system.

Proof systems have their own definitions of soundness and completeness. Soundness means
that any statement provable in the proof system (e.g., Peano arithmetic) is valid in relevant se-
mantic models (e.g., standard and non-standard models of natural numbers). Dually, complete-
ness means any valid statement in relevant models has a proof in the proof system.

Thm. 6.3.10 states that computably axiomatized proof systems for resource analysis must
be incomplete. Here, a proof system is said to be computably axiomatized if a Turing machine
can enumerate all theorems provable in the proof system [25]. The theorem follows from un-
decidability of resource-analysis decision problems.
Theorem 6.3.10 (Incompleteness of resource-analysis proof system). Given a resource-analysis
decision problem 𝐿, if it is undecidable, then any computably axiomatized proof system for the

decision problem 𝐿 is incomplete.

Proof. The proof goes by contradiction. Suppose a resource-analysis decision problem 𝐿 is un-
decidable. Let𝑇 be a computably axiomatized proof system for the decision problem 𝐿. Assume
that the proof system𝑇 is complete for the decision problem 𝐿: the proof system𝑇 has a correct
proof for either ⟨𝑀⟩ ∈ 𝐿 or ⟨𝑀⟩ ∉ 𝐿 for any Turing machine 𝑀 . Then for any Turing machine
𝑀 , we can solve the decision problem 𝐿 by simultaneously searching for proofs of ⟨𝑀⟩ ∈ 𝐿 and
⟨𝑀⟩ ∉ 𝐿. The search terminates because (i) one of the two statements ⟨𝑀⟩ ∈ 𝐿 and ⟨𝑀⟩ ∉ 𝐿
holds; and (ii) any valid statement is provable in the proof system𝑇 thanks to its completeness.
This contradicts the assumption that the decision problem 𝐿 is undecidable. □

The proof of Thm. 6.3.10 is analogous to the proof of Gödel’s incompleteness theorem via
undecidability of a halting problem [25, §12].

Completeness of program logics, particularly Hoare logic for imperative programs, has been
extensively studied in the literature [16, 17]. Notable results include relative completeness of
Hoare logic by Cook [59] and the impossibility of sound and relatively complete Hoare-like
proof systems in the presence of some programming constructs by Clarke [58]. However, as
far as I know, no existing works on completeness of program logics are specific to resource
analysis.
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6.4 Polynomial-Time Completeness of AARA

Despite the incompleteness of AARA, the typable fragment of AARA is polynomial-time com-

plete [186]. It means, for any function 𝑓 : N → N, if it is polynomial-time (i.e., there exists a
polynomial-time Turing machine that computes the function 𝑓 ), there is a program that (i) com-
putes the same function 𝑓 while preserving the input-output behavior and resource usage; and
(ii) is typable in AARA.

§6.4.1 states the theorem of polynomial-time completeness and illustrates its proof idea.
§6.4.2 describes in detail how to construct a list of polynomial length such that AARA can
infer its polynomial bound. Lastly, §6.4.3 describes in detail how to translate a polynomial-time
Turing machine to a functional program.

6.4.1 Theorem Statement

Thm. 6.4.1 formally states the polynomial-time completeness of the typable fragment of AARA.
Theorem 6.4.1 (Polynomial-time completeness of AARA). Let𝑀 be a polynomial-time one-tape

Turing machine:

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject). (6.4.1)

Let 𝑝 (𝑛) : N → N be a degree-𝑑 polynomial time bound of the machine 𝑀 that can be expressed

as a non-negative linear combination of binomial coefficients

(𝑛
𝑖

)
(𝑖 = 0, . . . , 𝑑). Then there exists a

functional program 𝑃𝑀 : 𝐿(Σ) → 𝐿(Σ) such that

• For every input 𝑥 ∈ Σ∗, we have𝑀 (𝑥) = 𝑃𝑀 (𝑥);
• The program 𝑃𝑀 has the same cost as the running time of the Turing machine𝑀 , where the

resource metric of the program 𝑃𝑀 is the number of function calls;

• AARA can infer a resource-annotated type of the program 𝑃𝑀 , which encodes a polynomial

larger than 𝑝 (𝑛).
That is, the set of programs typable in AARA (under the resource metric of the number of function

calls) is complete with respect to polynomial-time functions.

To prove Thm. 6.4.1, given a polynomial-time one-tape Turing machine 𝑀 with a polyno-
mial time bound 𝑝 (𝑛), where 𝑛 is the length of an input string, I construct a program 𝑃𝑀 that
simulates the machine 𝑀 . The resource metric of the program 𝑃𝑀 is the number of functions
calls (including all recursive calls and helper functions). This resource metric serves as a good
approximation of the running time of the program 𝑃𝑀 .

Alg. 1 describes the operational workings of the program 𝑃𝑀 . The program 𝑃𝑀 first creates a
list ℓpotential whose length is 𝑝 (𝑛) (line 4). Without knowing the polynomial time bound 𝑝 (𝑛) in
advance, the program 𝑃𝑀 cannot be constructed. The list ℓpotential acts as a reservoir of potential,
storing one unit of potential per element. The list ℓpotential is constructed by a recursive function,
where each recursive call runs tick 1 to incur the cost of 1.

The program 𝑃𝑀 then simulates the Turing machine𝑀 (line 6), deleting the head element of
the list ℓpotential every time the Turing machine𝑀 moves its tape head (line 7). The program 𝑃𝑀
runs the expression tick 1 (line 8), whose cost is paid by the potential stored in the list ℓpotential.

The program 𝑃𝑀 constructs the list ℓpotential of length 𝑝 (𝑛) in such a way that AARA’s type
system can infer a polynomial cost bound for constructing the list. The polynomial bound
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Algorithm 1 Program 𝑃𝑀 simulating the Turing machine𝑀
Require: Input 𝑥 : 𝐿(Σ)
1: procedure 𝑃𝑀 (𝑤 )
2: Create the list ℓleft ≔ [ ] and a list ℓright ≔ [⊥, . . . ,⊥] of length 𝑝 ( |𝑥 |)
3: Prepend the input 𝑥 to the list ℓright
4: Create a list ℓpotential of length 𝑝 ( |𝑥 |) ⊲ Reservoir of potential
5: 𝑠 ← 𝑞0 ⊲ Initialize the current state
6: while 𝑠 ≠ 𝑞accept ∧ 𝑠 ≠ 𝑞reject ∧ ℓpotential ≠ [ ] do
7: ℓpotential ← tail ℓpotential ⊲ Potential is released
8: Run tick 1 to consume one unit of potential
9: Compute 𝛿 (𝑠, ℓright [0])
10: Update 𝑠 and ℓright [0] appropriately
11: Update the tape head’s position by moving the head of ℓleft or ℓright to the other
12: return append (reverse ℓleft, ℓright)

inferred byAARA is (strictly) larger than the polynomial time bound 𝑝 (𝑛) of the Turingmachine
𝑀 . This is because, to construct the list ℓpotential, we must pay for both (i) the cost of function
calls while constructing the list; and (ii) the potential stored in the output list ℓpotential after
construction. Since the list ℓpotential’s construction is typable in AARA, so is the program 𝑃𝑀 .

The idea of adding a list to a program that explicitly encodes a known cost bound is later ex-
ploited in the development of the second hybrid resource analysis, resource decomposition (§8).
In resource decomposition, an extra numeric variable is added to an original program to encode
a quantity that cannot be expressed or inferred by one of the constituent analysis techniques
(e.g., logarithmic recursion depth of MergeSort, which cannot be expressed in AARA).

6.4.2 Generating Lists of Polynomial Length

This section describes how to generate a list of polynomial length in a way that enables AARA
to infer the polynomial length. Defn. 6.4.1 introduces a function

poly𝑑,𝑠 : 𝐿(𝜏) × 𝐿(𝜏) → 𝐿(𝜏), (6.4.2)

where 𝑑 ∈ N is a polynomial degree, 𝑠 is a symbol to fill the list with, and 𝜏 is the type of the
symbol 𝑠 . It takes two input lists 𝑥 : 𝐿(𝜏) and 𝑎 : 𝐿(𝜏), creates a new list 𝑦 : 𝐿(𝜏) of polynomial
length

( |𝑥 |
𝑑

)
, and then prepends the list 𝑦 to the accumulator 𝑎.

Definition 6.4.1 (Function poly𝑑,𝑠 ). For a polynomial degree 𝑑 ∈ N and a symbol 𝑠 : 𝜏 , the
function poly𝑑,𝑠 : 𝐿(𝜏) × 𝐿(𝜏) → 𝐿(𝜏) is defined as follows:

fun poly0,𝑠 (𝑥, 𝑎) = let _ = tick 1 in 𝑠 :: 𝑎 (6.4.3)
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fun poly𝑑+1,𝑠 (𝑥, 𝑎) = let _ = tick 1 in
case 𝑥 {[ ] ↩→ 𝑎 | (𝑥1 :: 𝑥2) ↩→

share 𝑥2 as 𝑥2,1, 𝑥2,2 in

let 𝑎2 = poly𝑑,𝑠 (𝑥2,1, 𝑎) in
poly𝑑+1,𝑠 (𝑥2,2, 𝑎2)}.

(6.4.4)

The underscore in Eqs. (6.4.3) and (6.4.4) means it does not matter what symbol goes in there.

The function poly𝑑,𝑠 runs tick 1 at the start of the function body (Eqs. (6.4.3) and (6.4.4)) to
increment a cost counter by one for each function call.

The intuition behind Eq (6.4.4) is that we create two lists: (i) a list of length
(𝑛−1
𝑑

)
by com-

puting poly𝑑 (𝑥2,1, 𝑎); and (ii) a list of length
(𝑛−1
𝑑+1

)
by computing poly𝑑+1,𝑠 (𝑥2,2, 𝑥3). We then

combine the two lists, resulting in a list of length
( 𝑛
𝑑+1

)
due to the identity

( 𝑛
𝑑+1

)
=

(𝑛−1
𝑑

)
+

(𝑛−1
𝑑+1

)
.

Lem. 6.4.1 establishes the correctness of the implementation of the function poly𝑑,𝑠 (Defn. 6.4.1).
Lemma 6.4.1 (Correctness of poly𝑑,𝑠 ). The computation of poly𝑑,𝑠 (𝑥, 𝑎) produces a list of length( |𝑥 |
𝑑

)
+ |𝑎 |, where

(𝑛
𝑘

)
≔ 0 whenever 𝑛 < 𝑘 .

Proof. The proof goes by nested induction: outer induction on 𝑑 and inner induction on |𝑥 |. For
the base case where 𝑑 = 0, the output length is indeed

(𝑛
0
)
+ |𝑎 | = 1 + |𝑎 |.

For the inductive case, suppose that the claim holds when 𝑑 = 𝑘 for some 𝑘 ≥ 0. The proof
proceeds by (inner) induction on |𝑥 |. When |𝑥 | = 0, we have

|poly𝑘+1,𝑠 (𝑥, 𝑎) | = 0 + |𝑎 |

according to the first branch of pattern matching in Eq (6.4.4). Hence, the claim holds when 𝑥
is empty.

Conversely, for the inductive case of the inner induction, given 𝑥 = 𝑥1 :: 𝑥2, we have

|poly𝑘+1,𝑠 (𝑥, 𝑎) | = |poly𝑘+1,𝑠 (𝑥2, poly𝑘,𝑠 (𝑥2, 𝑎)) | by Eq (6.4.4) (6.4.5)

=

(
|𝑥2 |
𝑘 + 1

)
+

(
|𝑥2 |
𝑘

)
+ |𝑎 | by the inductive hypothesis (6.4.6)

=

(
|𝑥 | − 1
𝑘 + 1

)
+

(
|𝑥 | − 1
𝑘

)
+ |𝑎 | because 𝑥 = 𝑥1 :: 𝑥2 (6.4.7)

=

(
|𝑥 |
𝑘 + 1

)
+ |𝑎 |. (6.4.8)

Therefore, the claim holds for the inductive case of the outer induction. □

Lemma 6.4.2 (Typability of poly𝑑,𝑠 ). The function poly𝑑,𝑠 (𝑑 ∈ N) can be typed as follows in

AARA:

poly0,𝑠 : ⟨𝐿0(𝜏) × 𝐿1(𝜏), 2⟩ → ⟨𝐿1(𝜏), 0⟩ (6.4.9)

poly𝑑,𝑠 : ⟨𝐿®𝑞𝑑 (𝜏) × 𝐿1(𝜏), 1⟩ → ⟨𝐿1(𝜏), 0⟩ for 𝑑 ≥ 1, (6.4.10)

where the tuple ®𝑞𝑑 ≔ (2, . . . , 2︸  ︷︷  ︸
𝑑−1 times

, 3) ∈ Q𝑑≥0 (𝑑 ≥ 1) is a resource annotation for the polynomial

𝑛 ↦→ 3
(𝑛
𝑑

)
+∑𝑑−1

𝑖=1 2
(𝑛
𝑖

)
.
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Proof. The proof goes by induction on the polynomial degree 𝑑 . For the base case where 𝑑 = 0,
the function poly0 (Eq (6.4.3)) runs tick 1 and then prepends the element 𝑠 : 𝜏 to the list 𝑎 : 𝐿(𝜏).
Thus, the function poly0,𝑠 must be supplied with two units of constant potential: (i) one unit
of potential to pay for tick 1; and (ii) one unit of potential to store in the element 𝑠 , which is
prepended to the accumulator 𝑎 : 𝐿1(𝜏). Hence, by the typing rules T:Tick:Pos and T:List:Cons
of AARA (Listing 4.2), the function can be typed as Eq (6.4.9).

For the next base case where 𝑑 = 1, variables appearing in the function definition poly1
(Eq (6.4.4)) are assigned resource-annotated types as follows:

𝑥 : 𝐿3(𝜏) 𝑎 : 𝐿1(𝜏) 𝑥2 : 𝐿3(𝜏) 𝑥2,1 : 𝐿0(𝜏) 𝑥2,2 : 𝐿3(𝜏). (6.4.11)

Applying the shift operator ⊳ (Eq (4.2.8)) to the resource annotation in the typing judgment
𝑥1 : 𝐿3(𝜏) yields the judgment 𝑥2 : 𝐿3(𝜏). The resource annotation in the judgment 𝑥2 : 𝐿3(𝜏) is
then shared between 𝑥2,1 : 𝐿0(𝜏) and 𝑥2,2 : 𝐿1(𝜏) by the typing rule T:Share (Listing 4.2). The
two recursive calls to poly0,𝑠 and poly1,𝑠 in Eq (6.4.4) are typed as

𝑥2,1 : 𝐿0(𝜏), 𝑎 : 𝐿1(𝜏); 2 ⊢ poly0 (𝑥2,1, 𝑎) : ⟨𝐿1(𝜏), 0⟩ (6.4.12)
𝑥2,2 : 𝐿3(𝜏), 𝑎2 : 𝐿1(𝜏); 1 ⊢ poly1 (𝑥2,2, 𝑎2) : ⟨𝐿1(𝜏), 0⟩. (6.4.13)

Eqs. (6.4.12) and (6.4.13) contain the input constant potential 1 and 2, respectively. The total con-
stant potential 3 is obtained from the pattern matching on the list 𝑥 : 𝐿3(𝜏), which is split into
the head 𝑥1 : 𝜏 , the tail 𝑥2 : 𝐿3(𝜏), and the constant potential 3 by the typing rule T:Case:List
(Listing 4.2). Thus, the function definition of poly0,𝑠 is well-typed in AARA.

For the inductive case, suppose the claim holds for 𝑑 = 𝑘 for some 𝑘 ≥ 1. To prove the claim
for the case 𝑑 = 𝑘 + 1, variables appearing in the function definition poly𝑘+1,𝑠 (Eq (6.4.4)) are
assigned resource-annotated types as follows:

𝑥 : 𝐿®𝑞𝑘+1 (𝜏) 𝑎 : 𝐿1(𝜏) 𝑥2 : 𝐿⊳( ®𝑞𝑘+1) (𝜏) 𝑥2,1 : 𝐿®𝑞𝑘 (𝜏) 𝑥2,2 : 𝐿®𝑞𝑘+1 (𝜏). (6.4.14)

The resource-annotated judgment 𝑥2 : 𝐿⊳( ®𝑞𝑘+1) (𝜏), which is obtained by the pattern matching
on the list 𝑥 : 𝐿®𝑞𝑘+1 (𝜏) (T:Case:List), is shared between 𝑥2,1 : 𝐿®𝑞𝑘 (𝜏) and 𝑥2,2 : 𝐿®𝑞𝑘+1 (𝜏) by the
typing rule T:Share (Listing 4.2). The sharing of the resource annotation works because

⊳®𝑞𝑘+1 = ⊳(2, . . . , 2︸  ︷︷  ︸
𝑘 times

, 3) = (4, . . . , 4︸  ︷︷  ︸
𝑘−1 times

, 5, 3) = ®𝑞𝑘 + ®𝑞𝑘+1, (6.4.15)

where ®𝑞𝑖 ≔ (2, . . . , 2︸  ︷︷  ︸
𝑖−1 times

, 3). The two recursive calls to poly𝑘 and poly𝑘+1 in Eq (6.4.4) are typed as

𝑥2,1 : 𝐿®𝑞𝑘 (𝜏), 𝑎 : 𝐿1(𝜏); 1 ⊢ poly𝑘 (𝑥2,1, 𝑎) : ⟨𝐿1(𝜏), 0⟩ (6.4.16)

𝑥2,2 : 𝐿®𝑞𝑘+1 (𝜏), 𝑎2 : 𝐿1(𝜏); 1 ⊢ poly𝑘+1 (𝑥2,2, 𝑎2) : ⟨𝐿1(𝜏), 0⟩, (6.4.17)

where Eq (6.4.16) follows from the inductive hypothesis. The input constant potential 2 (i.e., the
constant potential 1 in each of Eqs. (6.4.16) and (6.4.17)) is obtained from the pattern matching
on the list 𝑥 : 𝐿®𝑞𝑘+1 (𝜏). Thus, the function definition of poly𝑘+1,𝑠 is well-typed in AARA. □
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6.4.3 Translation of Polynomial-Time Turing Machines

This section details how to translate a polynomial-time one-tape Turing machine to a program
typable in AARA while preserving the input-output behavior and the polynomial time bound.
Theorem 6.4.1 (Polynomial-time completeness of AARA). Let𝑀 be a polynomial-time one-tape

Turing machine:

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject). (6.4.1)

Let 𝑝 (𝑛) : N → N be a degree-𝑑 polynomial time bound of the machine 𝑀 that can be expressed

as a non-negative linear combination of binomial coefficients

(𝑛
𝑖

)
(𝑖 = 0, . . . , 𝑑). Then there exists a

functional program 𝑃𝑀 : 𝐿(Σ) → 𝐿(Σ) such that

• For every input 𝑥 ∈ Σ∗, we have𝑀 (𝑥) = 𝑃𝑀 (𝑥);
• The program 𝑃𝑀 has the same cost as the running time of the Turing machine𝑀 , where the

resource metric of the program 𝑃𝑀 is the number of function calls;

• AARA can infer a resource-annotated type of the program 𝑃𝑀 , which encodes a polynomial

larger than 𝑝 (𝑛).
That is, the set of programs typable in AARA (under the resource metric of the number of function

calls) is complete with respect to polynomial-time functions.

Proof. Given a one-tape polynomial-time Turing machine 𝑀 with a polynomial time bound
𝑝 (𝑛) of degree 𝑑 ∈ N, it is translated to a program 𝑃𝑀 that simulates the Turing machine 𝑀
while preserving the input-output behavior and the polynomial cost bound. Without loss of
generality, I assume that 𝑝 (𝑛) =

(𝑛
𝑑

)
.

The program 𝑃𝑀 is defined as

fun 𝑃𝑀 𝑥 = let _ = tick 1 in
share 𝑥 as 𝑥1, 𝑥2 in share 𝑥2 as 𝑥2,1, 𝑥2,2 in

let ℓleft = [ ] in let ℓblank = poly𝑑,⊥ (𝑥1, [ ]) in
let ℓright = append (𝑥2,1, ℓblank) in
let ℓpotential = poly𝑑,⟨ ⟩ (𝑥2,2, [ ]) in
simulate (𝑞0, ℓleft, ℓright, ℓpotential).

(6.4.18)

The program 𝑃𝑀 first creates three lists: (i) ℓleft : 𝐿(Γ) for the Turing machine’s tape to the left
of the tape head; (ii) ℓright : 𝐿(Γ) for the Turing machine’s tape to the right of the tape head;
and (iii) ℓpotential : 𝐿(unit) storing one unit of potential per element. The functions poly𝑑,⊥ and
poly𝑑,⊥ construct lists of length

(𝑛
𝑑

)
filled with the blank symbol ⊥ and the unit element ⟨ ⟩,

respectively. They are described in Defn. 6.4.1.
The function application append (𝑥2,1, ℓblank) prepends the list 𝑥2,1 to the list ℓblank. The com-

putational cost (i.e., the number of function calls) of this function application is 1 + |𝑥2,1 |.
The function simulate simulates the Turing machine𝑀 with the initial state 𝑞0 ∈ 𝑄 . Every

time the Turing machine𝑀 moves its tape head, the function simulate removes a list element
from the list ℓpotential, freeing up one unit of potential. The function simulate then runs tick 1
to increment a cost counter, and this cost is paid by the potential stored in the list ℓpotential.

It follows from Lem. 6.4.2 that the function poly𝑑,⟨ ⟩ can be typed in AARA. The potential
stored inside the output of poly𝑑,⟨ ⟩ is then used to pay for the cost of running the function
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simulate. All other functions (i.e., poly𝑑,⊥, append, and simulate) called in the program 𝑃𝑀
are typable in AARA’s type system as well. Therefore, AARA can infer the polynomial bound
𝑝 (𝑛) for the program 𝑃𝑀 . □

In Thm. 6.4.1, I assume that a polynomial bound 𝑝 (𝑛) can be expressed as a non-negative
linear combination of binomial coefficients. If we have a polynomial of the form 𝑎0 + 𝑎1𝑛 +
· · ·𝑎𝑑𝑛𝑑 , where 𝑎𝑖 ≥ 0 (𝑖 = 0, . . . , 𝑑), then the polynomial can be expressed as a non-negative
linear combinations of binomial coefficients. Lem. 6.4.3 formally shows that, given a polynomial
degree 𝑑 , the polynomial 𝑛𝑑 can be expressed as a non-negative linear combination of binomial
coefficients

(𝑛
𝑖

)
(𝑖 = 0, . . . , 𝑑).

Lemma 6.4.3. For any polynomial degree 𝑑 ∈ N, the polynomial function 𝑛𝑑 can be expressed as∑𝑑
𝑖=0 𝑞𝑖

(𝑛
𝑖

)
, where 𝑞𝑖 ∈ Q≥0 for all 𝑖 = 0, . . . , 𝑑 .

Proof. The proof goes by induction on the polynomial degree 𝑑 ∈ N. For the base case 𝑑 = 0,
the claim holds because 𝑛0 =

(𝑛
0
)
. For the inductive case, an inductive hypothesis for the case

𝑑 = 𝑘 states that 𝑛𝑘 =
∑𝑘
𝑖=0 𝑝𝑖 ·

(𝑛
𝑖

)
, where 𝑝𝑖 ∈ Q≥0 (𝑖 = 0, . . . , 𝑘). We obtain

𝑛𝑘+1 = 𝑛 ·
𝑘∑︁
𝑖=0

𝑝𝑖

(
𝑛

𝑖

)
=

𝑘∑︁
𝑖=0

𝑝𝑖

𝑖!
𝑛 · (𝑛 − 1) · · · (𝑛 − 𝑖 + 1) · 𝑛 (6.4.19)

=

𝑘∑︁
𝑖=0

𝑝𝑖

𝑖!
𝑛(𝑛 − 1) · · · (𝑛 − 𝑖 + 1) · (𝑛 − (𝑖 + 1) + 1 + 𝑖) (6.4.20)

=

𝑘∑︁
𝑖=0

𝑝𝑖

𝑖!
𝑛(𝑛 − 1) · · · (𝑛 − 𝑖 + 1) · (𝑛 − (𝑖 + 1) + 1) +

𝑘∑︁
𝑖=0

𝑖 · 𝑝𝑖
𝑖!

𝑛(𝑛 − 1) · · · (𝑛 − 𝑖 + 1)

(6.4.21)

=

𝑘∑︁
𝑖=0
(𝑖 + 1)𝑝𝑖

(
𝑛

𝑖 + 1

)
+

𝑘∑︁
𝑖=0

𝑖 · 𝑝𝑖
(
𝑛

𝑖

)
, (6.4.22)

where the two summations in the last line can be unified. Also, all coefficients in the last line
are non-negative since 𝑝𝑖 are all non-negative (𝑖 = 0, . . . , 𝑘). Therefore, the claim also holds for
the inductive case 𝑑 = 𝑘 + 1. □
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Chapter 7

Hybrid AARA

This chapter presents the first hybrid resource analysis—Hybrid AARA—that integrates dif-
ferent (and complementary) resource-analysis methods compositionally via a user-adjustable
interface. A user annotates a program to indicate which code fragments are to be analyzed by
which analysis methods. The analysis methods are performed on their respective code frag-
ments, and their inference results are combined into an overall cost bound for the whole pro-
gram. The goal of hybrid resource analysis is to retain the strengths of the constituent analysis
methods while mitigating their respective weaknesses.

In addition to Hybrid AARA, this chapter presents Bayesian resource analysis, which per-
forms Bayesian inference to infer cost bounds. Compared to optimization-based techniques
prevalent in the literature of data-driven resource analysis, Bayesian techniques offer greater
customizability, greater robustness, and richer information about statistical uncertainty.

Hybrid AARA specifically integrates (i) Conventional AARA (§4), a type-based static anal-
ysis method; and (ii) optimization-based and Bayesian data-driven resource analyses. For the
interface between constituent analysis methods, Hybrid AARA adopts the resource-annotated
type from Conventional AARA. Just like any other type, the resource-annotated type is natu-
rally compositional, lending itself to hybrid resource analysis.

First, §7.1 gives the basics of Bayesian inference and illustrates it with linear regression.
§7.2 sets the stage for data-driven and hybrid resource analyses by describing code annotations
and data collection. §7.3 then formulates an optimization-based data-driven analysis technique
(Opt) and two Bayesian data-driven analysis techniques (BayesWC and BayesPC). §7.4 de-
scribes Hybrid AARA, which integrates Conventional AARA and the three data-driven anal-
yses. §7.5 describes a prototype implementation of Hybrid AARA, which is then evaluated in
§7.6. Finally, §7.7 discuses the design and limitations of Hybrid AARA.

7.1 Bayesian Inference

This section introduces the basics of Bayesian inference, which is a statistical-inference method
centering on Bayes’ rule. §7.1.1 describes a high-level idea of Bayesian inference, and §7.1.2
illustrates Bayesian inference through an example of linear regression. Bayesian inference is
applied to data-driven resource analysis in §7.3.
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7.1.1 Overview

Workflow Bayesian inference consists of three steps:
1. Define a probabilistic model 𝜋 (𝜃,𝑦) over a latent variable 𝜃 and an observed variable 𝑦;
2. Collect observed data D;
3. Compute or approximate the posterior distribution 𝜋 (𝜃 | 𝑦 =D).
In the first step, the user defines a probabilisticmodel 𝜋 (𝜃,𝑦), which is a joint probability dis-

tribution of two random variables 𝜃 and𝑦. The random variable 𝜃 , called a latent variable1 [216],
is a quantity the user wants to infer. In the context of data-driven resource analysis, the latent
variable 𝜃 represents a symbolic cost bound (e.g., coefficients of polynomial cost bounds) of a
program. The random variable 𝑦, called an observed variable [89], represents a quantity that
the user can measure and observe. In data-driven resource analysis, the observed variable 𝑦
represents a dataset of cost measurements of a program 𝑃 obtained by running the program 𝑃

on many inputs.
The probabilistic model 𝜋 (𝜃,𝑦) captures the user’s understanding of how values of the ran-

dom variables 𝜃 and 𝑦 are probabilistically generated. The model is often expressed in the form

𝜋 (𝜃,𝑦) = 𝜋 (𝜃 )𝜋 (𝑦 | 𝜃 ), (7.1.1)

where the probability distribution 𝜋 (𝜃 ) is called a prior distribution and the conditional distri-
bution 𝜋 (𝑦 | 𝜃 ) is called a likelihood. The prior distribution 𝜋 (𝜃 ) encodes the user’s prior belief
about the latent variable 𝜃 ’s distribution without observing the random variable 𝑦. The like-
lihood 𝜋 (𝑦 | 𝜃 ) encodes the user’s understanding of how the observed variable 𝑦 is sampled,
given a fixed latent variable 𝜃 .

In the second step, the user collects observed data D, which is a sample of the observed
variable 𝑦.

In the third step, the user computes or approximates the posterior distribution 𝜋 (𝜃 | 𝑦 =D),
which is given by Bayes’ rule:

𝜋 (𝜃 | 𝑦 =D) = 𝜋 (𝜃,𝑦 =D)
𝜋 (𝑦 =D) =

𝜋 (𝜃,𝑦 =D)∫
𝜃
𝜋 (𝜃,𝑦 =D) d𝜃

. (7.1.2)

The posterior distribution 𝜋 (𝜃 | 𝑦 = D) represents the user’s updated belief about the latent
variable 𝜃 , given the observed data D.

Once we obtain a posterior distribution of the model parameter 𝜃 , we compute a posterior
predictive distribution [89] to predict a future observation 𝑦:

𝜋 (𝑦 | 𝑦 =D) =
∫
𝜃

𝜋 (𝑦, 𝜃 | 𝑦 =D) d𝜃 (7.1.3)

=

∫
𝜃

𝜋 (𝑦 | 𝜃,𝑦 =D)𝜋 (𝜃 | 𝑦 =D) d𝜃 (7.1.4)

=

∫
𝜃

𝜋 (𝑦 | 𝜃 )𝜋 (𝜃 | 𝑦 =D) d𝜃 . (7.1.5)

1The latent variable 𝜃 is also called an unobserved variable [216] and a parameter [44, 89].
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Probabilistic inference In practice, it is usually infeasible to directly compute the poste-
rior distribution by Bayes’ rule (7.1.2). This is because the denominator

∫
𝜃
𝜋 (𝜃,𝑦 = D) d𝜃 in

Eq (7.1.2) involves an integral over the space of the latent variable 𝜃 , which is typically a high-
dimensional space.

Instead, sampling-based probabilistic inference is performed to approximate the posterior
distribution 𝜋 (𝜃 | 𝑦 = D). We run a sampling algorithm to draw a finite set of 𝑀 posterior
samples

𝜃1, . . . , 𝜃𝑀 ∼ 𝜋 (𝜃 | 𝑦 =D) . (7.1.6)

We then use these finitely many posterior samples as an approximation of the true posterior
distribution.

A commonly used family of sampling algorithms is Markov chain Monte Carlo (MCMC).
Given a probabilistic model 𝜋 (𝜃,𝑦) and observed data D, MCMC constructs a Markov chain
over the space of 𝜃 such that the Markov chain’s stationary distribution is the posterior distri-
bution 𝜋 (𝜃 | 𝑦 = D). MCMC then runs the Markov chain for sufficiently many steps (such
that it converges to a stationary distribution) and then draws samples 𝜃1, . . . , 𝜃𝑀 of the latent
variable 𝜃 from the chain.

7.1.2 Example: Bayesian Linear Regression

This section illustrates Bayesian inference through an example of linear regression. Given a
set of two-dimensional coordinates (𝑥𝑖, 𝑦𝑖) ∈ R2 (𝑖 = 1, . . . , 𝑁 ), the goal of (Bayesian) linear
regression is to infer a linear function relating 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, . . . , 𝑁 ). For data-driven resource
analysis, we can view 𝑥𝑖 as sizes of program inputs and 𝑦𝑖 as computational costs.

Mathematical formulation Fix a vector x ≔ (𝑥1, . . . , 𝑥𝑁 ) ∈ R𝑁 of 𝑥-coordinates. Let a
probabilistic model 𝜋x(𝜃0, 𝜃1, 𝜎noise, y), where 𝜃0, 𝜃1, 𝜎noise ∈ R are latent variables and y ≔

(𝑦1, . . . , 𝑦𝑁 ) is a vector of observed variables, be defined as

𝜃0, 𝜃1 ∼ Normal(0, 𝜎coeff) 𝜎noise ∼ InverseGamma(𝛼, 𝛽) (7.1.7)
𝑦𝑖 ≔ 𝜃0 + 𝜃1𝑥𝑖 𝑦𝑖 ∼ Normal(𝑦𝑖, 𝜎noise) (𝑖 = 1, . . . 𝑁 ), (7.1.8)

where the hyperparameters are

𝜎coeff ≔ 5 𝛼 = 𝛽 ≔ 1. (7.1.9)

In Eq (7.1.7), the first sampling statement states that the coefficients 𝜃0 and 𝜃1 of a linear
function follow a normal distribution with mean 0 and standard deviation 𝜎coeff ≔ 5. The
second sampling statement in Eq (7.1.7) states that the random variable 𝜎noise follows an in-
verse gamma distribution with the shape parameter 𝛼 ≔ 1 and the scale parameter 𝛽 ≔ 1. In
Eq (7.1.8), random variables 𝑦𝑖 (𝑖 = 1, . . . , 𝑁 ) are defined as the predictions of a linear function
𝑥 ↦→ 𝜃0 + 𝜃1𝑥 . Finally, the observed variables 𝑦𝑖 follow normal distributions with mean 𝑦𝑖 and
standard deviation 𝜎noise (𝑖 = 1, . . . , 𝑁 ).
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1 data {
2 int <lower=0> N;
3 vector<lower=0>[N] x;
4 vector[N] y;
5
6 real<lower=0> coefficient_sigma;
7 real<lower=0> alpha;
8 real<lower=0> beta;
9 }
10 parameters {
11 vector[2] coefficients;
12 real<lower=0> noise_sigma;
13 }

14 model {
15 vector[N] predictions;
16
17 coefficients ~ normal(0, coefficient_sigma);
18 noise_sigma ~ inv_gamma(alpha, beta);
19 predictions = coefficients[1] + coefficients[2] * x;
20 y ~ normal(predictions, noise_sigma);
21 }

Lst. 7.1: Stan code of the probabilistic model (7.1.7)–(7.1.8) for Bayesian linear regression.
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Figure 7.1: Posterior distribution of Bayesian linear regression modeled in Listing 7.1.

Probabilistic program To formally specify a probabilistic model and compute (or approxi-
mate) its posterior distribution, we use a probabilistic programming language (PPL). A PPL is a
domain-specific language equipped with constructs for specifying probabilistic models and an
inference engine for computing posterior distributions. Examples of PPLs include Church [96],
Anglican [229], Stan [44], Pyro [33], Gen [63], PyMC [4], and Turing.jl [78].

Listing 7.1 displays the probabilistic model 𝜋x(𝜃0, 𝜃1, 𝜎noise, y) written in a PPL Stan [44]. The
data block declares observed variables and the probabilistic model’s hyperparameters. A pro-
grammer defines these data in a host language (e.g., Python), and they are passed to an inference
engine of Stan. The program variables N, x, and y (lines 2 to 4) represent 𝑁 , x, and y, respec-
tively. Lines 6 to 8 declare the model hyperparameters (Eq (7.1.9)). In the parameters block,
the program variable coefficients (line 11) represents the vector (𝜃0, 𝜃1) of latent variables,
and the program variable sigma_noise (line 12) represents the latent variable 𝜎noise. Finally,
in the model block (line 14), the joint probability distribution 𝜋x(𝜃0, 𝜃1, 𝜎noise, y) is specified as
formulated in Eqs. (7.1.7)–(7.1.8).

Fig. 7.1 displays a posterior distribution of the probabilistic model 𝜋x given the black dots
as observed data. I run Stan’s inference engine, which implements a gradient-based sampling
algorithm Hamiltonian Monte Carlo (HMC) [40, 111], to draw 𝑀 = 1000 posterior samples.
In the left plot, the blue lines represent 20/1000 randomly selected posterior samples of the
coefficients (𝜃0, 𝜃1) of linear functions. In the right plot, the blue dashed line indicates the
median, and the blue shade indicates the 5–95th percentile range of the posterior distribution.
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Linear constraints on randomvariables In Eq (7.1.8), the observed variables𝑦𝑖 are allowed
to be smaller than the predictions𝑦𝑖 (𝑖 = 1, . . . , 𝑁 ). Hence, if linear regression is viewed as data-
driven analysis of linear cost bounds, the probabilistic model 𝜋x infers an average symbolic cost
bound. However, in this thesis, resource analysis’s goal is to infer a worst-case symbolic cost
bound, rather than an average one.

To adapt the probabilistic model 𝜋x to infer a worst-case bound, Eq (7.1.8) should use a
truncated normal distribution Normal[0,𝑦𝑖 ] (𝑦𝑖, 𝜎noise), where the density is zero if 𝑦𝑖 falls outside
the interval [0, 𝑦𝑖]. Such truncated distributions can be expressed in many PPLs, including Stan.
However, if the region of non-zero densities is small, a sampling-based probabilistic inference
algorithm struggles to draw posterior samples that have non-zero densities, failing to converge
to the true posterior distribution quickly enough.

A more efficient sampling strategy from a truncated distribution is to restrict the search
space of a sampling algorithm to the region of non-zero densities such that the algorithm never
exits the region in the first place. In the case of Bayesian linear regression, the constraints

0 ≤ 𝑦𝑖 ≤ 𝑦𝑖 = 𝜃0 + 𝜃1𝑥𝑖 (𝑖 = 1, . . . , 𝑁 ), (7.1.10)

where 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, . . . , 𝑁 ) are constants, are linear constraints over latent variables (𝜃0, 𝜃1).
However, many PPLs, including Stan, do not support arbitrary linear constraints on latent vari-
ables. Stan only supports box constraints (i.e., 𝑐1 ≤ 𝜃 ≤ 𝑐2 for constants 𝑐1, 𝑐2 ∈ R and a latent
variable 𝜃 ), which are special cases of linear constraints.

7.2 Code Annotations and Data Collection

Hybrid AARA integrates static and data-driven resource analyses. This section discusses how to
(i) specify which code fragments should be analyzed by which analysis method; and (ii) collect
cost measurements to be used in the data-driven part.

Code annotations To specify which code fragments are to be analyzed by data-driven anal-
ysis, the user annotates them. Let L be a countable set of labels. To indicate that an expression
𝑒 inside the source code is subject to data-driven analysis, the user annotates the expression as

statℓ 𝑒, (7.2.1)

where ℓ ∈ L is a label that uniquely identifies a site of data-driven analysis. The annota-
tion2stands for “statistical.” The construct statℓ is the only extension of the programming lan-
guage’s syntax (§3.1) necessary for Hybrid AARA. An expression statℓ 𝑒 executes the expression
𝑒 and records its computational cost in a dataset.

Any code fragment that lies outside an annotation statℓ is analyzed by static resource anal-
ysis AARA. Given a target program 𝑃 (𝑥) = 𝑒 for resource analysis, if the entire function body
𝑒 is annotated as statℓ 𝑒 , then hybrid resource analysis by Hybrid AARA reduces to fully data-
driven resource analysis.

2I later realized that the annotation statℓ could also stand for “static,” although I intended it to stand for “sta-
tistical.” However, it was too late to change the syntax in the prototype implementation of Hybrid AARA.
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Monotone resource metrics Throughout this chapter, for simplicity, I focus on monotone
resource metrics (e.g., running time) where every tick 𝑞 in the source code satisfies𝑞 ≥ 0. Under
monotone resource metrics, the cost-semantics judgment (3.2.5) has the form𝑉 ⊢ 𝑒 ⇓ 𝑣 | (𝑐, 0),
where 𝑐 ≥ 0 is the high-water-mark and net cost. This judgment is abbreviated as

𝑉 ⊢ 𝑒 ⇓ 𝑣 | 𝑐. (7.2.2)

Data collection Consider a program 𝑃 (𝑥) where code fragments subject to data-driven anal-
ysis are annotated with statℓ for ℓ ∈ L. Let 𝐿 ⊂ L denote the finite set of labels ℓ that appear
inside annotations statℓ throughout the program 𝑃 (𝑥).

To construct a dataset D of cost measurements, we prepare 𝑁 ≥ 1 many program inputs
𝑢𝑖 (𝑖 = 1, . . . , 𝑁 ) and run the target program 𝑃 (𝑥) on each input 𝑢𝑖 (𝑖 = 1, . . . , 𝑁 ). During
its execution, we record the outputs and cost measurements of all annotated code fragments
statℓ 𝑒ℓ (ℓ ∈ 𝐿) in the program 𝑃 (𝑥). The construction of the runtime-cost dataset D is given
by a judgment

({𝑥 : 𝑢𝑖} ⊢ 𝑃 (𝑥) ⇓ 𝑢̃𝑖 | 𝑐𝑖)𝑁𝑖=1 | D . (7.2.3)

The data-collection judgment (7.2.3) means that, if we run the target program 𝑃 (𝑥) on inputs
𝑢1, . . . , 𝑢𝑁 , we obtain (i) an output 𝑢̃𝑖 and a (high-water-mark and net) cost 𝑐𝑖 ∈ Q≥0 from each
run of 𝑃 (𝑢𝑖) (𝑖 = 1, . . . , 𝑁 ); and (ii) a dataset D of cost measurements from code fragments
statℓ 𝑒ℓ (ℓ ∈ 𝐿). Unless data-driven analysis is performed on the whole target program 𝑃 (𝑥), its
outputs 𝑢̃𝑖 and costs 𝑐𝑖 (𝑖 = 1, . . . , 𝑁 ) do not play a role in data-driven analysis.

During the execution of 𝑃 (𝑢𝑖), suppose we encounter an annotated code fragment statℓ 𝑒ℓ
for 𝑁 ℓ

𝑖 ≥ 0 times. Let the cost-semantics judgments (§3.2) of the expression 𝑒ℓ while evaluating
𝑃 (𝑢𝑖) be

𝑉 ℓ
𝑖, 𝑗 ⊢ 𝑒ℓ ⇓ 𝑣 ℓ𝑖, 𝑗 | 𝑐ℓ𝑖, 𝑗 (𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑁 ℓ

𝑖 ). (7.2.4)

A dataset Dℓ of cost measurements for the code fragment statℓ 𝑒ℓ is constructed by recording
three components: inputs𝑉 ℓ

𝑖, 𝑗 , outputs 𝑣
ℓ
𝑖, 𝑗 , and costs 𝑐

ℓ
𝑖, 𝑗 . An overall datasetD of cost measure-

ments is given by aggregating all Dℓ for ℓ ∈ 𝐿. Formally, we define

Dℓ ≔ {(ℓ,𝑉 ℓ
𝑖, 𝑗 , 𝑣

ℓ
𝑖, 𝑗 , 𝑐

ℓ
𝑖, 𝑗 ) | 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 ℓ

𝑖 } (ℓ ∈ 𝐿) D ≔
⋃
ℓ∈𝐿
Dℓ . (7.2.5)

Remark 7.2.1 (Context dependency of data collection). Cost measurements collected as de-

scribed above are context-dependent (i.e., dependent on the context in which a code fragment

statℓ 𝑒ℓ runs), enabling data-driven analysis to infer tighter cost bounds. For instance, consider

an annotated code fragment statℓ 𝑒ℓ (ℓ ∈ L) where the expression 𝑒ℓ performs insertion sort. Al-

though the worst-case time complexity for insertion sort is 𝑂 (𝑛2), its complexity becomes 𝑂 (𝑛) if
input lists are (almost) sorted. Thus, if inputs to the expression statℓ 𝑒ℓ are almost sorted, then the

dataset Dℓ of cost measurements capture 𝑂 (𝑛) costs, rather than 𝑂 (𝑛2) costs, of insertion sort.

Context dependency would not hold if we recorded cost measurements of an expression statℓ 𝑒ℓ
in an isolated context. For instance, if we ran insertion sort on randomly generated lists, as opposed

to sorted lists, we would instead collect𝑂 (𝑛2) costs. This would result in less tight cost bounds from
data-driven resource analysis. «
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Remark 7.2.2 (Data collection of all recursive calls). For data-driven resource analysis, it is

critical to use all cost measurements in a dataset D, instead of dropping some of them. This is

important for the soundness guarantee of data-driven analysis with respect to the inputs 𝑢𝑖 (𝑖 =

1, . . . , 𝑁 ) to the target program 𝑃 (𝑥). For example, consider an annotated code fragment statℓ 𝑒ℓ
(ℓ ∈ L) where the expression 𝑒ℓ is the body of a recursive function. If we did not record cost

measurements of all recursive calls 𝑒ℓ , then a cost bound inferred by data-driven analysis for the

entire recursive function would not be guaranteed to be sound with respect to the inputs 𝑢𝑖 (𝑖 =

1, . . . , 𝑁 ). «

Remark 7.2.3 (Higher-order functions). In the judgment (7.2.4), the input 𝑢𝑖 to the function 𝑃 ,
all values in the environment 𝑉 ℓ

𝑖, 𝑗 for the expression 𝑒
ℓ
, and the output value 𝑣 ℓ𝑖, 𝑗 are all required

to have non-arrow types. Otherwise, higher-order functions would pose technical challenges in

program-input generation and data collection in data-driven (and hybrid) resource analysis.

Consider a target higher-order function 𝑃 (𝑥) that takes another function as input. The first

challenge is that, if a dataset of cost measurements for the function 𝑃 is not readily available,

the user needs to generate functions 𝐹1, . . . , 𝐹𝑁 to be used as inputs to the function 𝑃 . Because

the space of functions is vast, it is non-trivial to generate a reasonably diverse set of arrow-typed

inputs. QuickCheck [57], a property-based testing tool for Haskell, lets the user write generators

for arrow-typed inputs.

The second challenge is that the data-collection procedure is complicated. During the execution

of the program 𝑃 (𝑥), suppose the higher-order function 𝑃 is executed 𝑁 times, each with input

𝐹𝑖 (𝑖 = 1, . . . , 𝑁 ). We need to record not only cost measurements of the function 𝑃 but also cost

measurements of each input function 𝐹𝑖 (𝑖 = 1, . . . , 𝑁 ).

Dually, if the higher-order function 𝑃 returns a function as output (say 𝐺), then the function

𝐺 may never be executed during data collection. An example is partial application of a curried

function 𝑃 with multiple inputs. Without having runtime-cost data of the output function 𝐺 , we

cannot statistically infer a cost bound of the function 𝑃 . «

7.3 Bayesian Data-Driven Resource Analyses

This section presents Bayesian data-driven resource analysis [188], which infers a symbolic cost
bound by Bayesian inference (§7.1) on a dataset of cost measurements. Bayesian data-driven
analysis offers two advantages over existing data-driven resource analyses in the literature,
which are mostly optimization-based [60, 94, 234]:

1. Bayesian inference lets the user express their domain knowledge (e.g., how conserva-
tive inferred cost bounds should be with respect to the observed costs) in the form of
probabilistic models. By contrast, most data-driven analyses in the literature, which are
optimization-based, do not let the user customize statistical models for data analysis.

2. Bayesian inference returns a distribution of inferred cost bounds, providing greater ro-
bustness and richer information about statistical uncertainty than optimization-based
methods.

§7.3.1 sets the stage for data-driven resource analysis by introducing notation. §7.3.2 presents
an optimization-based method Opt, variants of which are prevalent in the literature of data-
driven analysis. §7.3.3 and §7.3.4 then introduce two Bayesian data-driven resource-analysis
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techniques: BayesWC and BayesPC. Finally, §7.3.5 discusses generalizations of the three data-
driven analyses.

7.3.1 Setting the stage

To set the stage for data-driven analysis, consider a program 𝑃 (𝑥) = 𝑒 . Let the dataset of cost
measurements of the function body 𝑒 be D ≔ {(𝑉𝑖, 𝑣𝑖, 𝑐𝑖)}𝑁𝑖=1. To simplify the presentation, I
assume that 𝑃 takes as input an integer list. Since 𝑉𝑖 ≡ {𝑥 : 𝑣𝑖} holds for each 𝑖, . . . , 𝑁 , I denote
the measurements more concisely as (𝑣𝑖, 𝑣𝑖, 𝑐𝑖). A cost bound of 𝑃 is described by a resource-
annotated typing judgment

{𝑥 : 𝐿 ®𝑝 (int)}; 𝑝0 ⊢ 𝑃 𝑥 : ⟨𝐿®𝑞 (int), 𝑞0⟩, (7.3.1)

where ®𝑝 and ®𝑞 are vector of polynomial coefficients (except for degree-zero coefficients) of input
and output potential functions, respectively, and 𝑝0 and 𝑞0 are constant potential in the input
and output, respectively. This typing judgment is sound if, for all lists 𝑣 : 𝐿(int) such that
{𝑥 : 𝑣} ⊢ 𝑃 𝑥 ⇓ 𝑣 | 𝑐 , the input potential is enough to pay for the cost and output potential:

[Φ(𝑣 : 𝐿 ®𝑝 (int)) + 𝑝0] − [Φ(𝑣 : 𝐿®𝑞 (int)) + 𝑞0] ≡
[
Ψ( |𝑣 |;𝑝0, ®𝑝) − Ψ( |𝑣 |;𝑞0, ®𝑞)

]
≥ 𝑐, (7.3.2)

where I have introduced the function

Ψ(𝑛; 𝑝0, ®𝑝) ≔ 𝑝0 +
| ®𝑝 |∑︁
𝑖=1

𝑝𝑖

(
𝑛

𝑖

)
(𝑛 ∈ N) (7.3.3)

to evaluate the amount of potential for input size 𝑛 with coefficients 𝑝0 and ®𝑝 of polynomial
potential functions.

Unlike Conventional AARA, which derives (7.3.1) by static analysis of 𝑒 and linear program-
ming, data-driven resource analysis infers the parameters (𝑝0, ®𝑝) and (𝑞0, ®𝑞) using the dataset
D of cost measurements. An inferred symbolic cost bound for the net cost (and also the high-
water-mark cost) of 𝑃 (𝑥) is given by the function

𝑥 ↦→ Ψ( |𝑥 |;𝑝0, ®𝑝). (7.3.4)

To obtain a tighter bound for the net cost, we could take the function 𝑥 ↦→ Ψ( |𝑥 |;𝑝0, ®𝑝) −
Ψ( |𝑃 (𝑥) |;𝑞0, ®𝑞) as a cost bound, although it is parametric in not only the input 𝑥 but also the
output 𝑃 (𝑥) (see Remark 4.1.1).

7.3.2 Optimization-Based Data-Driven Analysis

Before presenting Bayesian inference, I consider a simple optimization-based baseline (adapted
from the literature [60, 94, 234]) to ensure that (7.3.2) is satisfiedwith respect to the runtime-cost
data D:

∀𝑖 = 1, . . . , 𝑁 .Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) ≥ 𝑐𝑖 + Ψ( |𝑣𝑖 |;𝑞0, ®𝑞). (7.3.5)
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Figure 7.2: Three approaches to data-driven resource analysis. (a) Opt uses linear program-
ming to fit a polynomial curve that lies above the runtime data while minimizing the distance
to the observed worst-case cost at each input size. (b) BayesWC uses a two-step approach: first,
Bayesian survival analysis is used to infer a posterior distribution over the worst-case cost at
each input size; second, linear programming is used to fit polynomial curves with respect to
samples from the inferred distribution of worst-case costs. (c) BayesPC uses Bayesian poly-
nomial regression to infer the coefficients of polynomial curves that lie above the observed
runtime data.

We seek the tightest bound among all 𝑝0, ®𝑝, 𝑞0, ®𝑞 that minimizes the nonnegative cost gaps be-
tween the predicted and observed costs in the dataset D. Letting

𝑁D ≔ {|𝑣𝑖 | | 𝑖 = 1, . . . , 𝑁 } set of unique input sizes appearing in D
(7.3.6)

𝑐max
𝑛 ≔ max{𝑐𝑖 | 𝑖 = 1, . . . , 𝑁 , |𝑣𝑖 | = 𝑛} max. observed cost for input size 𝑛 ∈ 𝑁D

(7.3.7)
𝑐max
𝑛 ≔ max{cost(𝑃 (𝑣)) | 𝑣 : 𝐿(int), |𝑣 | = 𝑛} true worst-case cost for input size 𝑛 ∈ 𝑁D,

(7.3.8)

I define the following linear program:

minimize
∑𝑁
𝑖=1

[
Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) − Ψ( |𝑣𝑖 |;𝑞0, ®𝑞)

]
− 𝑐max
|𝑣𝑖 | (Opt-LP)

subject to Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) ≥ Ψ( |𝑣𝑖 |;𝑞0, ®𝑞) + 𝑐max
|𝑣𝑖 | (𝑖 = 1, . . . , 𝑁 )

𝑝0, 𝑝1, . . . , 𝑝 | ®𝑝 |, 𝑞0, 𝑞1, . . . , 𝑞 | ®𝑞 | ≥ 0.

Equivalently, in (Opt-LP), I can replace 𝑐max
|𝑣𝑖 | with 𝑐𝑖 (𝑖 = 1, . . . , 𝑁 ) without changing the space

of feasible and optimal solutions. This optimization-based approach to data-driven resource
analysis is dubbed Opt and is illustrated in Fig. 7.2a.

Opt has a shortcoming that its inference result may have zero probability of being a sound
cost bound. That is, Opt fails to satisfy robustness. While any solution 𝑝0, ®̂𝑝, 𝑟0, ®̂𝑞 to (Opt-LP)
is guaranteed to satisfy (7.3.5), an inferred cost bound Ψ(𝑛;𝑝0, ®̂𝑝) may lie below the true value
𝑐max
𝑛 in Eq (7.3.8) (which I assume is finite). This shortcoming occurs because Opt uses the point
estimate 𝑐max

𝑛 given in Eq (7.3.7) as a proxy for 𝑐max
𝑛 , which is not robust in cases where the data

D is such that 𝑐max
𝑛 < 𝑐max

𝑛 for some 𝑛 ∈ 𝑁D .
To partially fix this issue, we can let the user adjust the objective function and constraints

in (Opt-LP). However, no optimization-based techniques in the literature do so. Furthermore,
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even with this partial fix, any optimization-based technique only returns a single inferred cost
bound, failing to achieve robustness and capture statistical uncertainty.

7.3.3 Bayesian Inference on Worst-Case Costs (BayesWC)

Overview The first approach to addressing the aforementioned limitation of Opt is Bayesian
inference on worst-case costs (BayesWC). Whereas Opt uses the dataD to form a point estimate
𝑐max
𝑛 of the worst-case cost 𝑐max

𝑛 for each input size 𝑛 ∈ 𝑁D in the linear program, BayesWC
instead leverages D to learn an entire probability distribution 𝜇𝑛 that characterizes our uncer-
tainty about 𝑐max

𝑛 . I identify two requirements that the inferred worst-case cost distributions 𝜇𝑛
must satisfy:

𝜇𝑛 ( [𝑐max
𝑛 ,∞)) = 1 ∀𝜖 > 0,𝑤 > 𝑐max

𝑛 . 𝜇𝑛 ( [𝑤 − 𝜖,𝑤 + 𝜖]) > 0. (7.3.9)

The left expression guarantees soundness (7.3.5) with respect to runtime-cost data D, and the
right expression ensures robustness with respect to the true worst-case cost 𝑐max

𝑛 . Robustness
means that an inference result has a positive probability of being a sound cost bound even if
the dataset D does not contain worst-case inputs. Opt satisfies soundness with respect to the
dataset D, but not robustness due to usage of point estimates.

If we have access to probability distributions 𝜇𝑛 (𝑛 ∈ 𝑁D) over worst-case costs, we can use
them to robustly estimate bounds by generating |𝑁D | batches of𝑀 > 0 i.i.d. samples

(𝑐′𝑛,1, . . . , 𝑐′𝑛,𝑀 ) ∼ 𝜇𝑛 (𝑛 ∈ 𝑁D). (7.3.10)

Reorganizing these |𝑁D | × 𝑀 samples into 𝑀 lists c′𝑗 ≔ (𝑐′𝑛,𝑗 ;𝑛 ∈ 𝑁D) ( 𝑗 = 1, . . . , 𝑀) each of
length 𝑁D , we obtain posterior samples of coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 by solving𝑀 linear programs
parametrized by the random samples c′𝑗 :

minimize
∑𝑁
𝑖=1

[
Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) − Ψ( |𝑣𝑖 |;𝑞0, ®𝑞)

]
− 𝑐′|𝑣𝑖 |, 𝑗 (BayesWC-LP)

subject to Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) ≥ Ψ( |𝑣𝑖 |;𝑞0, ®𝑞) + 𝑐′|𝑣𝑖 |, 𝑗 (𝑖 = 1, . . . , 𝑁 )
𝑝0, 𝑝1, . . . , 𝑝 | ®𝑝 |, 𝑞0, 𝑞1, . . . , 𝑞 | ®𝑞 | ≥ 0.

Fig. 7.2b illustrates BayesWC, where the blue dots above a given input size 𝑛 represents the
samples 𝑐′𝑛,𝑗 from the worst-case cost distribution 𝜇𝑛 . The solutions of the corresponding linear
programs (BayesWC-LP) are shown in red. Whereas Opt delivers a single bound using from
one LP, BayesWC delivers posterior samples of bounds using multiple randomly generated LPs.

Sampling worst-case costs via Bayesian inference To obtain distributions 𝜇𝑛 over worst-
case costs that satisfy soundness and robustness in Eq (7.3.9), I perform Bayesian inference
using a probabilistic generative model and observed costs of the target program 𝑃 . Define the
following notation:

v ≔ (𝑣1, . . . , 𝑣𝑁 ) observed inputs in runtime-cost data D (7.3.11)
c ≔ (𝑐1, . . . , 𝑐𝑁 ) observed costs in runtime-cost data D (7.3.12)
y ≔ (𝑦1, . . . , 𝑦𝑁 ) random variables of the costs 𝑦𝑖 of running 𝑃 (7.3.13)

on inputs of length |𝑣𝑖 | for 𝑖 = 1, . . . , 𝑁 .
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We design a (yet-to-be-specified) probabilistic model indexed by v:

𝜋v(𝜃, y) ≔ ℎ(𝜃 )
𝑁∏
𝑖=1

𝑔(𝑦𝑖 ;𝜃, |𝑣𝑖 |), (7.3.14)

where ℎ(𝜃 ) is a prior distribution of latent parameters 𝜃 and 𝑔(𝑦𝑖 ;𝜃, |𝑣𝑖 |) is the likelihood of a
cost𝑦𝑖 given the latent parameters 𝜃 and the input size |𝑣𝑖 |. The probabilistic model encodes the
user’s domain knowledge about how conservative inferred cost bounds should be relative to
maximum observed costs in the dataset D. Conditioned on the observed costs c in the dataset
D, the posterior distribution of the latent parameters 𝜃 is given by Bayes’ rule as

𝜋v(𝜃 | y = c) = 𝜋v(𝜃, y = c)∫
𝜃
𝜋v(𝜃, y = c) d𝜃

∝ ℎ(𝜃 )
𝑁∏
𝑖=1

𝑔(𝑦𝑖 = 𝑐𝑖 ;𝜃, |𝑣𝑖 |) (7.3.15)

Suppose that, given D, we are able to infer the posterior 𝜋v(𝜃 | y = c) as defined in
Eq (7.3.15). We generate samples (𝑐′𝑛,1, . . . , 𝑐′𝑛,𝑀 ) in Eq (7.3.10) from the worst-case cost dis-
tribution 𝜇𝑛 by sampling:

𝜃 𝑗 ∼ 𝜋v(𝜃 | y = c) 𝑐′𝑛,𝑗 ∼ 𝑔(𝑦;𝜃 𝑗 , 𝑛, [𝑐max
𝑛 ,∞)) ( 𝑗 = 1, . . . , 𝑀 ;𝑛 ∈ 𝑁D), (7.3.16)

where a truncated distribution 𝑔 is defined as the restriction of 𝑔 to an interval𝑈 ⊂ R:

𝑔(𝑥 ;𝜃, 𝑛,𝑈 ) ≔ 𝑔(𝑥 ;𝜃, 𝑛)I[𝑥 ∈ 𝑈 ]∫
𝑥∈𝑈 𝑔(𝑥 ;𝜃, 𝑛) d𝑥

(𝑥 ∈ R), (7.3.17)

where

I[𝑥 ∈ 𝑈 ] ≔
{
1 if 𝑥 ∈ 𝑈
0 otherwise.

(7.3.18)

Proposition 7.3.1 (Soundness and robustness of BayesWC). If the likelihood 𝑔(𝑦;𝜃, 𝑛) has full
support over [0,∞), then the inferred worst-case-cost distribution 𝜇𝑛 defined by Eq (7.3.16) satisfies
the soundness and robustness properties (7.3.9).
Remark 7.3.1. The reader may be concerned that the distributions of the𝑀 simulated worst-case

costs c′ ≔ (𝑐′𝑛;𝑛 ∈ 𝑁D) in Eq (7.3.16) are defined in terms of 𝑐max
𝑛 , which are observation-specific

quantities. In Bayesian inference, unless we adopt empirical Bayes [45], prior distributions must

be independent of observations. Otherwise, the prior distributions would not faithfully reflect the

user’s “prior” belief before collecting observed data. Therefore, it is reasonable to be wary of the

dependence of the worst-case costs c′ on observations.

Nonetheless, the random variable 𝑐′𝑛 has a well-defined prior distribution ℎ(𝜃 ) that is indepen-
dent of observed dataD. First of all, the probabilistic model 𝜋v is indexed by a fixed vector of input

instances v that uniquely define the sizes 𝑁D . Hence, 𝑁D is not part of observed variables. Fur-

thermore, the random variables 𝜃 , y, and c′ are related by the following factorization and graphical
representation:

𝜃 y c′ 𝜋v(𝜃, y, c′) ≔ ℎ(𝜃 )∏𝑁
𝑖=1 𝑔(𝑦𝑖 ;𝜃, |𝑣𝑖 |)

∏
𝑛∈𝑁D 𝑔(𝑐′𝑛;𝜃, 𝑛, [ max

𝑖∈[𝑁 ];|𝑣𝑖 |=𝑛
𝑦𝑖,∞)) .
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The conditional independence structure in the model is now obvious, and the 𝑀 replicates of c′𝑗 ≔
(𝑐′𝑛,𝑗 ;𝑛 ∈ 𝑁D) (𝑖 = 1, . . . , 𝑀) drawn in Eq (7.3.16) are valid posterior inferences conditioned on the

observed costs c in D. «

Survival analysis for worst-case costs To obtain the distribution 𝜋v(𝜃 | y = c) (7.3.15), we
design a domain-general probabilistic model grounded in survival analysis [15] for predicting
“time-to-occurrence” data beyond an observed horizon. Survival analysis is a widely used fam-
ily of statistical methods applied in diverse areas such as hardware failure [1], clinical trials [2],
and customer analytics [129].

The probabilistic model has three parameters 𝜃 = {𝛽0, 𝛽1, 𝜎} with i.i.d. normal prior ℎ; a
hyperparameter 𝛾0; a likelihood model 𝑔(𝑦 | 𝜃 ) over observable costs𝑦 that is defined implicitly
through a variable transformation; and a noise distribution 𝑔noise:

𝛽0, 𝛽1, 𝜎
iid∼ Normal(0, 𝛾0) 𝜖𝑖 ∼ 𝑔noise(0, 1) (𝑖 = 1, . . . , 𝑁 ) (7.3.19)

𝑥𝑖 ≔ 𝛽0 + 𝛽1 |𝑣𝑖 | + |𝜎 |𝜖𝑖 𝑦𝑖 = exp(𝑥𝑖) (𝑖 = 1, . . . , 𝑁 ). (7.3.20)

Possible choices for the noise distribution𝑔noise include the standard normal, logistic, or Gumbel
distributions, which in turn imply that the likelihood model 𝑔 is a log-normal, log-logistic, or
Weibull distribution each with scale parameter exp(𝛽0+𝛽1 |𝑣𝑖 |) and shape parameters |𝜎 |, |𝜎 |−1,
and |𝜎 |−1, respectively. The reference implementation by my collaborators and me (§7.5) sets
𝑔noise to be a Gumbel distribution, for its relatively heavier tails as compared to other choices.

7.3.4 Bayesian Inference on Polynomial Coefficients (BayesPC)

Overview Whereas BayesWC performs Bayesian inference on worst-case costs and com-
poses the results with (BayesWC-LP) to deliver symbolic cost bounds, we develop another ap-
proach that bypasses LP solving and directly performs Bayesian inference over the unknown
coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 in the judgment (7.3.1).

In this approach, dubbed Bayesian inference on polynomial coefficients (BayesPC), a Bayesian
model is indexed by the input instances v and output instances ṽ and defines a probability dis-
tribution

𝜋v,ṽ(𝜃, 𝑝0, ®𝑝, 𝑞0, ®𝑞, y) (7.3.21)

over a set of auxiliary latent parameters 𝜃 , polynomial coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 of potential func-
tions in the input and output, and observable costs y. Conditioned on observed costs c, we
sample

𝑝′0, ®𝑝′, 𝑞′0, ®𝑞′ ∼ 𝜋v,ṽ(𝑝0, ®𝑝, 𝑞0, ®𝑞 | y = c), (7.3.22)

which define the posterior bound 𝜆𝑛.Ψ(𝑛;𝑝′0, ®𝑝′). Fig. 7.2c illustrates this idea: the blue curves
represent posterior samples of cost bounds and the blue dots show samples 𝑐′𝑛 of inferred worst-
case costs that estimate the true value 𝑐max

𝑛 at each input size 𝑛 ∈ 𝑁D . As in BayesWC, BayesPC
delivers posterior samples of both worst-case costs and cost bounds, but it rests on a different
modeling and inference approach that bypasses linear programming entirely.
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Bayesian polynomial regression To define a probabilistic model 𝜋v,ṽ(𝜃, 𝑝0, ®𝑝, 𝑞0, ®𝑞, y) in
BayesPC, I adopt Bayesian polynomial regression, which is a polynomial extension of Bayesian
linear regression (§7.1.2). I model the observable costs (𝑐1, . . . , 𝑐𝑁 ) as random variables where
each cost 𝑐𝑖 takes values in a bounded interval [0, 𝑐′|𝑣𝑖 |,|𝑣𝑖 |], where |𝑣𝑖 | is an input size and |𝑣𝑖 | is
an output size (𝑖 = 1, . . . , 𝑁 ). For each 𝑛 ∈ 𝑁D , the endpoints 𝑐′𝑛,𝑛̃ of these intervals are them-
selves random variables defined as polynomial regression outputs that capture uncertainty in
the true worst-case cost 𝑐max

𝑛 . The probabilistic model in BayesPC is given by:

(𝑝 𝑗 ) | ®𝑝 |𝑗=0, (𝑞 𝑗 )
| ®𝑞 |
𝑗=0

iid∼ Normal≥0(0, 𝛾0) 𝜃 ∼ ℎnoise(𝛾1) (7.3.23)

𝑐′𝑛,𝑛̃ ≔ Ψ(𝑛;𝑝0, ®𝑝) − Ψ(𝑛̃;𝑞0, ®𝑞) (𝑛 ∈ 𝑁D ; 𝑛̃ ∈ 𝑁̃D) (7.3.24)
𝜖𝑖 ∼ 𝑔noise(·;𝜃, [0, 𝑐′|𝑣𝑖 |,|𝑣𝑖 |]) 𝑦𝑖 = 𝑐

′
|𝑣𝑖 |,|𝑣𝑖 | − 𝜖𝑖 (𝑖 = 1, . . . , 𝑁 ; i.i.d.), (7.3.25)

where 𝛾0, 𝛾1 are hyperparameters. In Eq (7.3.24), 𝑁̃D is the set {|𝑣𝑖 | | 𝑖 = 1, . . . , 𝑁 } of output
sizes in the dataset D.

Eq. (7.3.23) samples (i) polynomial coefficients 𝑝𝑖, 𝑞 𝑗 (𝑖 = 1, . . . , | ®𝑝 |, 𝑗 = 1, . . . , | ®𝑞 |) of potential
functions from a normal distribution; and (ii) a model parameter 𝜃 from a prior distribution
ℎnoise. Eq. (7.3.24) then defines an inferred worst-case cost 𝑐′

𝑛,𝑛̃
for input size 𝑛 (𝑛 ∈ 𝑁D) and

output size 𝑛̃ (𝑛̃ ∈ 𝑁̃D). Finally, Eq (7.3.25) samples a noise 𝜖𝑖 (𝑖 = 1, . . . , 𝑁 ) from a truncated
distribution 𝑔noise(·;𝜃, [0, 𝑐′𝑛,𝑛̃]). The term 𝑔noise(·;𝜃, [0, 𝑐′𝑛,𝑛̃]) is the truncation of an underlying
noise distribution 𝑔noise(·;𝜃 ) that has full support over [0,∞) (c.f., Eq (7.3.17)).

In Eq (7.3.25), the noise 𝜖𝑖 represents the gap between inferred worst-case costs 𝑐′|𝑣𝑖 |,|𝑣𝑖 | and
observed costs 𝑐𝑖 (𝑖 = 1, . . . , 𝑁 ), where the latter may be smaller than the former. The noise 𝜖𝑖 is
constrained to the interval [0, 𝑐′|𝑣𝑖 |,|𝑣𝑖 |] because the goal of resource analysis in this thesis to infer
a worst-case (rather than average-case) cost bound: 0 ≤ 𝑐𝑖 ≤ 𝑐′|𝑣𝑖 |,|𝑣𝑖 | must hold for 𝑖 = 1, . . . , 𝑁 .

The model parameter 𝜃 for the truncated distribution 𝑔noise(·;𝜃, [0, 𝑐′𝑛,𝑛̃]) has prior ℎnoise. In
an implementation of AARA (§7.5), my collaborators and I take𝑔noise to be aWeibull distribution
with scale and shape parameters 𝜃 ≔ (𝜃0, 𝜃1).
Remark 7.3.2. The main challenge to posterior inference in BayesPC is the fact that the poly-

nomial coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 are constrained to the linear regions (i.e., convex regions defined by

linear constraints)

𝑐𝑖 ⊑ Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) − Ψ( |𝑣𝑖 |;𝑞0, ®𝑞) (7.3.26)

for 𝑖 = 1, . . . , 𝑁 . That is, the coefficients must be sound at least with respect to the cost measure-

ments in the dataset D such that 𝑐𝑖 ≤ 𝑐′|𝑣𝑖 |,|𝑣𝑖 | holds for all 𝑖 = 1, . . . , 𝑁 . Coefficients outside this

region have zero posterior probability density.

As discussed in §7.1.2, many probabilistic programming languages (PPLs) do not support arbi-

trary linear constraints on latent variables. Stan [44], for example, only supports box constraints

(i.e., 𝑐1 ≤ 𝜃 ≤ 𝑐2 for constants 𝑐1, 𝑐2 ∈ R and a latent variable 𝜃 ).

Whereas traditional Markov chain Monte Carlo (MCMC) algorithms struggle in this setting,

we leverage “Reflective” Hamiltonian Monte Carlo (ReHMC) sampling [47, 49, 50, 171] for posterior

inference in BayesPC, where simulated trajectories reflect at the boundaries of the convex polytopes.

A high-quality implementation is available in the C++ library Volesti [48]. «
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7.3.5 Generalizations

I describe generalizations of data-driven resource analysis that relax the simplifying assump-
tions made at the beginning of this section and are needed to describe hybrid resource analysis
in §7.4. I specifically discuss the following generalizations: (i) more complicated data types (e.g.,
tuples and nested lists) that have multiple size measures; (ii) typing contexts containing more
than one variable; (iii) non-monotone resource metrics (e.g., memory); and (iv) probabilistic
models besides the ones presented so far.

Size measures of values A value can have multiple measures of sizes. Suppose that a tar-
get program 𝑃 (𝑥) takes as input an integer list 𝑣 : 𝐿(int), as already assumed in the typing
judgment (7.3.1). Let 𝑑 ∈ N be a user-specified polynomial degree to be used in data-driven
resource analysis. Then the resource-annotated typing judgment (7.3.1) contains polynomial
coefficients 𝑝0, 𝑝1, . . . , 𝑝𝑑 in the typing context, where each coefficient 𝑝𝑖 is multiplied with a
binomial coefficient

( |𝑣 |
𝑖

)
(𝑖 = 0, . . . , 𝑑). The quantities

( |𝑣 |
𝑖

)
for 𝑖 = 1, . . . , 𝑑 (and possibly the

constant
( |𝑣 |
0
)
= 1 as well) can each be viewed as distinct sizes of the input list 𝑣 : 𝐿(int).

Furthermore, a value of a more complicated data type (e.g., tuples and nested lists) has even
more sizes. For instance, in multivariate AARA [116], given a maximum polynomial degree
𝑑 = 2, a nested list

𝑣 ≔ [𝑣1, 𝑣2] 𝑣1 ≔ [1, 2] 𝑣2 ≔ [3, 4, 5] (7.3.27)

has the following sizes:
1. the degree-1 outer-list length (i.e., |𝑣 | = 2);
2. the degree-2 outer-list length (i.e.,

( |𝑣 |
2
)
= 1); and

3. the combined length of all inner lists3(i.e.,
∑
𝑖 |𝑣𝑖 | = 5).

The last size,
∑
𝑖 |𝑣𝑖 |, is unique to nested lists—it does not exist for non-nested lists.

Opt and BayesPC can easily be generalized to input and output data types that have mul-
tiple sizes (e.g., nested lists). The linear program (Opt-LP) for Opt and the probabilistic model
(7.3.23)–(7.3.25) for BayesPC treat all coefficients (𝑝𝑖)𝑑𝑖=0 and (𝑞𝑖)𝑑𝑖=0 in the same manner, where
𝑑 ∈ N is a user-specified polynomial degree. Similarly, for input and output data types that
have multiple sizes (e.g., nested lists), their coefficients are aggregated into tuples (𝑝𝑖)𝑑𝑖=0 and
(𝑞𝑖)𝑑𝑖=0.

BayesWC (§7.3.3), on the other hand, requires more care than Opt and BayesPC. Survival
analysis (7.3.19)–(7.3.20) infers worst-case costs 𝑐′|𝑣 | , which are indexed by the degree-1 list
length |𝑣 |, even if a user-specified polynomial degree is 𝑑 ≥ 2 and hence yields multiple sizes( |𝑣 |
𝑖

)
for 𝑖 = 1, . . . , 𝑑 . This means only the degree-1 list length |𝑣 | is used as a feature (also called

an independent variable or a covariate) to infer worst-case costs 𝑐′|𝑣 | . It might be theoretically
more elegant and consistent to index inferred worst-case costs 𝑐′ by a vector ®𝑛 ∈ R𝑑 of all sizes.
Nonetheless, in a prototype implementation of BayesWC (§7.5), I only use the degree-1 list

3Multivariate AARA associates the size
∑

𝑖 |𝑣𝑖 | with polynomial degree 2. Intuitively, this is because the com-
bined length of all inner lists is approximated (i.e., bounded above) by a product of the outer-list length |𝑣 | and the
maximum inner-list length max𝑖 |𝑣𝑖 |. Hence, this size exists for nested lists only when a user-specified maximum
polynomial degree is 𝑑 ≥ 2.
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length |𝑣 | to index inferred worst-case costs. This is because, for integer lists, supplying all bi-
nomial coefficients

(𝑣
𝑖

)
(𝑖 = 1, . . . , 𝑑) as features to survival analysis would be redundant—these

sizes can all be obtained from the degree-1 size |𝑣 |. More generally, for arbitrary non-arrow
data types, I use a vector of all degree-1 sizes to index inferred worst-case costs, but not a vec-
tor of sizes across all degrees. This means that, in benchmarks with nested lists (e.g., Concat
in §7.6), worst-case costs are not indexed by the combined length of all inner lists, which has
degree 2. Hence, survival analysis cannot access full information about the sizes and shapes of
nested lists, since the degree-1 size of nested lists does not determine their combined length of
inner lists (i.e., these two sizes are not fully correlated to each other). This design decision for
survival analysis is ad hoc—generally, the user is free to choose different probabilistic models
in their implementations of BayesWC.

General typing judgments For fully data-driven resource analysis, the resource-annotated
typing judgment (7.3.1) assumes that the typing context of 𝑃 (𝑥) is {𝑥 : 𝐿 ®𝑝 (int)}, which consists
only of one variable. For hybrid resource analysis, we would like to generalize this resource-
annotated typing judgment to

{𝑥1 : 𝑎1, 𝑥2 : 𝑎2, . . . , 𝑥𝑚 : 𝑎𝑚}; 𝑝0 ⊢ 𝑒 : ⟨𝑎, 𝑞0⟩. (7.3.28)

This is because, in hybrid resource analysis, data-driven analysis is performed on an annotated
code fragment statℓ 𝑒ℓ (ℓ ∈ L), and its typing context in general has the form {𝑥1 : 𝑎1, 𝑥2 :
𝑎2, . . . , 𝑥𝑚 : 𝑎𝑚} for𝑚 ∈ N.

In Eq (7.3.28), each resource-annotated type 𝑎𝑖 is associated with symbolic coefficients ®𝑝𝑖
(𝑖 = 1, . . . ,𝑚), and the output type 𝑎 with coefficients ®𝑞. The constant potentials 𝑝0 and 𝑞0 are
unchanged. The linear programs (Opt-LP) and (BayesWC-LP) and the BayesPC probabilistic
model (7.3.23)–(7.3.25) are then defined over this expanded collection of coefficients. Simula-
tions in Eq (7.3.22) produced from BayesPC, for example, may be written as equivalently

(𝑝′0, {®𝑝′𝑖 }𝑚𝑖=1, ®𝑞, 𝑞′0) ∼ 𝜋v,ṽ(· | y = c) or (𝑝′0, Γ′, 𝑎′, 𝑞′0) ∼ 𝜋v,ṽ(· | y = c) . (7.3.29)

In the latter case, the sampled typing environment Γ′ is obtained by using the sampled co-
efficient ®𝑝′𝑖 in place of the symbolic coefficient within each resource-annotated type 𝑎𝑖 (𝑖 =

1, . . . ,𝑚), and similarly for 𝑎′ and ®𝑞′.

Non-monotone resource metrics So far, our discussion of data-driven resource analysis
has assumed monotone resource metrics (e.g., running time), where resources are consumed
but never freed up. To extend data-driven resource analysis to non-monotone resource metrics
(e.g., memory), we modify the data-collection procedure by collecting not only net costs 𝑐ℓ𝑖, 𝑗 but
also high-water-mark costs ℎℓ𝑖, 𝑗 in Eq (7.2.4).

In Opt, the linear program (Opt-LP) imposes linear constraints on net costs 𝑐𝑖 (𝑖 = 1, . . . , 𝑁 ),
which are equal to high-water-mark costs undermonotone resourcemetrics. Under non-monotone
resource metrics, the linear program is augmented with additional linear constraints

Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) ≥ ℎ𝑖 (𝑖 = 1, . . . , 𝑁 ). (7.3.30)
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As for the objective function of the linear program (Opt-LP), no choice seems to be a clear
winner. The objective function of (Opt-LP), which minimizes the difference between observed
net costs and predicted net-cost bounds, may remain unchanged. But the user is allowed to
modify or extend the objective function by including high-water-mark costs ℎ𝑖 . For example,
we may opt for the objective function∑𝑁

𝑖=1 Ψ( |𝑣𝑖 |; 𝑝0, ®𝑝) − ℎ̂max
|𝑣𝑖 | , (7.3.31)

which minimizes the difference between observed high-water-mark costs and their predicted
bounds. §7.5.1 provides a holistic discussion of optimization objectives in data-driven and hy-
brid resource analyses.

For BayesWC to handle non-monotone resource metrics, we infer worst-case high-water-
mark costs ℎ′𝑛 ≥ 0 (𝑛 ∈ 𝑁D) by Bayesian inference, in addition to worst-case net costs 𝑐′𝑛 .
Furthermore, ℎ′𝑛 ≥ 𝑐′𝑛 must hold for all 𝑛 ∈ 𝑁D . The linear program (BayesWC-LP) is then
modified by incorporating the inferred worst-case high-water-mark costs ℎ′𝑛 into linear con-
straints (and also the objective function if the user wishes).

Finally, for BayesPC, the Bayesianmodel is modified by incorporating observed high-water-
mark costs ℎℓ𝑖, 𝑗 into (i) the joint probability distribution and (ii) the linear constraints defining
the region of positive density to draw posterior samples from.

Probabilisticmodels Although I have presented concrete probabilistic models for BayesWC
(Eqs. (7.3.19)–(7.3.20)) and BayesPC (Eqs. (7.3.23)–(7.3.25)), it is not my intention to advocate for
these particularmodels. BayesWC and BayesPC are intended as general approaches to Bayesian
data-driven resource analysis. Their high-level idea is that BayesWC performs Bayesian infer-
ence to infer worst-case costs 𝑐′𝑛 (𝑛 ∈ 𝑁D), while BayesPC performs Bayesian inference to
directly infer polynomial coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 of input and output potential functions. Be-
yond this high-level idea, the concrete probabilistic models should be chosen according to the
user’s domain knowledge.

For instance, in BayesPC, survival analysis (Eqs. (7.3.19)–(7.3.20)) is used to obtain a distri-
bution 𝜇𝑛 (Eq (7.3.10)) of inferred worst-case costs of input size 𝑛 ∈ 𝑁D . Survival analysis is
a reasonable statistical method for resource analysis because computational costs of programs,
particularly their running time, can be likened to time to events (namely termination of pro-
grams), which is the subject of study in survival analysis. Nonetheless, the user is free to choose
a different statistical method from survival analysis to construct distributions 𝜇𝑛 (𝑛 ∈ 𝑁D).

7.4 Hybrid Resource Analyses

This section presents the first hybrid resource-analysis technique, dubbedHybrid AARA, which
integrates data-driven analysis (§7.3) for code fragments annotated by statℓ with static AARA
analysis (§4.3) on the rest of the source code. Hybrid AARA is based on a formal typing system
that extends AARA with a new typing judgment:

Γ; 𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩. (7.4.1)

88



𝑃 (𝑥 ) =
let
statℓ 𝑒
. . .

Program

Data
Collection Dℓ

runtime
data

BayesWC c′ℓ𝑗

inferred worst-case costs
𝑗 = 1, . . . , 𝑀

AARA+H:BayesWC 𝐶 𝑗

inferred LP constraints
𝑗 = 1, . . . , 𝑀

LP
Solver

𝐵 𝑗

inferred cost bounds
𝑗 = 1, . . . , 𝑀

(a) Hybrid BayesWC

𝑃 (𝑥 ) =
let
statℓ 𝑒
. . .

Program

Data
Collection Dℓ

runtime
data

BayesPC

AARA+H:Opt 𝐶0

inferred LP constraints

(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗 )
inferred typing judgments

𝑗 = 1, . . . , 𝑀

⊕
combine

𝐶 𝑗

inferred LP constraints
𝑗 = 1, . . . , 𝑀

LP
Solver

𝐵 𝑗

inferred cost bounds
𝑗 = 1, . . . , 𝑀

(b) Hybrid BayesPC

Figure 7.3: Two hybrid resource-analysis techniques for composing static and data-driven re-
source analysis. Subexpression 𝑒 in a function 𝑃 cannot be analyzed using AARA: it is instead
analyzed using Bayesian inference.

The judgment (7.4.1) extends the typing judgment (4.3.1) with a datasetD of runtime measure-
ments that are collected using the procedure described in §7.2.

I also describe novel type-inference algorithms and a technical challenge in combining
Bayesian andAARA-based cost-bound inference. To infer cost bounds, BayesPC runs a sampling-
based probabilistic inference algorithm, while Conventional AARA runs a constrained opti-
mization algorithm. Thus, the two constituent analyses combined by Hybrid AARA have dis-
tinct nature of cost-bound inference, making their interface challenging to design.

Interface of inference results Hybrid AARA uses the resource-annotated type as an inter-
face between inference results of constituent analysis techniques. A cost bound inferred by the
data-driven part is expressed as a resource-annotated typing judgment 𝐽anno (7.3.1), where the
input and output are assigned resource-annotated types. A cost bound inferred by the static
part, meanwhile, is expressed as a resource-annotated typing tree 𝑇anno, where annotated code
fragments statℓ 𝑒 (ℓ ∈ L) are leaf nodes. To compose the two inference results in Hybrid AARA,
a resource-annotated typing judgment 𝐽anno from the data-driven part is inserted into the cor-
responding leaf node in the statically inferred typing tree 𝑇anno from the latter, provided that
the typing judgments do not violate linear constraints in the typing tree.

7.4.1 Hybrid BayesWC and Opt

Typing rules Given an annotated code fragment statℓ 𝑒 (ℓ ∈ L), suppose its dataset of cost
measurements is

Dℓ = {(𝑉 ℓ
𝑖 , 𝑣

ℓ
𝑖 , 𝑐

ℓ
𝑖 ) | 𝑖 = 1, . . . , |Dℓ |}. (7.4.2)
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Define the following notation:

Vℓ ≔ (𝑉 ℓ
𝑖 ; 𝑖 = 1, . . . , |Dℓ |) tuple of all environments in Dℓ (7.4.3)

cℓ ≔ (𝑐ℓ𝑖 ; 𝑖 = 1, . . . , |Dℓ |) tuple of all costs in Dℓ . (7.4.4)

Opt and BayesWC are integrated into the AARA type system (§4.3) by adding the following
rules for annotated code fragments statℓ 𝑒 (ℓ ∈ L):

H:Opt
𝑝0 + Φ(𝑉 ℓ

𝑖 : Γ) ≥ 𝑞0 + Φ(𝑣 ℓ𝑖 : 𝑎) + 𝑐ℓ𝑖 (𝑖 = 1, . . . , |Dℓ |)
Γ; 𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩

H:BayesWC
𝑝0 + Φ(𝑉 ℓ

𝑖 : Γ) ≥ 𝑞0 + Φ(𝑣 ℓ𝑖 : 𝑎) + 𝑐′ℓ|𝑉 ℓ
𝑖
| 𝑐′ℓ𝑛 ∼ 𝜋 ℓVℓ (· | y = cℓ) (𝑖 = 1, . . . , |Dℓ |;𝑛 ∈ 𝑁Dℓ

)

Γ; 𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩

The rule H:Opt states that the conclusion holds whenever the input potential 𝑝0 + Φ(𝑉 : Γ)
is large enough to cover a cost 𝑐 and leftover potential 𝑞0 + Φ(𝑣 : 𝑎) for every measurement
(𝑉 , 𝑣, 𝑐) ∈ Dℓ . Likewise, the rule H:BayesWC states that the conclusion holds whenever the
input potential is large enough to cover an inferred worst-case cost 𝑐′ℓ|𝑉 ℓ

𝑖
| for input size |𝑉

ℓ
𝑖 |

and the leftover potential. The quantity 𝑐′ℓ|𝑉 ℓ
𝑖
| is inferred using a probabilistic model 𝜋 ℓVℓ (e.g.,

Eqs. (7.3.19)–(7.3.20)), which is indexed by the tuple Vℓ of input environments in the dataset
D. H:BayesWC is similar to H:Opt, except that each observed cost 𝑐 within a measurement
(𝑉 , 𝑣, 𝑐) is replaced with a posterior sample 𝑐′ℓ|𝑉 | from BayesWC (7.3.10) that captures inferential
uncertainty about the true worst-case cost 𝑐ℓ,max

|𝑉 | .

Type inference Because the premises of H:Opt and H:BayesWC are linear constraints over
the resource coefficients in 𝑒 , type inference operates similarly to Conventional AARA. The
only difference from Conventional AARA is that Hybrid Opt and Hybrid BayesWC treat a
code fragment statℓ 𝑒 as a leaf in a typing tree, instead of a subtree, even if the expression 𝑒
is compound. The resource-annotated typing judgment for this leaf is then inferred by data-
driven analysis Opt or BayesWC, instead of Conventional AARA.

Fig. 7.3a shows the type-inference workflow of Hybrid BayesWC. Given runtime-cost data
D, we first perform data-driven BayesWC inference to produce𝑀 batches of posterior samples

c′ℓ𝑗 ≔ (𝑐′ℓ𝑛, 𝑗 ;𝑛 ∈ 𝑁Dℓ
) ( 𝑗 = 1, . . . , 𝑀 ; ℓ ∈ 𝐿), (7.4.5)

which define 𝑀 versions of H:BayesWC for each code fragment statℓ 𝑒 . In Eq (7.4.5), 𝐿 ⊂ L is
a finite set of all labels appearing in the source code of a target program 𝑃 (𝑥).

Next, for each 𝑗 = 1, . . . , 𝑀 , we perform a static pass, denoted AARA+H:BayesWC in
Fig. 7.3a, that constructs a template typing tree according to the Conventional-AARA type
system, except that subexpressions statℓ 𝑒 are treated as leaves in the typing tree. That is,
Conventional AARA’s typing rules are only applied to traditional expressions, and the typing
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rule H:BayesWC is applied to statℓ 𝑒 subexpressions. This process produces 𝑀 systems of lin-
ear constraints 𝐶 𝑗 ( 𝑗 = 1, . . . , 𝑀), where the linear constraints within each 𝐶 𝑗 are derived from
two provenances: those from the Conventional-AARA type system and those from the typing
rule H:BayesWC.

Finally, each𝐶 𝑗 is provided to a linear-program (LP) solver to provide a resource-annotated
typing judgment 𝐽 𝑗 for the root node’s typing context. The judgment 𝐽 𝑗 ’s input polynomial
potential function translates to an inferred cost bound.

Linear-programming objective When solving the overall linear program inAARA+H:BayesWC
or AARA+H:Opt, an LP solver first minimizes the sum of cost gaps (i.e., difference between ob-
served costs and predicted cost bounds) from the data-driven components (i.e., (Opt-LP) or
(BayesWC-LP)). The LP solver then performs minimization of input coefficients at the root. As
with Conventional AARA, it is possible to either minimize a weighted sum of coefficients at
the root [112] or lexicographically minimize coefficients in the descending order of polynomial
degrees [117, 118]. The prototype implementation of Hybrid AARA (§7.5) allows users to make
either choice.

§7.5.1 discusses design decisions about optimization objectives in Hybrid AARA.

7.4.2 Hybrid BayesPC

Key challenge Integrating BayesPC into Conventional AARA is fundamentally more diffi-
cult as compared to integratingOpt and BayesWC. Resource coefficients in a resource-annotated
typing judgment Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩ are sampled using Bayesian inference in BayesPC,
while they are optimized by LP solving in both Opt and BayesWC. As Conventional AARA
also solves linear programs to infer cost bounds, Opt and BayesWC are easier to integrate with
Conventional AARA.

The integration of BayesPC with Conventional AARA poses a challenge because we do
not know in advance how much potential should be stored in ⟨𝑎, 𝑞0⟩. Unlike in fully data-
driven resource analysis, in hybrid resource analysis, the output of statℓ 𝑒 may be used in a
subsequent computation that also consumes potential. The typing context Γ and constant 𝑝0
should store enough potential to pay for both the cost of evaluating 𝑒 and the cost of subsequent
computation. Naïvely sampling resource annotations (Γ, 𝑝0, 𝑎, 𝑞0) for the statℓ 𝑒 subexpressions
using BayesPC and providing them to a Conventional-AARA pass over the remaining source
codewill likely produce a linear programwith no solution. Hence, we need an interface between
sampling-based probabilistic inference over some coefficients and linear programming over
other coefficients.

Type inference My collaborators and I address this challenge by adding linear constraints
to the BayesPC probabilistic models that encode feasible regions of linear programs computed
by Conventional AARA. This approach guarantees that resource-annotated judgments from
BayesPC do not violate the linear constraints from Conventional AARA.

Fig. 7.3b shows the type-inference workflow of Hybrid BayesPC. We start by performing
a static analysis pass through a program 𝑃 (𝑥) using the Conventional-AARA type system to
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Figure 7.4: Posterior distributions over resource coefficients restricted to convex polytopes us-
ing BayesPC.

obtain a set of linear constraints 𝐶0, treating any statℓ 𝑒 using the typing rule H:Opt to ensure
soundness with runtime-cost data Dℓ . Next, for each subexpression statℓ 𝑒 encountered in the
first pass, we apply a variant of BayesPC that combines both the runtime-cost data Dℓ and
constraints 𝐶0 from the first pass to infer a resource-annotated typing judgment of the form
Γ; 𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩.

Let the BayesPC probabilistic model for statℓ 𝑒 (e.g., Eqs. (7.3.23)–(7.3.25)) be

𝜋 ℓVℓ ,ṽℓ (𝜃, Γ, 𝑝0, 𝑞0, 𝑎, y). (7.4.6)

The linear constraints 𝐶0 are used to construct a modified probabilistic model

𝜋 ℓVℓ ,ṽℓ |𝐶0
(𝜀, 𝜃, Γ, 𝑝0, 𝑞0, 𝑎, y), (7.4.7)

where 𝜀 is a collection of symbolic variables that do not appear in Γ, 𝑝0, 𝑎, 𝑞0, but in the AARA
constraints 𝐶0. Letting ℎ(𝜀) denote an uninformative prior (e.g., uniform if 𝐶0 is bounded), the
modified probabilistic model is restricted to the convex polytope defined by the linear con-
straints 𝐶0:

𝜋 ℓVℓ ,ṽℓ |𝐶0
(𝜀, 𝜃, Γ, 𝑝0, 𝑞0, 𝑎, y) ∝ ℎ(𝜀)𝜋 ℓVℓ ,ṽℓ (𝜀, 𝜃, Γ, 𝑝0, 𝑞0, 𝑎, y)I[(𝜀, . . .) ∈ 𝐶0], (7.4.8)

where I[(𝜀, . . .) ∈ 𝐶0] is 1 if the resource coefficients in the arguments to 𝜋 ℓVℓ ,ṽℓ |𝐶0
satisfy con-

straints 𝐶0 and 0 otherwise.
Fig. 7.4 illustrates how the probabilistic model (7.4.6) gives rise to the modified proba-

bilistic model (7.4.7). Fig. 7.4a shows a probabilistic model (7.4.7), where the feasible region
(colored gray) contains all solutions (i.e., resource coefficients) that are sound with respect to
the runtime-cost data D. Fig. 7.4b shows a modified probabilistic model (7.4.7) obtained from
Fig. 7.4a by further constraining the feasible region by the linear constraints𝐶0 (colored orange)
obtained from the Conventional-AARA type system. The probabilistic distribution in Fig. 7.4b
is then re-normalized appropriately. In fact, the linear constraints𝐶0 already contains the linear
constraints induced by the runtime-cost data D (i.e., gray feasible region in Fig. 7.4a).
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Eq. (7.4.8) is then used to sample judgments

(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗 ) ∼ 𝜋 ℓVℓ ,ṽℓ |𝐶0
(Γ, 𝑝0, 𝑞0, 𝑎 | y = cℓ) ( 𝑗 = 1, . . . , 𝑀 ; ℓ ∈ 𝐿), (7.4.9)

which are shown as the output of BayesPC in Fig. 7.3a. Each sampled typing judgment in
Eq (7.4.9) corresponds to a concrete realization of symbolic LP variables in 𝐶0 created by the
corresponding H:Opt rule at label ℓ during the first pass. We can then obtain𝑀 new constraints

𝐶 𝑗 ≔ 𝐶0 ⊕ {(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗 ) | ℓ ∈ 𝐿} ( 𝑗 = 1, . . . , 𝑀) (7.4.10)

by syntactically replacing the symbolic LP variables in 𝐶0 with concrete variables at all labels
ℓ ∈ 𝐿. Each 𝐶 𝑗 is then fed to an LP solver to obtain 𝑀 posterior samples (𝐵1, . . . , 𝐵𝑀 ) of cost
bounds.

7.4.3 Soundness

My collaborators and I have formulated and proved two soundness theorems for Hybrid AARA.
Thm. 7.4.1 establishes that inferred cost bounds from Hybrid AARA are sound with respect

to all measurements in runtime-cost data D (collected by the procedure in §7.2).
Theorem 7.4.1 (Soundness with respect to runtime-cost data). Given an expression 𝑒 (that may

contain annotations statℓ inside), let D be the runtime data such that (𝑉𝑖 ⊢ 𝑒 ⇓ 𝑣𝑖 | 𝑐𝑖)𝑁𝑖=1 | D.

The following property holds with probability 1: If Γ;𝑝0 ⊢D 𝑒 : ⟨𝑎, 𝑞0⟩ holds in the type system of

Hybrid AARA, then

Φ(𝑉𝑖 : Γ) + 𝑝0 − Φ(𝑣𝑖 : 𝑎) − 𝑞0 ≥ 𝑐𝑖 (7.4.11)
holds for any 𝑖 = 1, . . . , 𝑁 .

Proof. The proof proceeds by nested induction on (𝑉𝑖 ⊢ 𝑒 ⇓ 𝑣𝑖 | 𝑐𝑖)𝑁𝑖=1 | D (outer induction)
and Γ; 𝑝0 ⊢D 𝑒 : ⟨𝑎, 𝑞0⟩ (inner induction), following the same structure as the soundness proof
of Conventional AARA [112, 116]. The only necessary modification is proving the base case
where 𝑒 ≡ statℓ 𝑒ℓ for some expression 𝑒ℓ , for the new inference rules H:Opt, H:BayesWC, and
H:BayesPC.

I argue that, for each typing rule, the resource-annotated judgment Γ; 𝑃 ⊢D statℓ 𝑒ℓ : ⟨𝑎, 𝑞0⟩
is sound with respect to any measurement (𝑉 , 𝑣, 𝑐) ∈ Dℓ , meaning that the typing rule ensures
Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 ≥ 𝑐 holds with probability 1. For H:OPT, the property follows
immediately from the premise of the typing rule.

For H:BayesWC, Prop. 7.3.1 establishes a condition that guarantees, for any runtime sample
(𝑉 , 𝑣, 𝑐) ∈ Dℓ , the probabilistic model 𝜋V used in BayesWC has zero probability of simulating
a cost 𝑐′ℓ|𝑉 | < 𝑐 . The choice of the likelihood function 𝑔 in Eq (7.3.17) satisfies this requirement.
Using this fact, the premise of H:BayesWC implies

Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 ≥ 𝑐′ℓ|𝑉 | ≥ 𝑐
ℓ,max
|𝑉 | ≥ 𝑐 almost surely, (7.4.12)

and the conclusion follows.
For H:BayesPC, Remark 7.3.2 establishes that the probabilistic model 𝜋 ℓV,ṽ assigns zero pos-

terior probability density to any (Γ, 𝑝0, 𝑎, 𝑞0) that satisfies Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 < 𝑐 for
some runtime sample (𝑉 , 𝑣, 𝑐) ∈ Dℓ . As constraining 𝜋 ℓV,ṽ to the convex polytope𝐶0 in Eq (7.4.8)
cannot possibly increase its support, the conclusion follows for H:BayesPC. □
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The second soundness theorem Thm. 7.4.2 establishes statistical soundness: the probability
(over the randomness of the collected runtime-cost data) that inferred cost bounds from Hybrid
AARA are sound up to a given input-size limit converges to 1 as the dataset size 𝑁 tends to
infinity.

To formally state the statistical-soundness theorem, it is necessary to nail down the notion of
the size of program inputs (i.e., environments). Given an environment𝑉 , let its size be denoted
by |𝑉 | ∈ N. Any notion of the size can be used here, as long as the set of environments up to a
fixed size is finite. An example of a suitable notion of the size is the number of bits necessary
to encode an environment. On the other hand, if we assign, for example, the size of 1 to all
numbers 𝑣 ∈ N, this size measure is not suitable, because the set {𝑣 : int | |𝑣 | = 1} is infinite.
Theorem 7.4.2 (Statistical soundness). LetD be runtime data such that (𝑉𝑖 ⊢ 𝑒 ⇓ 𝑣𝑖 | 𝑐𝑖)𝑁𝑖=1 | D,

where (𝑉𝑖)𝑁𝑖=1 are 𝑁 i.i.d. samples from an (unknown) input distribution and 𝑒 is an expression. Fix

an integer𝑚 ∈ N and a finite setV𝑚 of well-typed environments such that for all𝑉 ∈ V𝑚 : |𝑉 | ≤𝑚
(i.e., the size of an environment 𝑉 is smaller than or equal to𝑚) and 𝑉 has nonzero probability of

appearing in D. Then for any typing judgment Γ; 𝑝0 ⊢D 𝑒 : ⟨𝑎, 𝑞0⟩ inferred from Hybrid AARA,

the probability that it satisfies

Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 ≥ 𝑐 (7.4.13)

for all 𝑉 such that 𝑉 ⊢ 𝑒 ⇓ 𝑣 | 𝑐 and |𝑉 | ≤𝑚 converges to 1 as 𝑁 →∞.

Proof. The proof goes by a probabilistic argument. For each 𝑛 = 1, . . . ,𝑚, there exists a worst-
case environment

𝑉max
𝑛 ≔ arg max

𝑉 ∈V𝑚

{𝑐 | |𝑉 | = 𝑛,𝑉 ⊢ 𝑒 ⇓ 𝑣 | 𝑐} (7.4.14)

with a maximal execution cost. Eq. (7.4.14) is well-defined because it is assumed that V𝑚 is a
finite set. Let 𝑝max

𝑛 > 0 be the probability 𝑉max
𝑛 is selected. Let𝑊𝑛,𝑁 be the event that 𝑉max

𝑛 is
sampled within 𝑁 i.i.d. draws. The probability that all worst-case inputs 𝑉max

1 , . . . ,𝑉max
𝑚 occur

in runtime dataset D of size 𝑁 is

P
(⋂𝑚

𝑛=0𝑊𝑛,𝑁

)
= 1 − P

(⋃𝑚
𝑛=0𝑊 𝑛,𝑁

)
≥ 1 −∑𝑚

𝑛=1 P(𝑊 𝑛,𝑁 ) = 1 −∑𝑚
𝑛=1(1 − 𝑝max

𝑛 )𝑁 (7.4.15)

where𝑊 𝑛,𝑁 denotes the complement of the event𝑊𝑛,𝑁 . The inequality follows from the union
bound. The last expression converges to one as 𝑁 → ∞ because 𝑝max

𝑛 > 0 for each 𝑛. The
conclusion follows from Thm. 7.4.1, which establishes that resource-annotated typing judg-
ments from Hybrid AARA are sound with respect to the environments used to generate finite
runtime-cost data D. □

7.5 Implementation

This section describes a prototype implementation ofHybridAARA (§7.4). It integrates (optimization-
based and Bayesian) data-driven resource analyses into Resource-Aware ML (RaML) [117, 118],
an implementation of multivariate polynomial AARA for analyzing OCaml programs. The pro-
totype is publicly available in Pham et al. [187].
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7.5.1 Optimization Objectives

In data-driven and hybrid resource analyses that involve optimization, no objective function is
a clear winner. In the linear programs (Opt-LP) and (BayesWC-LP) for data-driven analyses,
three candidate objectives exist:

• Minimize the total cost gaps (i.e., differences between observed costs and predicted cost
bounds);

• Minimize coefficients 𝑝0, ®𝑝 in the input potential function, either lexicographically [117,
118] or by a weighted sum [112]; and

• Maximize coefficients 𝑞0, ®𝑞 in the output potential function.
The last objective cannot be used alone, because an optimal solution would be unbounded
(i.e., ∞) according to this objective. Hence, it must be combined with other objectives (e.g.,
minimizing the input coefficients while maximizing the output coefficients).

Additionally, if Opt and BayesWC are extended to non-monotone resource metrics (§7.3.5),
where high-water-mark costs and net-costs are different, the space of possible objective func-
tions grows larger (e.g., Eq (7.3.31)).

When Opt and BayesWC are integrated with Conventional AARA, the resulting linear pro-
grams should be optimized according to the objectives of both data-driven analyses (i.e., Opt
and BayesWC) and Conventional AARA. Otherwise, if Hybrid AARA only uses one of the two
objectives, it yields an undesirable solution. Opt and BayesWC minimize total cost gaps, while
Conventional AARA minimizes coefficients in the typing tree’s root node [112, 117, 118]. If
Hybrid AARA minimizes total cost gaps but not coefficients, Conventional AARA, which is a
special case of Hybrid AARA, has no objective function to optimize. This is because Conven-
tional AARA does not use any runtime-cost data D and hence has no cost gaps.

Conversely, a pitfall emerges if Hybrid AARAminimizes coefficients (particularly by lexico-
graphic minimization) but not cost gaps. In data-driven analyses Opt and BayesWC, which are
special cases of Hybrid AARA, the lexicographic minimization of coefficients yields a constant
bound

max{𝑐ℓ𝑖 | 𝑖 = 1, . . . , |Dℓ |}. (7.5.1)

This is because lexicographic minimization of coefficients in data-driven analysis sets (i) all
degree-𝑑 coefficients (𝑑 ≥ 1) to zero; and (ii) the degree-0 coefficient to the maximum cost in
the dataset Dℓ . However, constant cost bounds are not what we want all the time from data-
driven resource analysis.

To avoid this issue, the prototype implementation of Hybrid AARA combines the two op-
timization objectives from data-driven analyses and Conventional AARA. Specifically, Hybrid
AARA first minimizes total cost gaps, followed by minimization of input coefficients in the typ-
ing tree’s root node. In the minimization of inputs coefficients, the user can choose between
lexicographic minimization and minimization of the sum of the coefficients.

7.5.2 Probabilistic Models for BayesWC and BayesPC

This section describes an empirical-Bayes approach [45] for automatically determining the hy-
perparameters of the probabilistic models in BayesWC (Eqs. (7.3.19)–(7.3.20)) and BayesPC
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(Eqs. (7.3.23)–(7.3.25)). Empirical Bayes is a widely used approach in Bayesian data analysis
wherein observed data is used to infer plausible values of model hyperparameters: see Rizzelli
et al. [194] for a recent survey. This approach applies directly to most benchmarks: only one
benchmark uses a hyperparameter that deviates from the automatic proceduremy collaborators
and I have developed.

BayesWC Recall from Eqs. (7.3.19)–(7.3.20) that BayesWC uses a probabilistic model

𝛽0, 𝛽1, 𝜎
iid∼ Normal(0, 𝛾0) 𝜖𝑖 ∼ Gumbel(0, 1) (7.5.2)

𝑥𝑖 ≔ 𝛽0 + 𝛽1 |𝑣𝑖 | + |𝜎 |𝜖𝑖 𝑦𝑖 = exp(𝑥𝑖), (7.5.3)

where 𝑔noise in Eq (7.3.19) has been set to a standard Gumbel. The only hyperparameter in this
model is 𝛾0, which is set to 𝛾0 ≔ 5.0 for all benchmarks. Coupled with the exp component
in the likelihood model for the costs 𝑦𝑖 , this choice determines a broad prior distribution over
observed datasets.

BayesPC Recall from Eq (7.3.23) that, in the probabilistic model for BayesPC, resource coef-
ficients are drawn from a truncated normal distribution:

(𝑝 𝑗 ) | ®𝑝 |𝑗=0, (𝑞 𝑗 )
| ®𝑞 |
𝑗=0

iid∼ Normal≥0(0, 𝛾0), (7.5.4)

where 𝛾0 ∈ R>0 is the scale hyperparameter (i.e., standard deviation).
In our prototype implementation, the hyperparameter 𝛾0 for each benchmark is determined

fromdata as follows. We first perform (Data-Driven orHybrid) Opt to infer a resource-annotated
typing judgment for the entire program 𝑃 (𝑥):

Γ, 𝑝0 ⊢D 𝑃 𝑥 : ⟨𝑎, 𝑞0⟩, (7.5.5)

where Γ is a resource-annotated typing context, 𝑝0 ∈ Q≥0 is constant potential for the input,
𝑎 is a resource-annotated output type, and 𝑞0 ∈ Q≥0 is constant potential for the output. Let 𝑑
be a user-specified maximum polynomial degree for polynomial cost bounds, and let 𝑝1, . . . , 𝑝𝐷
be the resource coefficients inside Γ that correspond to indices of degree 𝑑 . In other words,
𝑝1, . . . , 𝑝𝐷 are the polynomial coefficients of the highest-degree terms inside the polynomial
potential function. The degree-0 coefficient 𝑝0 for constant potential in the typing context is
never in the set {𝑝1, . . . , 𝑝𝐷}, unless the user specifies the maximum polynomial degree of 0. For
all benchmarks in our evaluation, the hyperparameter 𝛾0 of the prior distribution for resource
coefficients in BayesPC is set to

𝛾0 ≔
8
15

max{𝑝1, . . . , 𝑝𝐷} +
4
5
. (7.5.6)

The cost gap 𝜖𝑖 in Eq (7.3.25) follows a truncated Weibull distribution:

𝑐′|𝑣𝑖 |,|𝑣𝑖 | − 𝑐𝑖 ≕ 𝜖𝑖 ∼Weibull[0,𝑐′|𝑣𝑖 |, | 𝑣̃𝑖 | ] (𝜃0, 𝜃1), (7.5.7)

where 𝜃0 ∈ R≥0 is the shape hyperparameter, 𝜃1 ∈ R>0 is the scale hyperparameter, and [0, 𝑐′|𝑣𝑖 |]
is the interval of truncation.

The two hyperparameters 𝜃0 and 𝜃1 are determined as follows. The shape 𝜃0 ranges from
1.0 to 1.5 across benchmarks:
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• 𝜃0 ≔ 1.25 in Data-Driven BayesPC of MapAppend and Hybrid BayesPC of ZAlgorithm;
• 𝜃0 ≔ 1.5 in Data-Driven BayesPC of BubbleSort, Data-driven and Hybrid BayesPC of
Concat, and Data-Driven BayesPC of ZAlgorithm;

• 𝜃0 ≔ 1.0 for the remaining cases of BayesPC.
The scale hyperparameter 𝜃1 is set as follows. We first perform (Data-Driven or Hybrid) Opt

to obtain a resource-annotated typing judgment around an annotated code fragment statℓ 𝑒 :

Γ, 𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩, (7.5.8)

where Γ is a resource-annotated typing context, 𝑝0 ∈ Q≥0 is constant potential for the input, 𝑎
is a resource-annotated output type, and 𝑞0 ∈ Q≥0 is constant potential for the output. We then
calculate the cost gap 𝜖𝑖 of statℓ 𝑒 :

𝜖𝑖 ≔ 𝑝0 + Φ(𝑉 ℓ
𝑖 : Γ) − 𝑞0 − Φ(𝑣 ℓ𝑖 : 𝑎) (𝑖 = 1, . . . , |Dℓ |). (7.5.9)

Let 𝜀𝛼 be the 𝛼 ≔ 90th percentile of these cost gaps 𝜖1, . . . , 𝜖 |Dℓ | . The scale 𝜃1 is then

𝜃1 ≔
1100
188.7

𝜀𝛼 + 100. (7.5.10)

For Hybrid BayesPC of MedianOfMedians, the rule (7.5.10) suggests 𝜃1 ≔ 841.128. How-
ever, this hyperparameter does not yield a posterior distribution whose median is close to the
ground-truth cost bound of MedianOfMedians due to the inaccuracy of Opt. Therefore, Hy-
brid BayesPC analysis of MedianOfMedians is an exception, where my collaborators and I set
𝜃1 ≔ 41.128 instead.

7.5.3 Prototype Implementation

Overview Each analysis run using the prototype requires:
• an OCaml program 𝑃 (𝑥) annotated with Raml.tick𝑞 (𝑞 ∈ Q≥0) to indicate resource
consumption and Raml.stat to indicate code fragments subject to data-driven resource
analysis;

• a list of inputs 𝑣1, . . . , 𝑣𝑁 to the program 𝑃 (𝑥) for runtime-cost data generation; and
• a configuration file specifying a polynomial degree, a data-driven analysis technique of
choice, a probabilistic model, hyperparameters, etc.

The prototype is implemented in OCaml, built on top of the OCaml codebase of RaML [117,
118]. Additionally, the probabilistic programming language Stan [44] is used to performBayesian
survival analysis in BayesWC. Although Stan offers an interface/binding with various host lan-
guages (e.g., Python, R, and Julia), Stan does not work with OCaml. Hence, from OCaml code,
the prototype calls Python code through a Python-OCaml binding, which in turn calls Stan.

The inference engine of Stan implements the No-U-Turn Sampler (NUTS) [111]. NUTS
is an example of Hamiltonian Monte Carlo (HMC) [40], which is a class of sampling-based
probabilistic inference algorithms that calculate gradients of posterior distributions to guide
the exploration of state spaces.
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Limitations The current version of the prototype has the following limitations:
• It only supportsmonotone resourcemetrics (e.g., running time). Extension to non-monotone
resource metrics is discussed in §7.3.5.

• It only supports limited probabilisticmodels (e.g., Weibull survival analysis for BayesWC).

Reflective Hamiltonian Monte Carlo In Data-Driven and Hybrid BayesPC, it is essential
to restrict state spaces of sampling-based probabilistic inference to regions of positive posterior
densities. Otherwise, without restricting the state spaces, sampling algorithms (e.g., NUTS [111]
adopted in Stan [44]) would spend too much time exploring regions of zero posterior densi-
ties, repeatedly rejecting candidate posterior samples. Consequently, the sampling algorithms
would fail to converge to the target posterior distribution quickly enough.

The regions of positive posterior densities in (Data-Driven and Hybrid) BayesPC are con-
vex polytopes defined by linear constraints from two sources: the runtime-cost dataD and the
type system of Conventional AARA. In Bayesian polynomial regression (Eqs. (7.3.23)–(7.3.25))
for Data-Driven BayesPC, posterior samples have positive probability densities if and only if
the posterior samples (i.e., inferred cost bounds) are sound with respect to runtime-cost data
D. This region of sound cost bounds with respect to D is defined by linear constraints (7.3.26)
(Remark 7.3.2). In Hybrid BayesPC, resource annotations appearing in a typing tree are con-
strained by linear constraints from the Conventional-AARA typing rules, in addition to the
linear constraints from the rule H:Opt (i.e., linear constraints induced by the dataset D).

To restrict sampling algorithms’ state spaces to convex polytopes, the Hybrid-AARA proto-
type leverages Reflective Hamiltonian Monte Carlo (ReHMC) [47, 49, 50, 171]. It is a sampling
algorithm that runs Hamiltonian Monte Carlo (HMC) within a convex polytope defined by
user-supplied linear constraints𝐶 . As the ReHMC sampler runs a Markov chain across a space
of latent variables 𝜃 , whenever it hits a boundary of the linear constraints 𝐶’s feasible region,
the sampler “reflects” at the boundary. Thus, the sampler remains within the feasible region
throughout the execution, guaranteeing that any samples drawn from ReHMC satisfy the linear
constraints 𝐶 .

ReHMC requires a user-specified convex polytope to be bounded. Meanwhile, linear con-
straints in Data-Driven and Hybrid BayesPC do not yield bounded convex polytopes. This is
because these linear constraints, which come from runtime-cost data D or the Conventional-
AARA typing rules, only specify how much leftover potential each subexpression should store.
Hence, as long as the constraints have a solution, their feasible space is unbounded; that is, co-
efficients of potential functions can be arbitrarily large. To this end, the user of Hybrid AARA
must provide a constant upper bound on resource annotations to make search spaces of ReHMC
bounded.

ReHMC is implemented by the C++ library Volesti [48]. Because HMC requires gradients
of posterior distributions, so does ReHMC. However, gradients are not automatically computed
by Volesti. To this end, the Hybrid-AARA prototype uses another C++ library autodiff [153] to
perform automatic differentiation.

Mixing time of ReHMC The mixing time (i.e., the time it takes for a Markov chain to get
sufficiently close to its stationary distribution) of ReHMC has been known under the assump-

98



tion that target posterior distributions are log-concave [49]. ReHMC is applicable to any dis-
tributions truncated to convex polytopes: the sampler is guaranteed to converge to a target
posterior distribution. However, the general mixing time of ReHMC is not known for arbitrary
distributions.
Definition 7.5.1 (Log-concave distribution). A probability distribution 𝜋 (𝑥) over the space of 𝑥
is said to be log-concave if log(𝜋 (𝑥)) is concave; that is, 𝜋 (𝑥) ∝ 𝑒−𝑓 ()𝑥 for some convex function

𝑓 (𝑥).
Definition 7.5.2 (𝐿-smooth function [41]). A continuously differentiable function 𝑓 : R𝑑 → R
is said to be 𝐿-smooth if

∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥ (𝑥,𝑦 ∈ R𝑑). (7.5.11)

Definition 7.5.3 (𝑚-strongly convex function [41]). A continuously differentiable function 𝑓 :
R𝑑 → R is said to be𝑚-strongly convex if

𝑓 (𝑥) − 𝑓 (𝑦) ≤ ∇𝑓 (𝑥)⊤(𝑥 − 𝑦) − 𝑚
2
∥𝑥 − 𝑦∥2 (𝑥,𝑦 ∈ R𝑑). (7.5.12)

Definition 7.5.4 (Sandwiching ratio of a convex polytope [49]). Given a convex polytope 𝐾 ⊆
R𝑑 , its sandwiching ratio at point 𝑥∗ ∈ R𝑑 is defined as

𝜅 ≔ inf
𝑅>𝑟>0

{𝑅/𝑟 | B(𝑥∗, 𝑟 ) ⊆ 𝐾 ⊆ B(𝑥∗, 𝑅)}, (7.5.13)

where B(𝑥∗, 𝑟 ) is the 𝑑-dimensional 𝐿2 ball with radius 𝑟 centered at 𝑥∗.

Theorem 7.5.1 (Mixing time of ReHMC [49]). Let 𝜋 (𝑥) ∝ 𝑒−𝑓 (𝑥) be a log-concave target (poste-
rior) distribution. Let 𝐾 ≔ {𝜋 (𝑥) > 0 | 𝑥 ∈ R𝑑} be a convex polytope on which the distribution 𝜋

has positive densities. Let 𝑥∗ ∈ 𝐾 be the minimizer of 𝑓 (𝑥) in 𝐾 and 𝛾 be the sandwiching ratio of

𝐾 at the minimizer 𝑥∗.
Assume that the function 𝑓 (𝑥) is twice differentiable, 𝐿-smooth, and 𝑚-strongly convex. A

condition number is defined as 𝜅 ≔ 𝐿/𝑚. Let ℓ be the maximum number of reflections made

during the execution of ReHMC and 𝜖 be the target maximum distance (in total variation distance)

that we desire between the target distribution 𝜋 and a state distribution of the ReHMC sampler.

The ReHMC algorithm with a step size 𝜂 ≤ 𝑒−(ℓ+1)
2/6

(2𝜋𝑒)1/2 (ℓ+1) mixes in

𝑂 (𝜅𝑑2ℓ2 log2(𝜅/𝜖) log(𝑑 log(𝜅/𝜖) + 𝑑 log(𝛾/𝜖)) log(1/𝜖)) (7.5.14)

steps, given a starting point 𝑥0 ∼ Normal𝐾 (𝑥∗, 𝐼𝑑𝐿 ). Here, Normal𝐾 (𝑥∗, 𝐼𝑑𝐿 ) is a normal distribution

truncated to the convex polytope 𝐾 , and 𝐼𝑑 ∈ R𝑑×𝑑 is the identity matrix.

7.6 Evaluation

This section evaluates a prototype implementation ofHybridAARA (§7.5) on challenging bench-
mark programs that Conventional AARA (or more generally static resource analysis) cannot
solve.
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7.6.1 Benchmark Suite

My collaborators and I have built a benchmark suite of 10 OCaml functional programs. Their
source code is in §A.1. The resource metric of interest is the running time in all benchmark
programs, although they each have slightly different notions of running time.

• MapAppend: Given two lists, 𝑥 and𝑦, for each element of 𝑥 , run some function 𝑓 that can-
not be analyzed by static analysis and append its output to the cumulative result (whose
initial value is 𝑦).

• Concat: Given a nested list, recursively append inner lists to the cumulative result.
• InsertionSort2: Sequentially run insertion sort twice on a list. The resource metric is the
cost of comparisons in the second insertion sort.

• QuickSort: Run deterministic quicksort on lists with their heads as pivots for partition.
• QuickSelect: Given an integer 𝑖 and a list, run deterministic quickselect and return the
𝑖th smallest element in the list. Like QuickSort, it uses the heads of lists as pivots.

• MedianOfMedians: Given an integer 𝑖 and a list, recursively compute the 𝑖th smallest
element in the list by first computing the median of medians then using it to partition the
list.

• ZAlgorithm: Given a list 𝑥 , return a list 𝑦 such that 𝑦 [𝑖] stores the maximum integer ℓ
such that 𝑥 [0, . . . , ℓ − 1] = 𝑥 [𝑖, . . . , 𝑖 + ℓ − 1].

• BubbleSort: Run bubble sort where pairs of adjacent out-of-order elements are repeatedly
swapped until no such pairs exist (i.e., saturation).

• Round: Given a natural number 𝑥 (represented as a list), compute a natural number 𝑦
such that 𝑦 is the largest power of two below 𝑥 . Once 𝑦 is computed, traverse 𝑦.

• EvenOddTail: Given a natural number 𝑥 (represented as a list), first traverse the list and
if 𝑥 is even, divide it by two; otherwise, subtract one from it.

Conventional AARA cannot return a tight cost bound for any of these 10 programs. Specif-
ically, it cannot analyze 7/10 programs at all as they contain code fragments that cannot be
analyzed by static analysis.

• For BubbleSort, AARA cannot conclude its termination, let alone a quadratic cost bound.
It is due to the non-size-decreasing recursion of BubbleSort: successive recursive calls to
BubbleSort do not decrease the input size. BubbleSort terminates only when the input
satisfies a semantic condition (i.e., the list is sorted), and this is beyond the reasoning
power of AARA.

• MedianOfMedians [36] is a linear-time selection algorithm using the divide-and-conquer
strategy. To determine its linear time complexity, it is necessary to reason about mathe-
matical properties of medians, which is beyond the capability of AARA.

• For Round (taken from [112, §5.4.3]), to prove its linear complexity, AARA would need
to derive an infinite set (4.4.1) of resource-annotated types.

• The four benchmarksMapAppend, Concat,QuickSort, andQuickSelect fail because they
contain some complex function that Conventional AARA cannot analyze.
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Table 7.1: Percentage of inferred cost bounds that are sound and analysis runtime for 10 bench-
mark programs.

Benchmark Conventional Analysis Fraction of Sound Inferred Bounds Analysis Runtime

Program AARA Method Data-Driven Hybrid Data-Driven Hybrid
MapAppend Cannot Analyze Opt 0% 0% 0.01 s 0.01 s

BayesWC 68.5% 100% 1.87 s 12.44 s
BayesPC 75.5% 100% 51.83 s 360.80 s

Concat Cannot Analyze Opt 0% 0% 0.00 s 0.01 s
BayesWC 67.3% 96.7% 2.54 s 14.73 s
BayesPC 96% 100% 113.53 s 125.28 s

InsertionSort2 Wrong Degree Opt 0% 0% 0.01 s 0.02 s
BayesWC 57.6% 100% 1.53 s 5.46 s
BayesPC 21% 57.5% 10.68 s 220.66 s

QuickSort Cannot Analyze Opt 0% 0% 0.01 s 0.11 s
BayesWC 4% 96% 2.20 s 144.88 s
BayesPC 0% 100% 13.72 s 274.51 s

QuickSelect Cannot Analyze Opt 0% 0% 0.02 s 0.19 s
BayesWC 0.2% 98.2% 1.83 s 222.47 s
BayesPC 0% 100% 12.39 s 277.20 s

MedianOfMedians Cannot Analyze Opt 0% 0% 0.17 s 0.21 s
BayesWC 11.5% 71.3% 2.36 s 93.89 s
BayesPC 0% 100% 70.39 s 896.98 s

ZAlgorithm Wrong Degree Opt 0% 0% 0.09 s 0.13 s
BayesWC 13.7% 95.9% 1.96 s 72.21 s
BayesPC 28% 100% 11.11 s 509.29 s

BubbleSort Cannot Analyze Opt 0% Cannot Analyze 0.01 s ∅
BayesWC 40.1% Cannot Analyze 2.69 s ∅
BayesPC 31.5% Cannot Analyze 11.70 s ∅

Round Cannot Analyze Opt 0% Cannot Analyze 0.01 s ∅
BayesWC 58.3% Cannot Analyze 1.91 s ∅
BayesPC 81% Cannot Analyze 12.87 s ∅

EvenOddTail Wrong Degree Opt 0% Wrong Degree 0.01 s ∅
BayesWC 65.1% Wrong Degree 1.98 s ∅
BayesPC 70% Wrong Degree 11.79 s ∅

For the remaining 3/10 programs, to infer some polynomial cost bound, Conventional AARA
requires a wrong polynomial degree that is too high. For example, InsertionSort2 has a linear
cost bound, while AARA infers a quadratic bound. The second insertion sort runs in linear time
because the input is already sorted by the first call to insertion sort. However, AARA infers a
quadratic bound, which is a worst-case cost bound of insertion sort across all inputs.

Data-driven resource analysis also struggles to infer sound cost bounds for these bench-
mark programs. This is because atomic operations (e.g., integer comparison in QuickSort) are
modified in such a way that their worst-case costs show up sporadically. For instance, in the
source code of QuickSort (Listing A.9), the function incur_cost incurs a cost ranging from 0.5
to 1.0, and the worst-case cost of 1.0 only arises sporadically.

7.6.2 Experiment Results

Proportions of sound cost bounds Tab 7.1 shows (i) the proportions of inferred cost bounds
that are sound and (ii) analysis runtimes for all 10 benchmarks using data-driven analysis (Opt,
BayesWC, BayesPC) and their hybrid counterparts, where applicable. Optimization-based re-
source analyses (Data-Driven andHybrid Opt) always return a single inferred cost bound, while
Bayesian resource analyses return collections of samples of cost bounds drawn from posterior

101



probability distributions.
In all benchmarks, for both data-driven and hybrid analyses, BayesWC produces strictly

higher proportions of sound cost bounds than Opt. This finding demonstrates that cost bounds
inferred by BayesWC are more robust than those inferred by Opt in 10/10 cases (data-driven)
and 7/7 cases (hybrid); that is, BayesWC has a positive probability of inferring a sound bound
even though the runtime-cost dataset does not contain worst-case inputs. In contrast, in these
benchmarks, Opt never returns a sound bound. Likewise, BayesPC returns more robust bounds
than Opt in 7/10 (data-driven) and 7/7 cases (hybrid). These improvements highlight the ben-
efits of probabilistic inference as compared to optimization.

Between data-driven Bayesian analyses (i.e., BayesWC and BayesPC) and their hybrid coun-
terparts, the latter delivers a substantially larger fraction of sound cost bounds in all 7 bench-
marks. These results illustrate the benefit of integrating data-driven analysis with static type
inference on the remaining parts of the program not tagged with statℓ expressions.

Analysis time The right two columns of Tab 7.1 show the analysis runtime. Opt uses an LP
solver that is much faster than sampling algorithms: it returns answers in less than one second,
whereas Bayesian resource analysis can take minutes. Between BayesWC and BayesPC, the
former is faster in terms of analysis time per iteration. The main reason is that BayesWC uses
HMC sampling without constraints, which is much simpler than Reflective HMC sampling over
convex polytopes (Fig. 7.4) needed for inference in BayesPC. Furthermore, the HMC sampler
used in BayesWC comes from the probabilistic programming language Stan [44], which has
been developed and optimized for many years, while ReHMC in BayesPC is implemented in
the C++ libraries Volesti [48] and autodiff [153], which have not been as optimized as Stan.

Distributions of estimation errors Fig. 7.5 shows relative estimation errors of inferred cost
boundswith respect to the ground-truthworst-case bound in 5 benchmarks (full results in §A.1).
In each benchmark, we fix three input sizes (10, 100, and 1000). For each size, we show the 5th,
50th, and 95th percentiles of relative estimation errors. Because Opt infers a single bound, it has
the same estimation error for all percentiles. Relative estimation errors below 0 (resp., above 0)
indicate an underestimate (resp., overestimate) of the true bound. A cost bound is sound if its
estimation error is at least 0.

Fig. 7.5 exhibits similar results to Tab 7.1:
1. Bayesian resource analyses are more robust than Opt: the former return posterior cost-

bound distributions with positive probabilities of being sound bounds for each fixed input
size, while the latter is either sound or unsound.

2. Hybrid analyses are more robust than data-driven analyses.
The QuickSort and QuickSelect panels in Fig. 7.5 show an interesting finding. At input

size 10, the bounds from Data-Driven BayesWC and BayesPC are tighter than those from their
Hybrid counterparts, but some of the former bounds are unsound. As the input size increases,
the estimation errors from Hybrid AARA shrink but remain in the “Sound Region,” whereas
those from Bayesian data-driven analysis become unsound.
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Figure 7.5: Relative estimation errors of inferred cost bounds with respect to ground-truth
worst-case costs on 5 benchmarks. Each panel shows the estimation errors for a given bench-
mark program (subplot title), three input sizes (10, 100, 1000), and six resource-analysis methods
(top legend). For BayesWC and BayesPC, the three markers on a vertical line show the 5th, 50th,
and 95th percentiles of estimation errors (computed over the posterior distribution of inferred
cost bounds). Opt delivers a single estimation error, shown as a red marker. The ideal relative
estimation error is zero: errors greater than zero are sound but conservative, and errors less
than zero are unsound.

Posterior distributions of cost bounds Fig. 7.6 shows posterior distributions of cost bounds
of 5 benchmarks. Red curves are the true bounds, and black dots show the runtime-cost data.
Blue curves are median cost bounds, and light-blue shades around them show the 10–90th per-
centile ranges. In both data-driven and hybrid analyses, Bayesian resource analysis delivers
a sizeable fraction of correct bounds. Certain datasets such as MedianOfMedians in Fig. 7.5
are particularly challenging for fully data-driven analysis, however. Between data-driven and
hybrid analyses, the cost bounds from the latter are always more accurate (i.e., closer to sound
worst-case cost bounds).

Fig. 7.7 shows inferred cost bounds for MapAppend, which are multivariate. The median
bounds for the Bayesian methods always lie above the ground-truth plane, whereas the single
bounds for Data-Driven Opt and Hybrid Opt are both incorrect.

Summary Our evaluation has several key takeaways. First, in the 7/10 programs that Con-
ventional AARA cannot solve (first 7 rows of Tab 7.1), Hybrid AARA successfully returns robust
and accurate bounds using at least one of Hybrid BayesWC or Hybrid BayesPC. In the 3/10
programs that Hybrid AARA cannot solve (last 3 rows of Tab 7.1), fully data-driven analysis
using BayesWC or BayesPC gives good proportions of sound bounds. Second, Bayesian re-
source analysis delivers a substantially higher percentage of sound cost bounds as compared to
optimization-based analysis in both the fully data-driven and hybrid case. Between BayesWC
and BayesPC, the former is more conservative: it gives a larger fraction of sound bounds in
the fully data-driven case, but its cost gaps are higher. Third, for Hybrid AARA, incorporating
static analysis (when possible) gives a higher proportion of sound bounds than fully data-driven
analysis with a similar runtime.

We have no clear winner between Hybrid BayesWC and Hybrid BayesPC: the latter is
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Figure 7.6: Plots of inferred bounds for various benchmarks and resource analysis methods
shown in Fig. 7.5 (D=Data Driven; H=Hybrid). Each benchmark has three plots (left-to-right):
Opt, BayesWC, and BayesPC.
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Figure 7.7: Plots of inferred multivariate cost bounds for MapAppend using data-driven re-
source analysis and Hybrid AARA. Red planes show ground-truth tight worst-case bounds,
and blue planes show inferred bounds.

slower but more accurate than the former in 5/7 cases. Additionally, BayesPC enables richer
probabilistic models than BayesWC since the probabilistic model of BayesPC models not only
worst-case costs but also resource coefficients. In practice, depending on the application, one
can take the looser or tighter result of the two methods.

7.7 Discussion

This chapter has introduced Hybrid AARA, which to the best of my knowledge is the first
resource-analysis method that integrates data-driven and static resource analyses via a user-
adjustable interface. In this section, I first reflect on the design of Hybrid AARA (§7.7.1). I next
discuss usage of Hybrid AARA in practice (§7.7.2) and its application to other program-analysis
tasks (§7.7.3). At the end, I describe the limitation of Hybrid AARA (§7.7.4), which motivate the
second hybrid resource analysis, resource decomposition (§8).
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7.7.1 Interface Design of Hybrid AARA

This section discusses the interface between constituent analysis techniques in Hybrid AARA.
Specifically, I first describe what hybrid means in Hybrid AARA and how it is different from
the sense in which some resource-analysis methods are hybrid. I then discuss why resource-
annotated types are a natural choice of the interface in Hybrid AARA.

Hybrid nature of a user-adjustable interface The user-adjustable interface between con-
stituent analysis techniques is a key characteristic of Hybrid AARA. The interface of Hybrid
AARA allows the user to freely specify which code fragments are to be analyzed by which anal-
ysis techniques. Consequently, Hybrid AARA covers a spectrum ranging from fully data-driven
analysis to fully static analysis.

The user-adjustable interface distinguishesHybridAARA fromother resource-analysis tech-
niques that are also hybrid (i.e., they integrate static and data-driven analyses in some way).
Several existing resource-analysis techniques [131, 197, 198] sequentially compose data-driven
and static analyses in their workflows: they first perform data-driven analysis to guess some-
thing, which is then processed by static analysis. For instance, Dynaplex [131] first infers a
recurrence relation by data-driven analysis and then solves it statically by the master theo-
rem. Likewise, Rustenholz et al. [197, 198] first infer candidate solutions to recurrence relations
by data-driven analysis and then verify them by static analysis. Just like Hybrid AARA, these
resource-analysis techniques are considered hybrid in that they integrate data-driven and static
analyses. However, they differ from Hybrid AARA in the way analysis methods are combined:
the former performs different analysis methods in different stages of the analysis workflow,
while the latter performs different analysis methods in different code fragments.

Type-based interface The resource-annotated type is an enabler of the user-adjustable in-
terface in Hybrid AARA. Type systems are prominent in the programming-language literature
due to their compositionality: the type of a whole program can be derived from the types
assigned to constituent code fragments. The compositionality of types contributes to the scal-
ability of type-based program analysis: the analysis of a large, complex program can be broken
down into the analysis of smaller code fragments. In Hybrid AARA, its user-adjustable interface
must be able to connect two analysis techniques no matter where the user draws a line between
the analysis techniques (i.e., which code fragments are analyzed by which techniques). Thus,
the interface inHybrid AARA is required to be compositional, making resource-annotated types
a suitable interface.

7.7.2 Using Hybrid AARA in Practice

This section discusses questions about using Hybrid AARA in practice: (i) how to choose a
data-driven analysis method in practice; and (ii) how to automate code annotations.

Choice of data-driven analysis This chapter offers three data-driven analyses: Opt (§7.3.2),
BayesWC (§7.3.3), and BayesPC (§7.3.4). The choice of a data-driven analysis technique de-
pends on the requirements and domain knowledge of a user. If the user does not need inference
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results to be conservative, it is reasonable to use Opt. Also, it is fast because it does not run
sampling-based probabilistic inference for Bayesian inference.

Conversely, if the user would like inferred cost bounds to be conservative, it is necessary to
add a buffer on top of the maximum observed costs (see Figs. 7.2b and 7.2c). One approach is
to first statistically infer how much buffer to add based on observed data D and then optimize
a cost bound while accounting for the inferred buffer. If Bayesian inference is employed to in-
fer the amount of necessary buffer, the resulting data-driven analysis is BayesWC. In Bayesian
inference, the user writes a probabilistic model to express their domain knowledge and require-
ment about how large the buffer should be. If the user has little domain knowledge, they can
use broad prior distributions (e.g., normal distributions with large standard deviations).

Alternatively, instead of Bayesian inference, frequentist-statistical methods can be used to
infer the amount of buffer. However, frequentist statistics typically does not offer robustness of
inferred cost bounds, since it usually returns point estimates (and perhaps confidence intervals),
as opposed to posterior distributions returned by Bayesian inference.

As shown in Tab 7.1, BayesWC has longer analysis time than Opt. Since sampling-based
probabilistic inference runs many iterations, it is slower than optimization, particularly lin-
ear programming. Furthermore, for each posterior sample returned by Bayesian inference,
BayesWC solves an optimization problem, although this can be done in parallel.

If the user wishes a fully Bayesian approach, BayesPC is the way to go. In contrast to
BayesWC, BayesPC models not only the amount of buffer but also resource annotations (i.e.,
polynomial coefficients of potential functions) in probabilistic models. To draw posterior cost
bounds, BayesPC runs Reflective HMC (ReHMC) [47, 49, 50, 171], which runs Hamiltonian
Monte Carlo (HMC) within bounded convex polytopes. ReHMC is implemented in Volesti [48].

Tab 7.1 shows that BayesPC has longer analysis time than BayesWC. This can be because
ReHMC is fundamentally more computationally demanding than HMC (e.g., NUTS [111] in
Stan) and/or because Volesti is not as optimized as Stan’s inference engine. Furthermore, if a
bounded convex polytope is narrow, ReHMCmay struggle to explore the state space effectively,
requiring a long time before converging to a target posterior distribution.

Automation of code annotations In Hybrid AARA, it is the user’s responsibility to anno-
tate the source code with statℓ to indicate which code fragments are to be analyzed by data-
driven analysis. Nonetheless, it is possible to devise a procedure to automatically insert anno-
tations. A trivial idea is to perform fully data-driven analysis, which is a special case of Hybrid
AARA and is fully automatic.

A more sensible approach is to incrementally expand the code fragments to be analyzed
by data-driven analysis, until Hybrid AARA can infer a cost bound. In this approach, given a
program 𝑃 , we first run fully static analysis on the whole program 𝑃 . If it fails, we then apply
data-driven analysis to one of the function applications appearing in 𝑃 ’s source code. We repeat
the step, gradually increasing the number of functions 𝑓 (and their function applications) inside
the program 𝑃 to be analyzed by data-driven analysis. In the worst case, eventually, the whole
program 𝑃 is analyzed by data-driven analysis, boiling down to fully data-driven analysis.
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7.7.3 Hybrid Approaches to Program Analysis beyond Resource Anal-

ysis

This section discusses extending the idea of Hybrid AARA beyond resource analysis: (i) hybrid
type checking; and (ii) hybrid inference of discrete program properties, particularly types.

Gradual and hybrid typing User-adjustable type-based interfaces show up in the literature
of gradual types (also known as hybrid types) [79, 145, 204]. Gradual typing integrates static and
dynamic typing, which complement each other. Static typing ensures type safety once and for
all at compile time, and produces efficient machine code because it does not require runtime
tag-checking of values. On the other hand, dynamic typing for refinement types can check
more complex properties of programs than static typing. In gradual typing, a user annotates
some (but not necessarily all) code fragments with types. These code fragments are statically
checked at compile time, while the rest of the source code is dynamically checked at runtime.
Instructions for runtime tag-checking of values are only inserted for dynamically typed code
fragments.

Gradual typing andHybrid AARA are similar in that they both involve types. However, they
differ in (i) the goals of program analysis; and (ii) how types are used. In gradual typing, the goal
is to check some kind of safety (e.g., absence of crashes) of programs. The notion of program
safety is encoded by types, which can be standard functional types (e.g., base types and arrow
types) [204] or refinement types (i.e., types augmented with predicates) [79, 145]. Thus, types
serve as specifications of programs, and they are checked by either static analysis or by dynamic
analysis (i.e., looking at runtime values). On the other hand, the goal of Hybrid AARA is to
infer symbolic cost bounds of programs. Hybrid AARA use resource-annotated types to encode
potential functions. They are inferred by either static analysis or data-driven analysis (i.e., using
observed data collected by running programs on concrete inputs). In summary, gradual typing
concerns program safety, while Hybrid AARA concerns symbolic cost bounds. Additionally,
gradual typing is about type checking, while Hybrid AARA is about type inference.

Inference of discrete program properties One might wonder about developing Hybrid-
AARA-like approaches to program-analysis tasks beyond resource analysis. As the search space
of such program-analysis tasks is typically discrete, two challenges arise:

1. It is difficult to justify the use of data-driven methods (and hybrid ones);
2. Effective gradient-based inference algorithms are no longer applicable.
In Hybrid AARA, the search space consists of symbolic cost bounds (or more precisely, poly-

nomial coefficients of potential functions). The continuity of this search space makes it easy
to justify the use of data-driven methods. For example, consider a program 𝑃 whose ground-
truth cost bound is 𝑛. If data-driven analysis infers a close but unsound bound (e.g., 0.9𝑛 or
0.99𝑛), the user will likely tolerate it, unless the program 𝑃 is a safety-critical program. This is
fundamentally because the space of symbolic cost bounds is continuous: as the error between
inferred bounds and ground-truth bounds is continuous, the user does not outright reject un-
sound bounds as long as they are close to the ground truths.

Meanwhile, in many program-analysis tasks, such as traditional type inference, the search
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space is discrete, potentially making the user less willing to accept unsound inference results.
For instance, given a program 𝑃 whose ground-truth type is int → int, suppose a type-
inference engine infers an unsound type (e.g., int→ unit). Then the usermay reject it outright
even if it is unknownwhether the inferred bound is sound or unsound. This is because the error
between int→ int and int→ unit is discrete: it is either correct or wrong, and we have no
alternative inference results in between.

Alternatively, data-driven analysis can return a distribution of inferred types, as does Bayesian
inference. Again, the user may be unhappy with the distribution returned by data-driven anal-
ysis, unless the analysis offers the absolute (i.e., 100%) guarantee of sound type inference. Oth-
erwise, the 99% guarantee of soundness may not be enough to satisfy the user’s demand.

Furthermore, continuous search spaces have the benefit that efficient gradient-based in-
ference algorithms (e.g., HMC [111] adopted in Stan [44]) are readily available. On the other
hand, discrete search spaces are not supported in some probabilistic programming languages,
including Stan [44]. Gen [63] supports discrete as well as continuous random variables, but a
user usually needs to customize probabilistic-inference algorithms to quickly converge to target
posterior distributions.

Nonetheless, data-driven inference of discrete program properties (e.g., types and names of
variables) have been actively investigated. For example, Raychev et al. [193] first train prob-
abilistic graphical models using code repositories and then use the trained graphical models
to infer identifiers’ names and types in JavaScript programs. Also, numerous works employ
neural networks to infer types in dynamically typed programming languages (e.g., Python and
JavaScript) [12, 13, 107, 183, 184, 225].

7.7.4 Limitations of Hybrid AARA

Hybrid AARA has two limitations:
1. It can only express and infer polynomial cost bounds;
2. Its constituent analysis techniques must all infer quantities of the same resource metric.

These limitations stem from the use of resource-annotated types as an interface between con-
stituent analysis techniques’ inference results.

Resource-annotated types only encode polynomial potential functions. It is challenging to
extend Conventional AARA to infer symbolic boundswhere polynomials and logarithm coexist.
This is fundamentally because it is difficult to define a set of symbolic bounds that (i) admit both
polynomials and logarithm; (ii) are closed under some operations, such as resource-annotation
sharing . (Listing 4.3) and the shift operator ⊳ (Eq (4.2.8)); and (iii) are amenable to automated
reasoning. Consequently, Hybrid AARA cannot express, let alone infer, an asymptotically tight
𝑂 (𝑛 log𝑛) cost bound of MergeSort.

The second limitation arises because, in Hybrid AARA, the constituent analyses’ inference
results are encoded by resource-annotated types of code fragments and are composed by their
substitution. Otherwise, if Analysis 𝐴 inferred a running-time bound of some code fragment
and Analysis 𝐵 inferred a memory-usage bound of the rest of the source code, it would be
impossible to compose Analyses 𝐴’s and 𝐵’s resource-annotated types.

Hybrid AARA is not the only way to integrate resource analyses. Another idea for hybrid
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resource analysis is to break down an overall cost bound of a recursive program 𝑃 into a product
of: (i) the cost of a single recursive step of 𝑃 ; and (ii) the number of recursive calls to 𝑃 . These
two quantities have different resource metrics: the first is the cost of a code fragment, while the
second is the number of function calls. This alternative idea for hybrid resource analysis leads
to the development of the second hybrid resource analysis: resource decomposition (§8).
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Chapter 8

Resource Decomposition

This chapter introduces the second hybrid resource analysis—resource decomposition—that in-
tegrates resource-analysis techniques via a different interface from Hybrid AARA (§7).

Fig. 2.2 shows the workflow of resource decomposition. Given a target program 𝑃 (𝑥), a
user annotates it to specify 𝑛 ≥ 1 many custom quantities called resource components (e.g., the
recursion depth of a function and the cost of a code fragment). One resource-analysis technique
analyzes the annotated program 𝑃rd(𝑥), called a resource-decomposed program, to infer high-
water-mark bounds 𝑔𝑖 (𝑥) (𝑖 = 1, . . . , 𝑛) on the resource components. The resource-decomposed
program 𝑃rd(𝑥) is (automatically) extended with numeric input variables r = (𝑟1, . . . , 𝑟𝑛), called
resource guards, which track the user-specified resource components. The extended program
𝑃rg(𝑥, r) is called a resource-guarded program. Another resource-analysis technique analyzes the
program 𝑃rg(𝑥, r) to infer its cost bound 𝑓 (𝑥, 𝑟1, . . . , 𝑟𝑛) parametric in both the original input 𝑥
and the resource guards r. Finally, the inferred bounds 𝑓 (𝑥, 𝑟1, . . . , 𝑟𝑛) and 𝑔𝑖 (𝑥) (𝑖 = 1, . . . , 𝑛)
are composed by substitution, resulting in 𝑓 (𝑥, 𝑔1(𝑥), . . . , 𝑔𝑛 (𝑥)).

Thanks to the numeric-variable interface, resource decomposition overcomes1the two draw-
backs of Hybrid AARA in §7.7.4. Furthermore, resource decomposition is more versatile than
Hybrid AARA in terms of the diversity of resource analyses that can be integrated. While Hy-
brid AARA is more or less tied to Conventional AARA, resource decomposition can integrate
analysis techniques beyond Conventional AARA.

§8.1 introduces a programming language Rpcf that extends Pcf with monadic effects for
computational cost and resource components. §8.2 then describes the domain-theoretic deno-
tational semantics of Rpcf. §8.3 formalizes the automatic program transformation of resource-
decomposed programs 𝑃rd(𝑥) to corresponding resource-guarded programs 𝑃rg(𝑥, r). §8.4 for-
mulates a soundness theorem of the program transformation, which is then proved by a logical-
relation argument in the domain-theoretic denotational semantics. §8.5–8.7 describe three in-
stantiations of the resource-decomposition framework, which each integrate different pairs of
static, data-driven, and interactive resource analyses. Finally, §8.8 discusses the design of re-
source composition and compares it with Hybrid AARA.

1Resource decomposition has its own drawbacks that Hybrid AARA does not have, as discussed in §8.8.3.
Hence, it does not strictly improve on Hybrid AARA.
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𝐴 F unit | int | 𝐴1 +𝐴2 | 𝐴1 ×𝐴2 | 𝐿(𝐴) | 𝐴1 → 𝐴2 value types
| F𝐴 computation type

𝑒 F ⟨ ⟩ | 𝑧 unit and integer; 𝑧 ∈ Z
| 𝑥 variable;𝑥 ∈ X
| left · 𝑒 | right · 𝑒 | case 𝑒 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} sums
| ⟨𝑒1, 𝑒2⟩ | case 𝑒 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒1} products
| [ ] | 𝑒1 :: 𝑒2 | case 𝑒 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} lists
| fun 𝑓 𝑥 = 𝑒 | 𝑒1 𝑒2 functions; 𝑓 ∈ X
| return 𝑒 return statement
| let 𝑥 = 𝑒1 in 𝑒2 let-binding
| tick 𝑞 resource consumption;𝑞 ∈ Q
| mark𝑖 | unmark𝑖 | reset𝑖 resource components; 𝑖 = 1, . . . , 𝑛

Lst. 8.1: Types 𝐴 and expressions 𝑒 in Rpcf𝑛 .

8.1 Programming Language

To formulate the hybrid resource analysis resource decomposition, this section introduces a
resource-sensitive programming language Rpcf. Rpcf extends call-by-value Pcf by Plotkin
[191] with lists and two monads for tracking: (i) computational cost indicated by the construct
tick; and (ii) user-defined resource components indicated by constructs mark, unmark, and
reset. These two quantities are treated as computational effects captured by monads.

I describe the syntax (§8.1.1), a type system (§8.1.2), and domain-theoretic denotational se-
mantics of Rpcf (§8.2). The denotational semantics is used in the formalization and soundness
proof of resource decomposition (§8.3).

8.1.1 Syntax

Suppose an input program has 𝑛 ∈ Nmany resource components 𝑟1, . . . , 𝑟𝑛 . I define a program-
ming language Rpcf𝑛 that extends the vanilla Pcf by Plotkin [191] with lists and constructs for
indicating resource usage and resource components. The language Rpcf𝑛 is parametrized by
𝑛 ∈ N because, in its denotational semantics, the number 𝑛 determines dimensions of vectors
tracking resource components. The syntax and type system of Rpcf𝑛 (or Rpcf more generally),
on the other hand, need not be parametrized by 𝑛.

Fix a countable set X of variable symbols. Listing 8.1 defines types 𝐴 and expressions 𝑒 of
Rpcf𝑛 (𝑛 ∈ N). The language is adapted from the call-by-value language PCFv in Harper [106].

Types The language Rpcf𝑛 distinguishes between values and computational by types. Value
types (e.g., int and 𝐴1 → 𝐴2) capture values, namely expressions that do not further evaluate.
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On the other hand, a computation type F𝐴, where F is a modality and 𝐴 is a type, captures
effectful computations, namely expressions that spontaneously evaluate and give rise to compu-
tational effects (e.g., non-termination and computational costs). In resource decomposition, the
monadic type F𝐴 captures three computational effects: non-termination, computational cost,
and resource components 𝑟𝑖 (𝑖 = 1, . . . , 𝑛).

Expressions The construct return 𝑒 is a constructor of a computation type F𝐴: it encapsulates
an expression 𝑒 of type 𝐴 inside a computation. Dually, the let-binding let 𝑥 = 𝑒1 in 𝑒2 acts
as a destructor of the computation type F𝐴: it first runs a computation 𝑒1, then binds its value
(if any) to a variable 𝑥 , and then proceeds with a computation 𝑒2. The constructs return 𝑒 and
let 𝑥 = 𝑒1 in 𝑒2 serve as the return and bind operators for the monad captured by F.

The construct tick 𝑞 (𝑞 ∈ Q) increments the cost counter by 𝑞 and returns the unit element
⟨ ⟩. This construct has already been introduced by the programming language in §3, which
serves as a basis for Conventional AARA (§4) and Hybrid AARA (§7).

Unlike the programming language introduced in §3, the language Rpcf𝑛 does not have a
construct share 𝑥 as 𝑥1, 𝑥2 in 𝑒 for variable sharing. Also, Rpcf𝑛 allows targets of pattern
matching to be general expressions 𝑒 , instead of restricting them to variables 𝑥 ∈ X.

The construct mark𝑖 (resp., unmark𝑖 ) increases (resp., decreases) the counter of a resource
component 𝑟𝑖 (𝑖 = 1, . . . , 𝑛) by one. The constructsmark𝑖 and unmark𝑖 must be inserted in such
a way that their high-water mark (i.e., the highest value ever reached) is equal to a resource
component 𝑟𝑖 specified by the user. For example, to set a resource component to the recursion
depth of a recursive function 𝑃 , the user inserts (i) mark at the beginning of 𝑃 ’s function body
to increment the recursion-depth counter by one; and (ii) unmark at the end of the function
body to decrement the recursion-depth counter by one.

Lastly, the construct reset𝑖 resets the counter of a resource component 𝑟𝑖 (𝑖 = 1, . . . , 𝑛) to 0.
This construct is useful when a resource component is defined for each individual call to the
function. For example, given a function 𝑓 inside a program 𝑃 , consider a resource component 𝑟
equal to the cost of the function 𝑓 . If the function 𝑓 is called multiple times during the execution
of the program 𝑃 , the resource component 𝑟 has multiple measurements, one for each call to
the function 𝑓 . To indicate the resource component 𝑟 in the source code, it is necessary to reset
the resource component 𝑟 ’s counter after each call to the function 𝑓 . Otherwise, the resource
component 𝑟 would track the combined cost across all calls to the function 𝑓 , which is different
from the intended quantity.

More concretely, consider a target program 𝑃 defined as

fun 𝑃 (ℓ, 𝑡) = map ℓ (fun 𝑓 𝑥 = (lookup (𝑡, 𝑥); reset1)) . (8.1.1)

Suppose a resource component 𝑟1 of interest is the cost of the function lookup that looks up an
element 𝑥 in a tree 𝑡 . The program 𝑃 in Eq (8.1.1) takes two inputs, a list ℓ and a tree 𝑡 . For each
element 𝑥 ∈ ℓ in the list, the program 𝑃 looks up the element 𝑥 in the tree 𝑡 by the function
call lookup (𝑡, 𝑥). Since the function lookup is called multiple times in an execution, we must
reset the counter of the resource component 𝑟1 to 0 at the end of each function call of lookup.
To this end, we sequentially compose2the function application lookup (𝑡, 𝑥) with reset1.

2Sequential composition is indicated by the semicolon in Eq (8.1.1).
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Γ ⊢ ⟨ ⟩ : unit
𝑧 ∈ Z

Γ ⊢ 𝑧 : int
Γ(𝑥) = 𝐴
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ 𝑒 : 𝐴1

Γ ⊢ left · 𝑒 : 𝐴1 +𝐴2

Γ ⊢ 𝑒 : 𝐴2

Γ ⊢ right · 𝑒 : 𝐴1 +𝐴2

Γ ⊢ 𝑒 : 𝐴1 +𝐴2 Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 : 𝐴3 Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 : 𝐴3

Γ ⊢ case 𝑒 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} : 𝐴3

Γ ⊢ 𝑒1 : 𝐴1 Γ ⊢ 𝑒2 : 𝐴2

Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴1 ×𝐴2

Γ ⊢ 𝑒 : 𝐴1 ×𝐴2 Γ, 𝑥1 : 𝐴1, 𝑥2 : 𝐴2 ⊢ 𝑒1 : 𝐴3

Γ ⊢ case 𝑒 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒1} : 𝐴3 Γ ⊢ [ ] : 𝐿(𝐴)
Γ ⊢ 𝑒1 : 𝐴 Γ ⊢ 𝑒2 : 𝐿(𝐴)

Γ ⊢ 𝑒1 :: 𝑒2 : 𝐿(𝐴)

Γ ⊢ 𝑒 : 𝐿(𝐴1) Γ ⊢ 𝑒1 : 𝐴2 Γ, 𝑥1 : 𝐴1, 𝑥2 : 𝐿(𝐴1) ⊢ 𝑒2 : 𝐴2

Γ ⊢ case 𝑒 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} : 𝐴2

Γ, 𝑓 : 𝐴1 → F𝐴2, 𝑥 : 𝐴1 ⊢ 𝑒 : F𝐴2

Γ ⊢ fun 𝑓 𝑥 = 𝑒 : 𝐴1 → F𝐴2

Γ ⊢ 𝑒1 : 𝐴1 → 𝐴2 Γ ⊢ 𝑒2 : 𝐴1

Γ ⊢ 𝑒1 𝑒2 : 𝐴2

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ return 𝑒 : F𝐴

Γ ⊢ 𝑒1 : F𝐴1 Γ, 𝑥 : 𝐴1 ⊢ 𝑒2 : F𝐴2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : F𝐴2

𝑞 ∈ Q
Γ ⊢ tick 𝑞 : Funit

1 ≤ 𝑖 ≤ 𝑛
Γ ⊢ mark𝑖 : Funit

1 ≤ 𝑖 ≤ 𝑛
Γ ⊢ unmark𝑖 : Funit

1 ≤ 𝑖 ≤ 𝑛
Γ ⊢ reset𝑖 : Funit

Lst. 8.2: Type system of Rpcf𝑛 .

The constructs tick, mark, and unmark have similar behaviors: they manipulate some kind
of counters. Indeed, we can viewmark as tick 1 and unmark as tick −1. However, they differ as
follows. Firstly, they serve different purposes. The construct tick defines the computational cost
of an input program, whose symbolic bound is the objective of resource analysis. Meanwhile,
the constructs mark and unmark define resource components to decompose resource analysis
into two analysis techniques via the resource-decomposition framework. Secondly, in a trans-
formation from a resource-decomposed program to a resource-guarded one, the construct tick
is left unchanged so that the target program of the transformation has the same cost as the
source program. Meanwhile, mark and unmark are deleted by the program transformation.
Remark 8.1.1 (Integer-valued resource components). The construct tick 𝑞 increments compu-

tational cost by rational numbers 𝑞 ∈ Q, whereas mark and unmark can only increment resource

components by integers 𝑧 ∈ Z. This limitation is due to the fact that I use natural numbers, particu-

larly their unary encoding as lists, to encode resource guards (§8.3). This design decision allows my

collaborators and me to reuse RaML [117, 118] in the instantiations of resource decomposition that

combine AARA and other analysis techniques (§8.5 and §8.6). To extend resource components’ en-

codings from natural numbers to rational numbers, the implementation of RaML [117, 118] would

need to be extensively modified. «

8.1.2 Type System

A typing judgment of Rpcf𝑛 is given by

Γ ⊢ 𝑒 : 𝐴, (8.1.2)
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where Γ is a typing context (i.e., a mapping from variables to types), 𝑒 is an expression, and 𝐴
is a type. Listing 8.2 defines this typing judgment.

The typing rules for sums, products, and lists are standard [105]. The function definition
fun 𝑓 𝑥 = 𝑒 has type 𝐴1 → F𝐴2. The output type F𝐴2 is monadic because a function may en-
tail computational effects (i.e., non-termination, computational cost, and resource components)
when applied to inputs. The expression return 𝑒 creates a trivial computation that encapsulates
the expression 𝑒 . So if the expression 𝑒 has type 𝐴, the expression return 𝑒 has type F𝐴. Du-
ally, the let-binding let 𝑥 = 𝑒1 in 𝑒2 runs a computation 𝑒1 : F𝐴1, binds its value to a variable
𝑥 : 𝐴1, and then runs a computation 𝑒2 : F𝐴2 that may use the variable 𝑥 . The typing rules for
functions, return expressions, and let-bindings are adapted from Harper [106].

Those constructs that manipulate cost counters and resource components’ counters (e.g.,
tick 𝑞 for 𝑞 ∈ Q and mark𝑖 for 𝑖 = 1, . . . , 𝑛) have the monadic type Funit. This is reasonable
because these constructs entail computational effects and return the unit element ⟨ ⟩.

8.2 Denotational Semantics

This section defines domain-theoretic denotational semantics of Rpcf𝑛 by extending the stan-
dard interpretation of Pcf with the denotations of those constructs that manipulate costs and
resource components (i.e., tick, mark, unmark, and reset) (§8.1.1).

§8.2.1 describes mathematical objects to capture the semantics of computational cost and
resource components. Next, §8.2.2 gives an introduction to domain theory. Finally, §8.2.3 for-
mulates the domain-theoretic denotational semantics of Rpcf𝑛 .

8.2.1 Computational Cost and Resource Components

Computational cost Recall from Defn. 3.2.1 that computational cost is represented by ele-
ments of the resource monoid RM ≔ (Q2

≥0, (0, 0), ⊕). In a resource-monoid element (ℎ, 𝑟 ) ∈
Q2
≥0, the value ℎ is the high-water-mark cost, and 𝑟 is the amount of remaining resources. The

net cost is given by ℎ − 𝑟 .
Notation (Extracting high-water marks and remaining resources). Given a resource-monoid

element 𝑥 ∈ Q2
≥0, if (ℎ, 𝑟 ) = 𝑥 , I write 𝑥 .ℎ for the high-water-mark cost ℎ and 𝑥 .𝑟 for the remaining

resources 𝑟 .

In the denotational semantics of the language Rpcf𝑛 , the cost of an expression is denoted by
an element from the resource monoid RM. To compose the costs of two sequentially composed
expressions, we use the binary operator ⊕ of the resource monoid RM.

Resource components The semantics of resource components, which are defined by con-
structs mark, unmark, and reset, cannot be fully captured by the natural numbers’ equivalent
of the resource monoid: (N2, (0, 0), ⊕). The constructs mark and unmark have additive nature:
they add some constants (1 and -1, respectively) to the counter of a resource component. This
additive nature makes the two constructs amenable to the resource monoid. Meanwhile, the
construct reset has non-additive nature: it resets a counter to zero regardless of the counter’s
current value.
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To this end, a resource component’ semantics is encoded by a function 𝑓 : N2 → N2, called
a resource effect. Consider an expression 𝑒 that entails computational effects, particularly effects
arising from resource components. The input (ℎ1, 𝑟1) ∈ N2 to the function 𝑓 stores the initial
reading of a resource component’s counter: a high-water mark ℎ1 and the remaining resources
𝑟1 of the counter before the expression 𝑒 is executed. That is, the current value (i.e., net cost3)
of the resource component’s counter is ℎ1 − 𝑟1, and the highest value reached so far (i.e., high-
water-mark cost) before the execution of 𝑒 is ℎ1.

The expression 𝑒 is then executed, and the resource component’s counter is manipulated
by constructs mark𝑖 , unmark𝑖 , and reset𝑖 (𝑖 = 1, . . . , 𝑛). The construct mark𝑖 increments the
counter by one; i.e., it consumes and deducts one unit of the remaining resources 𝑟 (if 𝑟 ≥ 1). If
the counter’s reading surpasses the highest value reached previously (i.e., if the remaining re-
sources 𝑟 are not enough to pay formark), the high-water markℎ is incremented. The construct
unmark has the dual behavior: it decrements the counter by one (i.e., increments the remaining
resources 𝑟 by one). Finally, the output (ℎ2, 𝑟2) of the resource effect 𝑓 stores the final high-
water mark ℎ2 and the remaining resources 𝑟2 after the expression 𝑒 has been executed.
Definition 8.2.1 (Resource effect). A function 𝑓 : N2 → N2

is a resource effect when it is

inflationary in the first component, that is, (𝑓 𝑥).ℎ ≥ 𝑥 .ℎ for all 𝑥 ∈ N2
.

Resource effects are required to be inflationary in the first argument to enforce the invariant
that the high-water mark of a computation is monotone with respect to execution.
Definition 8.2.2 (Resource-effect monoid). The resource-effect monoid REM is

REM ≔ ( [N2 → N2] infla,⋄, ◦), (8.2.1)

where [N2 → N2] infla is the set of resource effects (i.e., functions 𝑓 : N2 → N2
that are inflationary

in the first component), ⋄ : 𝑥 ↦→ 𝑥 is the identity function, and a binary operator ◦ is function
composition.

Definition 8.2.3 (Resource effects for resource components). The constructsmark, unmark, and
reset are interpreted as the following resource effects:

{

: N2 → N2

{ : N
2 → N2 ⟲ : N2 → N2 (8.2.2)

{
(ℎ, 𝑟 ) = (ℎ, 𝑟 ) ⊕ (1, 0) {(ℎ, 𝑟 ) = (ℎ, 𝑟 ) ⊕ (0, 1) ⟲(ℎ, 𝑟 ) = (ℎ,ℎ). (8.2.3)

In the denotational semantics, I interpret each of mark𝑖 , unmark𝑖 , and reset𝑖 by a tuple
𝜎 = (𝑓1, . . . , 𝑓𝑛) of resource effects in which the 𝑖th component is the respective function in
Defn. 8.2.3 and the other components are the identity resource effect ⋄ (Defn. 8.2.3).

8.2.2 Domain Theory

This section introduces the basics of domain theory, which is used in the denotational semantics
of Pcf and Rpcf𝑛 . The material in this section is adapted from Abramsky and Jung [3], Pitts
et al. [190], Streicher [212].

3The current value of a resource component’s counter is considered as a net cost if we view a resource com-
ponent (e.g., the recursion depth of a recursive function) as a resource metric. Indeed, the constructs mark and
unmark are equivalent to tick 1 and tick − 1. However, I do not use the terminology net costs and high-water-
mark costs in the context of resource components, because they may misleadingly refer to the computational cost
defined by a construct tick 𝑞 (𝑞 ∈ Q) in the source code.
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Partially ordered sets I first introduce partially ordered sets (posets), which are sets equipped
with partial orders.
Definition 8.2.4 (Partially ordered set). Given a set 𝐷 , a binary relation ⊑ ⊆ 𝐷 × 𝐷 is a partial

order if it satisfies the following conditions:

• Reflexive: ∀𝑑 ∈ 𝐷.𝑑 ⊑ 𝑑 ;
• Transitive: ∀𝑑1, 𝑑2, 𝑑3 ∈ 𝐷.𝑑1 ⊑ 𝑑2 ∧ 𝑑2 ⊑ 𝑑3 =⇒ 𝑑1 ⊑ 𝑑3; and
• Antisymmetric: ∀𝑑1, 𝑑2 ∈ 𝐷.𝑑1 ⊑ 𝑑2 ∧ 𝑑2 ⊑ 𝑑1 =⇒ 𝑑1 = 𝑑2.

A pair (𝐷, ⊑) of a set 𝐷 and a partial order ⊑ is called a partially ordered set (poset).

In denotational semantics of programs, partial orders capture the ordering between pro-
grams in terms of their amount of information content: how much of their input-output be-
haviors are defined. For example, a program 𝑃 never terminates for all inputs, the program 𝑃

carries no information when viewed as a (partial) function because, for any input 𝑥 , the output
𝑃 (𝑥) is undefined. Conversely, if a program 𝑄 terminates for all inputs, then this program car-
ries more information than the program 𝑃 . The ordering based on the amounts of information
content is called information ordering [190, 212].
Definition 8.2.5 (Upper and lower bounds). Given a poset (𝐷, ⊑), consider a subset 𝐴 ⊆ 𝐷 . A
lower bound 𝑑 ∈ 𝐷 of the subset 𝐴 satisfies ∀𝑎 ∈ 𝐴.𝑑 ⊑ 𝑎. Dually, an upper bound 𝑑 ∈ 𝐷 of the

subset 𝐴 satisfies ∀𝑎 ∈ 𝐴.𝑎 ⊑ 𝑑 .
Definition 8.2.6 (Least and largest elements). Given a poset (𝐷, ⊑), consider a subset 𝐴 ⊆ 𝐷 .
The least element (also known as the bottom element) of the subset 𝐴 is ⊥𝐴 ∈ 𝐴 such that ∀𝑎 ∈
𝐴.⊥𝐴 ⊑ 𝑎. If the (sub)set we are talking about is clear, it is customary to simply denote the least

element by ⊥. The largest element of the subset 𝐴 is defined dually.

Definition 8.2.7 (Least upper bound and greatest lower bound). Given a poset (𝐷, ⊑), consider
a subset𝐴 ⊆ 𝐷 . The least upper bound (also known as supremum and join) of the subset𝐴, denoted

by

∨
𝐴, is the least element among all upper bounds of 𝐴. The greatest lower bound (also known

as infimum and meet), denoted by

∧
𝐴, is defined dually.

Directed complete partial orders Building on posets, I next introduce directed complete
partial orders (dcpos), which are used to represent the semantics of programs.
Definition 8.2.8 (Pointed poset). Given a poset (𝐷, ⊑), it is said to be pointed if it has a least

element ⊥ ∈ 𝐷 .
Definition 8.2.9 (Directed set). Given a poset (𝐷, ⊑), consider a subset 𝐴 ⊆ 𝐷 . The subset 𝐴 is

said to be directed if every pair of elements in 𝐴 has an upper bound in 𝐴 as well. If the subset

𝐴 is directed, it must be non-empty because the empty set ∅ cannot contain an upper bound of its

elements.

A simple example of a directed set is an 𝜔-chain [3], which is an infinite chain (𝑑𝑖)𝑖∈N such
that 𝑑𝑖 ⊑ 𝑑𝑖+1 for all 𝑖 ∈ N.
Definition 8.2.10 (Directed complete partial order). A poset (𝐷, ⊑) is a directed complete partial

order (dcpo; also known as a predomain) if every directed subset𝐴 ⊆ 𝐷 has a least upper bound in

𝐷 .

Given an𝜔-chain (𝑑𝑖)𝑖∈N, which is a directed set, a dcpomust contain the supremum
∨
𝑖∈N 𝑑𝑖 .

This property is necessary for the denotational semantics of fixed-point expressions (i.e., gen-
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eral recursion in functional programming and while-loops in imperative programming). Given
a fixed-point expression, its semantics can be approximated by unrolling the fixed-point ex-
pression finitely many times. Put differently, the fixed-point expression’s semantics is given by
the supremum of the chain (𝑑𝑖)𝑖∈N, where 𝑑𝑖 is the semantics of unrolling the fixed-point ex-
pression 𝑖 ∈ Nmany times. Hence, it is crucial to use a poset (𝐷, ⊑) where every 𝜔-chain has a
supremum. Otherwise, no element from the poset (𝐷, ⊑) might be able to serve as a denotation
of a fixed-point expression.

Finally, domains are dcpos equipped with least elements, which represent computation with
undefined values (e.g., non-terminating computation).
Definition 8.2.11 (Domain). A dcpo (𝐷, ⊑) is called a domain if it is pointed (i.e., it has the least

element ⊥ ∈ 𝐷). A domain is also simply known as a pointed dcpo.

The literature of domain-theoretic denotational semantics uses various definitions of com-
plete partial orders (cpos) in the development of denotational semantics. For example, Milner
[169] defines cpos as posets that are (i) pointed (i.e., contain the least elements); and (ii) chain–
complete (i.e., every𝜔-chain has a supremum). Chain-completeness is a weaker condition4than
directed completeness (Defn. 8.2.10). Meanwhile, Plotkin [191] defines cpos as pointed dcpos
(i.e., domains defined in Defn. 8.2.11). In more modern presentations of denotational semantics,
Abramsky and Jung [3], de Jong [71], Niu [179], Streicher [212] use dcpos without requiring
them to be pointed. Pitts et al. [190], on the other hand, use cpos defined as chain-complete
posets without requiring them to be pointed.

The choice between chain-complete partial orders and directed complete partial orders is
discussed in §2.2.4 of Abramsky and Jung [3]. Dcpos are more desirable than chain-complete
partial orders because the latter uses non-constructive mathematical reasoning (e.g., the axiom
of choice) [3, §2.2.4].

Continuous functions In denotational semantics, fixed-point expressions are interpreted as
fixed points of functions from dcpos to dcpos. To guarantee the existence of fixed points, we
should not consider arbitrary functions. Instead, we should narrow our scope to those func-
tions that are continuous. Continuous functions turn out to be suitable mathematical objects
capturing programs (i.e., computable functions).
Definition 8.2.12 (Fixed point). Given a poset (𝐷, ⊑), consider a function 𝑓 : 𝐷 → 𝐷 . A fixed

point 𝑑 ∈ 𝐷 of the function 𝑓 is such that 𝑓 (𝑑) = 𝑑 . The least fixed point fix(𝑓 ) ∈ 𝐷 of the function

𝑓 is the least element among all fixed points of the function 𝑓 .

Definition 8.2.13 (Continuous function). Given two dcpos (𝐷1, ⊑1) and (𝐷2, ⊑2), a function

𝑓 : 𝐷1 → 𝐷2 is said to be (Scott-)continuous if, for every directed set 𝐴 ⊆ 𝐷1, we have

𝑓

(∨
𝐴

)
=

∨
𝑎∈𝐴

𝑓 (𝑎). (8.2.4)

Definition 8.2.14 (Dcpo of continuous functions). Consider two dcpos (𝐷1, ⊑1) and (𝐷2, ⊑2).
The set of all continuous functions from 𝐷1 to 𝐷2 forms a dcpo where the partial order is

𝑓1 ⊑ 𝑓2 ⇐⇒ (∀𝑑 ∈ 𝐷1.𝑓1(𝑑) ⊑2 𝑓2(𝑑)) . (8.2.5)
4In fact, chain-completeness and directed completeness can be proved to be equivalent. But its proof requires

the axiom of choice, making the proof non-constructive [3, 161, 232].
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This dcpo is denoted by [𝐷1 → 𝐷2]cont.
Theorem 8.2.1 (Fixed-point theorem). Consider a domain (𝐷, ⊑) with the least element ⊥ ∈ 𝐷 .
A continuous function 𝑓 : 𝐷 → 𝐷 has the least fixed point

fix(𝑓 ) =
∨
𝑖∈N

𝑓 𝑖 (⊥) . (8.2.6)

To prove a property 𝑃 about a fixed point of a function 𝑓 in denotational semantics, a com-
mon technique is to prove that the property 𝑃 is admissible and that the property 𝑃 is closed
under the function 𝑓 . This proof technique is known as fixed-point induction [3, 212].
Definition 8.2.15 (Admissible predicate). Consider a domain (𝐷, ⊑) with the least element ⊥ ∈
𝐷 . A subset (also called a predicate) 𝑃 ⊆ 𝐷 is said to be admissible if 𝑃 contains ⊥ and 𝑃 is closed

under suprema of 𝜔-chains: given a chain (𝑑𝑖)𝑖∈N, we have

(∀𝑖 ∈ N.𝑑𝑖 ∈ 𝑃) =⇒
(∨
𝑖∈N

𝑑𝑖

)
∈ 𝑃 . (8.2.7)

Theorem 8.2.2 (Fixed-point induction). Given a domain (𝐷, ⊑) with the least element ⊥ ∈ 𝐷 ,
and an admissible predicate 𝑃 ⊆ 𝐷 , a continuous function 𝑓 : 𝐷 → 𝐷 . If the predicate 𝑃 is closed

under the function 𝑓 (i.e., ∀𝑥 ∈ 𝐷.𝑥 ∈ 𝑃 =⇒ 𝑓 (𝑥) ∈ 𝑃 ), then fix(𝑓 ) ∈ 𝑃 holds.

Lifting To define the denotation of a monadic type F𝐴 capturing non-termination, the dcpo
corresponding to the type F𝐴 is extendedwith a new least element⊥ to represent non-termination.
The act of extending a dcpo this way is called lifting, and the resulting domain is called a lift.
Definition 8.2.16 (Lift). Given a dcpo (𝐷, ⊑), its lift is a domain (𝐷⊥, ⊑⊥), where

𝐷⊥ ≔ 𝐷 ∪ {⊥}. (8.2.8)

The symbol ⊥ is assumed to be fresh (i.e., it is not used to denote any element in 𝐷). The partial

order ⊑⊥ of the lift is defined as

𝑥1 ⊑⊥ 𝑥2 ⇐⇒ 𝑥1 = ⊥ ∨ (𝑥1, 𝑥2 ∈ 𝐷 ∧ 𝑥1 ⊑ 𝑥2). (8.2.9)

The lift defined in Defn. 8.2.16 entails the limited principle of omniscience (LPO), which
is deemed non-constructive [71, §3.4]. To define the lift in a more constructive manner, the
partial map classifier is used in the literature of topos theory, constructive domain theory, and
constructive type theory [71, 179]. In this thesis, however, the focus is not to present a fully
constructive formulation of resource decomposition. So I use Defn. 8.2.16 for simplicity.

Lifting can be framed as a monad in the category of dcpos [3, §3.2.5]. For those readers who
are familiar with category theory, consider two categories:

1. the category DCPO formed by dcpos and continuous functions; and
2. the category DCPO⊥! formed by domains (i.e., dcpos with bottom/least elements) and

continuous strict functions, where functions from domains to domains are said to be
strict if they preserve the least elements.
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Lifting is a functor L : DCPO → DCPO⊥!. Furthermore, together with the inclusion functor
U : DCPO⊥! → DCPO, the functor L forms a free-forgetful adjunction L ⊣ U. Consequently,
the composition L ◦ U of the functors yields the lifting monad L ≔ (L, 𝜂L, 𝜇L).
Definition 8.2.17 (Return and bind operators of the lifting monad). In light of lifting being a

monad, given a dcpo 𝐷 , I write 𝜂L : 𝐷 → 𝐷⊥ for the monadic return operator, which is defined as

𝜂L(𝑑) ≔ 𝑑. (8.2.10)

This notation is overloaded because the dcpo𝐷 is not specified, although it is usually clear from the

context. Additionally, I write←L for the monadic bind operator. Given a lift 𝐷⊥, the bind operator
is defined as

𝑥 ←L 𝑑 ; 𝑓 ≔

{
𝑓 [𝑑/𝑥] if 𝑑 ≠ ⊥
⊥ otherwise.

(8.2.11)

Here, 𝑥 is a variable, 𝑑 ∈ 𝐷⊥ is an element in the lift, and 𝑓 is a mathematical expression men-

tioning variable 𝑥 . The notation 𝑓 [𝑑/𝑥] refers to the result of substituting 𝑑 for variable 𝑥 in the

expression 𝑓 .

8.2.3 Denotational Semantics of Rpcf𝑛

This section introduces domain-theoretic denotational semantics of Rpcf𝑛 . It is adapted from
the denotational semantics of call-by-value Pcf presented in Winskel [228]. The notation and
style of presentation are borrowed from Pitts et al. [190], Streicher [212].

Types In the denotational semantics of Rpcf𝑛 , the base types, namely unit and int, are
assigned discrete dcpos.
Definition 8.2.18 (Discrete dcpo). Given a set 𝑋 , its discrete dcpo is given by (𝑋,=), where the
partial order is given by the equality (=) of the elements in the set 𝑋 .

The denotations of compound value types (i.e., 𝐴1 + 𝐴2, 𝐴1 × 𝐴2, 𝐿(𝐴), and 𝐴1 → 𝐴2) are
inductively constructed from the denotations of the constituent types. The denotation of the
computation type F𝐴 extends the type 𝐴’s denotation with (i) a bottom element ⊥ to represent
non-termination; (ii) the resource monoid RM to represent computational cost; and (iii) a tuple
REM𝑛 of 𝑛 resource-effect monoids to track resource components.

Formally, types 𝐴 of the programming language Rpcf𝑛 are assigned the following dcpos:

⟦unit⟧ ≔ ({⟨ ⟩},=) ⟦int⟧ ≔ (Z,=) (8.2.12)
⟦𝐴1 +𝐴2⟧ ≔ ⟦𝐴1⟧ + ⟦𝐴2⟧ ⟦𝐴1 ×𝐴2⟧ ≔ ⟦𝐴1⟧ × ⟦𝐴2⟧ (8.2.13)
⟦𝐿(𝐴)⟧ ≔ 𝜇𝑋 .⟦unit⟧ + ⟦𝐴⟧ × 𝑋 ⟦𝐴→ 𝐵⟧ ≔ [⟦𝐴⟧ → ⟦𝐵⟧]cont (8.2.14)
⟦F𝐴⟧ ≔ (REM𝑛 × RM × ⟦𝐴⟧)⊥. (8.2.15)

In Eq (8.2.13), the operator + on the right-hand side creates a dcpo of the disjoint union ([228,
§8.3.5]), and the operator × creates a dcpo of the Cartesian product ([228, §8.3.2]). In Eq (8.2.14),
the operator 𝜇 is the least-fixed-point operator of dcpos. More formally, solutions to recursive
domain equations of the form 𝑋 � 𝐹 (𝑋 ) (e.g., 𝑋 � ⟦unit⟧+⟦𝐴⟧×𝑋 for the list type 𝐿(𝐴)) are
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defined as initial 𝐹 -algebras (see Smyth and Plotkin [211] and §5 of Abramsky and Jung [3]).
The operator [·]cont in Eq (8.2.14) creates a dcpo of continuous functions (Defn. 8.2.14).
Definition 8.2.19 (Bind operator of the combined monad of cost and resource effects). The
mapping from a dcpo 𝐷 to a domain (REM𝑛 × RM × 𝐷)⊥ is a monad in the category DCPO of

dcpos. Its monadic bind operator is denoted by←T. It is defined as

𝑥 ←T 𝑑 ; 𝑓 ≔ (𝜎1, 𝑐1, 𝑎1) ←L 𝑑 ; (𝜎2, 𝑐2, 𝑎2) ←L 𝑓 (𝑎1);𝜂L(𝜎2 ◦ 𝜎1, 𝑐1 ⊕ 𝑐2, 𝑎2), (8.2.16)

where ◦ is the binary operator of the resource-effect monoid REM (Defn. 8.2.2), and ⊕ is the binary

operator of the resource monoid RM (Defn. 3.2.1).

Expressions Consider a typing judgment Γ ⊢ 𝑒 : 𝐴 in Rpcf𝑛 . A well-typed environment𝑉 : Γ
is interpreted as a tuple of all values (𝑥 : 𝑣) ∈ 𝑉 . Hence, the denotation of the typing context Γ
is given by

⟦Γ⟧ ≔ {𝑥 : ⟦𝐴⟧ | (𝑥 : 𝐴) ∈ Γ}. (8.2.17)
The typing judgment Γ ⊢ 𝑒 : 𝐴 is interpreted as a continuous function from the dcpo ⟦Γ⟧

to the dcpo ⟦𝐴⟧. The denotations of a few language constructs are listed below:

⟦𝑥⟧(𝛾) ≔ 𝛾 (𝑥) where Γ ⊢ 𝑥 : 𝐴 (8.2.18)
⟦fun 𝑓 𝑥 = 𝑒⟧(𝛾) ≔ fix(⟦𝑒⟧(𝛾)) where Γ, 𝑓 : 𝐴1 → F𝐴2, 𝑥 : 𝐴1 ⊢ 𝑒 : F𝐴2

(8.2.19)
⟦let 𝑥 = 𝑒1 in 𝑒2⟧(𝛾) ≔ 𝑥 ←T ⟦𝑒1⟧(𝛾); ⟦𝑒2⟧(𝛾) (𝑥) where (Γ ⊢ 𝑒1 : F𝐴1); (Γ, 𝑥 : 𝐴1 ⊢ 𝑒2 : F𝐴2),

(8.2.20)

where 𝛾 ∈ ⟦Γ⟧ is the denotation of an input environment of type Γ. In Eq (8.2.19), the operator
fix(·) computes the least fixed point of the function ⟦𝑒⟧(𝛾) ∈ ⟦(𝐴1 → F𝐴2) → (𝐴1 → F𝐴2)⟧.
In Eq (8.2.20), the operator←T is the monadic bind operator of the combined monad of compu-
tational cost and resource effects (Defn. 8.2.19). The denotations of language constructs in the
vanilla call-by-value Pcf are presented in §11.3 (for product types and function types), §11.11
(for sum types), and §13.3 (for list types, or more generally, recursive types) of Winskel [228].

Cost and resource components The construct tick 𝑞 (𝑞 ∈ Q), which manipulates cost coun-
ters, has a denotation

⟦tick 𝑞⟧(𝛾) ≔
{
𝜂L(⋄𝑛, (𝑞, 0), ⟨ ⟩) if 𝑞 ≥ 0
𝜂L(⋄𝑛, (0,−𝑞), ⟨ ⟩) otherwise,

(8.2.21)

where ⋄ ∈ REM is the identity resource effect (Defn. 8.2.2), and ⋄𝑛 ∈ REM𝑛 is an 𝑛-tuple of
the identity resource effect ⋄. The monadic return operator 𝜂L (Eq (8.2.10)) of the lifting monad
takes in an element of the dcpo (REM𝑛 ×RM×⟦𝐴⟧) and returns the corresponding element in
the domain (REM𝑛 ×RM× ⟦𝐴⟧)⊥. For those constructs that manipulate resource components,
their denotations are

⟦mark𝑖⟧(𝛾) ≔ 𝜂L(⋄𝑛 [𝑖 ↦→

{

], (0, 0), ⟨ ⟩) (8.2.22)
⟦unmark𝑖⟧(𝛾) ≔ 𝜂L(⋄𝑛 [𝑖 ↦→ {], (0, 0), ⟨ ⟩) (8.2.23)
⟦reset𝑖⟧(𝛾) ≔ 𝜂L(⋄𝑛 [𝑖 ↦→⟲], (0, 0), ⟨ ⟩). (8.2.24)
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L·M𝑛 : Ty→ Ty Translation of types

LunitM𝑛 ≔ unit LintM𝑛 ≔ int

L𝐴1 +𝐴2M𝑛 ≔ L𝐴1M𝑛 + L𝐴2M𝑛 L𝐴1 ×𝐴2M𝑛 ≔ L𝐴1M𝑛 × L𝐴2M𝑛
L𝐿(𝐴)M𝑛 ≔ 𝐿(L𝐴M𝑛) L𝐴1 → 𝐴2M𝑛 ≔ L𝐴1M𝑛 → L𝐴2M𝑛

LF𝐴M𝑛 ≔ (nat2)𝑛 → F((nat2)𝑛 × L𝐴M𝑛)

Lst. 8.3: Transformation of types in Rpcf𝑛 .

The notation ⋄𝑛 [𝑖 ↦→

{

] means the 𝑖th component of the tuple ⋄𝑛 is replaced with the resource
effect

{

. The resource effects

{

, {, and⟲ are defined in Defn. 8.2.3. Given an expression 𝑒 : F𝐴,
if ⟦𝑒⟧ = 𝜂L(𝜎, 𝑐, 𝑎), I say that 𝑒 evaluates to 𝑎 with a tuple 𝜎 of resource effects and cost 𝑐 .

8.3 Program Transformation

This section formalizes the transformation of resource-decomposed programs written in the
language Rpcf𝑛 (𝑛 ∈ N) to resource-guarded ones in Rpcf0. Given a resource-decomposed pro-
gram 𝑃rd(𝑥) in Rpcf𝑛 , which is annotated to define user-specified resource components (i.e.,
mark, unmark, and reset), the transformation eliminates the resource-effect annotations, turn-
ing them into resource guards r = (𝑟1, . . . , 𝑟𝑛), which are numeric non-negative input variables.
As shown in Fig. 2.2, the resulting resource-guarded program 𝑃rg(𝑥, r) is then analyzed by one
of the constituent resource-analysis techniques, yielding an overall cost bound 𝑓 (𝑥, 𝑟1, . . . , 𝑟𝑛)
parametric in both the original input 𝑥 and resource guards 𝑟𝑖 (𝑖 = 1, . . . , 𝑛).

The program transformation, denoted by L·M𝑛 , transforms both types 𝐴 (§8.3.1) and expres-
sions 𝑒 (§8.3.2).

8.3.1 Types

Listing 8.3 defines the transformation L·M𝑛 : Ty→ Ty, where Ty is the set of types in the language
Rpcf𝑛 . Value types are transformed inductively. The only non-trivial transformation is for the
computation type F𝐴, which captures computational effects of non-termination, computational
cost, and resource components.

The computation type F𝐴 is translated to a function type

LF𝐴M𝑛 ≔ (nat2)𝑛 → F((nat2)𝑛 × L𝐴M𝑛), (8.3.1)

where nat is the type of natural numbers, and nat2 is an abbreviation of the product type
nat× nat. Although the language Rpcf𝑛 does not have a built-in type for natural numbers, the
type nat can be encoded using the list type 𝐿(unit) (i.e., unary encoding of natural numbers).
This encoding is adopted in the instantiations of resource decomposition that use Conventional
AARA (§8.5 and §8.6).
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L·M𝑛 : Tm(Γ, 𝐴) → Tm(LΓM𝑛, L𝐴M𝑛) Translation of expressions

L⟨ ⟩M𝑛 ≔ ⟨ ⟩ L𝑧M𝑛 ≔ 𝑧

L𝑥M𝑛 ≔ 𝑥 Lleft · 𝑒M𝑛 ≔ left · L𝑒M𝑛
Lright · 𝑒M𝑛 ≔ right · L𝑒M𝑛 L⟨𝑒1, 𝑒2⟩M𝑛 ≔ ⟨L𝑒1M𝑛, L𝑒2M𝑛⟩

L[ ]M𝑛 ≔ [ ] L𝑒1 :: 𝑒2M𝑛 ≔ L𝑒1M𝑛 :: L𝑒2M𝑛
Lfun 𝑓 𝑥 = 𝑒M𝑛 ≔ fun 𝑓 𝑥 = L𝑒M𝑛 Lreturn 𝑒M𝑛 ≔ fun _ 𝑠 = return ⟨𝑠, L𝑒M𝑛⟩

Lst. 8.4: Transformation of constructors in Rpcf𝑛 .

L·M𝑛 : Tm(Γ, 𝐴) → Tm(LΓM𝑛, L𝐴M𝑛) Translation of expressions

Lcase 𝑒 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2}M𝑛 ≔ case L𝑒M𝑛 {left · 𝑥1 ↩→ L𝑒1M𝑛 | right · 𝑥2 ↩→ L𝑒2M𝑛}
Lcase 𝑒 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒1}M𝑛 ≔ case L𝑒M𝑛 {⟨𝑥1, 𝑥2⟩ ↩→ L𝑒1M𝑛}

Lcase 𝑒 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2}M𝑛 ≔ case L𝑒M𝑛 {[ ] ↩→ L𝑒1M𝑛 | (𝑥1 :: 𝑥2) ↩→ L𝑒2M𝑛}
L𝑒1 𝑒2M𝑛 ≔ L𝑒1M𝑛 L𝑒2M𝑛

Llet 𝑥 = 𝑒1 in 𝑒2M𝑛 ≔ fun _ 𝑠 = (let ⟨𝑠1, 𝑥⟩ = L𝑒1M𝑛 𝑠 in L𝑒2M𝑛 𝑠1)

Lst. 8.5: Transformation of destructors in Rpcf𝑛 .

A function of type (8.3.1) takes as input an 𝑛-tuple of resource guards, one for each of the
𝑛 resource components. Each resource guard is a pair ⟨ℎ, 𝑟 ⟩ : nat2, where ℎ is the initial value
of the resource guard and 𝑟 is the remaining resources to pay for the construct mark. The
resource guard is initialized to ⟨ℎ,ℎ⟩ : nat2, where ℎ is the high-water-mark measurement of
the resource component. It is necessary to retain the initial value ℎ of the resource guard since
the translation of the construct reset𝑖 resets the resource guard to ℎ.

8.3.2 Expressions

Listings 8.4–8.6 define the transformation L·M𝑛 : Tm(Γ, 𝐴) → Tm(LΓM𝑛, L𝐴M𝑛) of expressions
in the language Rpcf𝑛 . Here, Tm(Γ, 𝐴) denotes the set of expressions 𝑒 such that Γ ⊢ 𝑒 : 𝐴,
and LΓM𝑛 is the pointwise extension of L·M𝑛 : Ty → Ty to a typing context Γ. Throughout the
transformation’s rules, given a tuple 𝑠 = (𝑠1, . . . , 𝑠𝑛), the notation 𝑠 (𝑖) refers to the 𝑖th component
𝑝𝑖 of the tuple. Also, 𝑠 [𝑖 ↦→ 𝑣] denotes a modified tuple (𝑠1, . . . , 𝑠𝑖−1, 𝑣, 𝑠𝑖+1, . . . , 𝑠𝑛), where the 𝑖th
component of the original tuple 𝑠 is replaced with 𝑣 . The underscore (e.g., fun _ 𝑠 = 𝑒) means it
does not matter what symbol goes in there.

Listing 8.4 and Listing 8.5 list the transformation rules for constructors and destructors,
respectively, and they cover all the standard constructs inherited from the vanilla Pcf. In many
of them, the program transformation proceeds inductively.

Listing 8.6 lists the transformation rules for effectful expressions unique to Rpcf𝑛 . For the
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L·M𝑛 : Tm(Γ, 𝐴) → Tm(LΓM𝑛, L𝐴M𝑛) Translation of expressions

Ltick 𝑞M𝑛 ≔ fun _ 𝑠 = (let 𝑥 = tick 𝑞 in return ⟨𝑠, 𝑥⟩)
Lmark𝑖M𝑛 ≔ fun _ 𝑠 = (let ⟨ℎ, 𝑟 ⟩ = 𝑠 (𝑖) in if 𝑟 = 0 then excp else return ⟨𝑠 [𝑖 ↦→ (ℎ, 𝑟 − 1)], ⟨ ⟩⟩)

Lunmark𝑖M𝑛 ≔ fun _ 𝑠 = let ⟨ℎ, 𝑟 ⟩ = 𝑠 (𝑖) in return ⟨𝑠 [𝑖 ↦→ (ℎ, 𝑟 + 1)], ⟨ ⟩⟩
Lreset𝑖M𝑛 ≔ fun _ 𝑠 = let ⟨ℎ, _⟩ = 𝑠 (𝑖) in return ⟨𝑠 [𝑖 ↦→ (ℎ,ℎ)], ⟨ ⟩⟩

Lst. 8.6: Transformation of effectful expressions in Rpcf𝑛 .

expression mark𝑖 : Funit, it is transformed to

Lmark𝑖M𝑛 ≔ fun _ 𝑠 = (let ⟨ℎ, 𝑟 ⟩ = 𝑠 (𝑖) in
if 𝑟 = 0 then excp else return ⟨𝑠 [𝑖 ↦→ (ℎ, 𝑟 − 1)], ⟨ ⟩⟩),

(8.3.2)

which indeed has type LFunitM𝑛 = (nat2)𝑛 → F((nat2)𝑛 × unit). The function (8.3.2) takes
as input 𝑝 , which is an 𝑛-tuple of resource guards. The function first examines the 𝑖th resource
guard 𝑠 (𝑖) = ⟨ℎ, 𝑟 ⟩, where ℎ is the initial value and 𝑟 is the current value of the resource guard.
If we have 𝑟 = 0, then the program raises an exception (denoted by excp), suggesting that the
initial value ℎ of the 𝑖th resource guard is not high enough. Otherwise, if 𝑟 > 0, the program
decrements the current value by one and returns the unit element ⟨ ⟩. In §8.4, I show that
exceptions never occur when the resource guards are initialized to sufficiently high values,
particularly the high-water-mark measurements of the resource components.
Remark 8.3.1 (Exceptions). The purpose of the exception excp : Funit raised in Lmark𝑖M𝑛 is to
indicate that the initial value of the 𝑖 th resource guard is not sufficiently high (i.e., it is an unsound

bound for the 𝑖 th resource component). Thus, exceptions are meant to indicate errors and terminate

the program immediately, rather than to change the control flow via exception handling (which is

another use case of exceptions [105, §29]).

In fact, as long as excp is well-typed, it does not matter what its implementation is. The sound-

ness theorem of resource decomposition (Thm. 8.4.1) requires the initial values of resource guards

to be sufficiently high (i.e., they are equal to or higher than high-water-mark measurements of the

corresponding resource components). Under this requirement, a resource-guarded expression L𝑒M𝑛
never raises an exception. Hence, excp : Funit is allowed to be any expression of type Funit. For
example, excp : Funit can be implemented as

excp ≔ return ⟨ ⟩. (8.3.3)

This implementation does not tell us whether an input resource guard is sufficiently high when a

resource-guarded expression L𝑒M𝑛 is executed. Nonetheless, it does not break Thm. 8.4.1. «

Dual to the construct mark𝑖 ’s translation is the construct unmark𝑖 ’s translation: it incre-
ments the current value 𝑟 of the 𝑖th resource guard. The translation of reset𝑖 takes in a tuple
𝑝 of resource guards. If the 𝑖th resource guard is 𝑠 (𝑖) = ⟨ℎ, 𝑟 ⟩, the program resets the current
value 𝑟 to the corresponding initial value ℎ.
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Resource guards in the target program evolve in the opposite direction to resource compo-
nents in the source program. For example, the construct mark𝑖 increments a resource compo-
nent 𝑟𝑖 ’s counter by one, while its translation decrements the current value of the 𝑖th resource
guard by one. Also, the construct reset𝑖 resets the counter of the resource component 𝑟𝑖 to zero.
Meanwhile, its translation resets the corresponding resource guard to its initial value ℎ, which
will be initialized to a high-water-mark measurement of the resource component.

The expression tick 𝑞 (𝑞 ∈ Q) is left unmodified since it represents the distinguished re-
source metric that the resource-guarded program should preserve.

8.4 Soundness

This section formulates the soundness of the program transformation L·M𝑛 and proves it by a
binary-logical-relation argument between the source and target programs. First, §8.4.1 formu-
lates the soundness of the program transformation. Next, §8.4.2 defines the logical relation used
in the soundness proof. Finally, §8.4.3 proves several key inductive cases in the proof.

8.4.1 Theorem Statement

Soundness of the program transformation L·M𝑛 of a resource-decomposed program to a resource-
guarded program means:

1. The transformation preserves the cost of the source program; and
2. The target program runs successfully (i.e., it does not raise an exception), provided that

the resource guards are initialized with the high-water-mark measurements of the re-
source components.

Thm. 8.4.1 formally states the soundness of the program transformation.
Theorem 8.4.1 (Soundness of the program transformation). Let 𝑒 : Funit be a closed expression
of Rpcf𝑛 . Suppose the expression 𝑒 terminates with a tuple 𝜎 ∈ REM𝑛

of resource effect and cost

𝑐 ∈ RM, where

((ℎ1, 𝑟1, ), . . . , (ℎ𝑛, 𝑟𝑛)) ≔ 𝜎 ((0, 0), . . . , (0, 0)) . (8.4.1)

Let 𝑘𝑖 ∈ N (𝑖 = 1, . . . , 𝑛) be arbitrary constants. Then

⟦L𝑒M𝑛⟧((ℎ1 + 𝑘1, ℎ1 + 𝑘1), . . . , (ℎ𝑛 + 𝑘𝑛, ℎ𝑛 + 𝑘𝑛)) (8.4.2)

terminates with the cost 𝑐 .

In Thm. 8.4.1,ℎ1, . . . , ℎ𝑛 are the high-water-markmeasurements of resource components ob-
tained by running the source program 𝑒 : Funit. If the resource guards in the target program
L𝑒M𝑛 are initialized with these high-water-mark measurements (or higher), the target program
runs successfully. Otherwise, if the resource guards’ initial values are too low, during the ex-
ecution of the resource-guarded program, the translation of the construct mark𝑖 (Listing 8.6)
raises an exception.

The soundness theorem makes sense because resource guards in the target program evolve
in the opposite direction to the corresponding resource components in the source program.
Whenever resource components are incremented by the construct mark𝑖 (resp., decremented
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by the construct unmark𝑖 ) in a resource-decomposed program, the resource guards in the target
program are decremented (resp., incremented). Consequently, as long as the resource guards
are initialized with the high-water marks ℎ1, . . . , ℎ𝑛 of the resource components 𝑟1, . . . , 𝑟𝑛 , the
resource guards never become negative while executing the resource-guarded program.

Thm. 8.4.1 suggests the soundness of the resource-decomposition framework: composing
sound resource analyses via resource decomposition yields a sound cost bound. In particular,
a sound cost bound of the original program 𝑒 : Funit can be obtained by composing the fol-
lowing bounds by substitution: (i) sound (but not necessarily tight) bounds 𝑔𝑖 of high-water
marks ℎ𝑖 of resource components 𝑟𝑖 (𝑖 = 1, . . . , 𝑛); and (ii) a sound bound 𝑓 (𝑟1, . . . , 𝑟𝑛) of the re-
source-guarded program L𝑒M𝑛 . Since the sound bounds 𝑓𝑖 (𝑖 = 1, . . . , 𝑛) of resource components
are not necessarily tight, when we plug them into the sound overall cost bound 𝑓 (𝑟1, . . . , 𝑟𝑛),
we must ensure that L𝑒M𝑛 runs successfully even if the resource guards are strictly higher than
the high-water marks ℎ𝑖 (𝑖 = 1, . . . , 𝑛). This is why Thm. 8.4.1 allows the resource guards to be
initialized with ((ℎ𝑖 +𝑘𝑖, ℎ𝑖 +𝑘𝑖))𝑛𝑖=1 for arbitrary constants 𝑘𝑖 ∈ N (𝑖 = 1, . . . , 𝑛), rather than just
the high-water marks ((ℎ𝑖, ℎ𝑖))𝑛𝑖=1.

8.4.2 Logical Relation

As Rpcf𝑛 is a higher-order language, a logical relation is employed to prove Thm. 8.4.1. The log-
ical relation is a commonly employed proof technique for proving properties (e.g., termination,
program equality, and parametricity) of a programming language.

This section introduces a logical relation, dubbed the approximation relation. It is care-
fully defined such that its fundamental theorem (Thm. 8.4.2) implies the soundness theorem
Thm. 8.4.1 of the program transformation L·M𝑛 .

Terminology and notation To set the stage for a logical-relation-based proof of the sound-
ness, I introduce terminology and notation.
Definition 8.4.1 (Resource state). In the context of resource components and resource guards, an

element 𝑠 ∈ (N2)𝑛 is called a resource state.
Definition 8.4.2 (Offset). An offset is a resource state 𝑘 = (𝑘1, . . . , 𝑘𝑛) ∈ (N2)𝑛 , where each pair

𝑘𝑖 ∈ N2
has equal components (i.e., 𝑘𝑖 .ℎ = 𝑘𝑖 .𝑟 ) for 𝑖 = 1, . . . , 𝑛. The set of offsets is denoted by

(N2)𝑛offset.
Notation (Offset of high-water marks). Given a resource state 𝑠 = ((ℎ1, 𝑟1), . . . , (ℎ𝑛, 𝑟𝑛)), the
notation 𝑠 .ℎ refers to the offset

𝑠 .ℎ ≔ ((ℎ1, ℎ1), . . . , (ℎ𝑛, ℎ𝑛)) . (8.4.3)

Definition 8.4.3 (Initial resource-guard values). Consider two resource states 𝑠1, 𝑠2 ∈ (N2)𝑛 ,
where

𝑠1 = (𝑠1,1, . . . , 𝑠1,𝑛) 𝑠2 = (𝑠2,1, . . . , 𝑠2,𝑛). (8.4.4)

A resource state initrg(𝑠1, 𝑠2) ∈ (N2)𝑛 , which stands for the initial values of resource guards, is

defined as

initrg(𝑠1, 𝑠2) ≔ ((𝑠2,𝑖 .ℎ, 𝑠2,𝑖 .ℎ − (𝑠1,𝑖 .ℎ − 𝑠1,𝑖 .𝑟 )))𝑛𝑖=1. (8.4.5)
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The resource state initrg(𝑠1, 𝑠2) in Defn. 8.4.3 denotes the values to which resource guards
should be initialized such that a resource-guarded program runs successfully. To justifyDefn. 8.4.3,
given a resource-decomposed expression 𝑒 : F𝐴, assume

⟦𝑒⟧ = 𝜂L(𝜎, ·, ·), (8.4.6)

where 𝜎 ∈ REM𝑛 is a tuple of resource effects. Viewing the tuple 𝜎 as a function, let 𝑠1 and 𝑠2
be the initial and final resource states, respectively:

𝑠1 = ((ℎ1,𝑖, 𝑟1,𝑖))𝑛𝑖=1 𝑠2 ≔ 𝜎 (𝑠1) = ((ℎ2,𝑖, 𝑟2,𝑖))𝑛𝑖=1. (8.4.7)

The quantities ℎ1,𝑖 and ℎ1,𝑖 −𝑟1,𝑖 (𝑖 = 1, . . . , 𝑛) are the high-water-mark cost and net cost, respec-
tively, of any computation (say, 𝑒prcd) that precedes the expression 𝑒’s execution. On the other
hand, the quantities ℎ2,𝑖 and ℎ2,𝑖 − 𝑟2,𝑖 (𝑖 = 1, . . . , 𝑛) are the combined high-water-mark cost and
net cost, respectively, of both (i) the computation 𝑒prcd preceding the expression 𝑒 ; and (ii) the
computation of 𝑒 itself. This suggests that, before executing the sequential composition of the
translated expressions L𝑒prcdM𝑛 and L𝑒M𝑛 , we should initialize resource guards to the high-water
marks ℎ2,𝑖 (𝑖 = 1, . . . , 𝑛). As long as the resource guards are initialized this way, they never
become negative throughout the execution of L𝑒prcdM𝑛 followed by L𝑒M𝑛 .

Furthermore, if the resource guards are initialized to ℎ2,𝑖 (𝑖 = 1, . . . , 𝑛), by the end of the
execution of L𝑒prcdM𝑛 (i.e., right before running 𝑒), the resource guards have a resource state

initrg(𝑠1, 𝜎 (𝑠1)) = ((ℎ2,𝑖, ℎ2,𝑖 − (ℎ1,𝑖 − 𝑟1,𝑖)))𝑛𝑖=1, (8.4.8)

where the net costs ℎ1,𝑖 − 𝑟1,𝑖 of running the computation 𝑒prcd are subtracted from the initial
values ℎ2,𝑖 of the resource guards (𝑖 = 1, . . . , 𝑛). Defn. 8.4.3 has been introduced to refer easily
to the resource state in Eq (8.4.8). After executing the expression 𝑒 , the final resource state of
the resource guards is

𝑠2 = 𝜎 (𝑠1) = ((ℎ2,𝑖, 𝑟2,𝑖))𝑛𝑖=1 = ((ℎ2,𝑖, ℎ2,𝑖 − (ℎ2,𝑖 − 𝑟2,𝑖)))𝑛𝑖=1. (8.4.9)

Definition 8.4.4 (Running a resource-guarded expression). Given a type 𝐴, consider a denota-

tion 𝑑 ∈ ⟦LF𝐴M𝑛⟧. Given a tuple 𝜎 ∈ REM𝑛
of resource effects, computational cost 𝑐 ∈ RM, and a

denotation 𝑎 ∈ ⟦𝐴⟧, the predicate runrg(𝑑, 𝜎, 𝑐, 𝑎) is defined as

runrg(𝑑, 𝜎, 𝑐, 𝑎) ⇐⇒ ∀[𝑠 ∈ (N2)𝑛, 𝑘 ∈ (N2)𝑛offset] .
𝑑 (initrg(𝑠, 𝜎 (𝑠)) + 𝑘) = 𝜂L(𝑐, ⟨𝜎 (𝑠) + 𝑘, 𝑎⟩) .

(8.4.10)

In the predicate, the resource guards of the denotation𝑑 ∈ ⟦LF𝐴M𝑛⟧ are initialized to initrg(𝑠, 𝜎 (𝑠))+
𝑘 for an arbitrary resource state 𝑠 ∈ (N2)𝑛 and an arbitrary offset𝑘 : (N2)𝑛offset. The predicate states
that the denotation 𝑑 evaluates with cost 𝑐 ∈ RM and returns the pair ⟨𝜎 (𝑠), 𝑎⟩, where the first
component 𝜎 (𝑠) is the final resource state of the resource guards. The predicate runrg(·) stands for
running a resource-guarded expression.
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⟨ ⟩ ◁unit ⟨ ⟩ ⇐⇒ ⊤
𝑧 ◁int 𝑧 ⇐⇒ ⊤

left · 𝑎1 ◁𝐴1+𝐴2 left · 𝑎2 ⇐⇒ 𝑎1 ◁𝐴1 𝑎2

right · 𝑎1 ◁𝐴1+𝐴2 right · 𝑎2 ⇐⇒ 𝑎1 ◁𝐴2 𝑎2

⟨𝑎1, 𝑎2⟩ ◁𝐴1×𝐴2 ⟨𝑎3, 𝑎4⟩ ⇐⇒ (𝑎1 ◁𝐴1 𝑎3) ∧ (𝑎2 ◁𝐴2 𝑎4)
[ ] ◁𝐿(𝐴) [ ] ⇐⇒ ⊤

(𝑎1 :: 𝑎2) ◁𝐿(𝐴) (𝑎3 :: 𝑎4) ⇐⇒ (𝑎1 ◁𝐴 𝑎3) ∧ (𝑎2 ◁𝐿(𝐴) 𝑎4)
𝑎1 ◁𝐴1→𝐴2 𝑎2 ⇐⇒ ∀[𝑎3 ◁𝐴1 𝑎4] .(𝑎1 𝑎3) ◁𝐴2 (𝑎2 𝑎4)

𝑎1 ◁F𝐴 𝑎2 ⇐⇒ ∀[𝜎 ∈ REM𝑛, 𝑐 ∈ RM, 𝑏1 ∈ ⟦𝐴⟧] .
𝑎1 = 𝜂L(𝜎, 𝑐, 𝑏1) → (∃[𝑏2 ∈ ⟦L𝐴M𝑛⟧] .𝑏1 ◁𝐴 𝑏2 ∧ runrg(𝑎2, 𝜎, 𝑐, 𝑏2))

Lst. 8.7: Approximation relation ◁𝐴 ⊆ ⟦𝐴⟧ × ⟦L𝐴M𝑛⟧.

Approximation relation I define the following logical relation, dubbed approximation rela-

tion:
◁𝐴 ⊆ ⟦𝐴⟧ × ⟦L𝐴M𝑛⟧. (8.4.11)

It is a binary relation between source and target denotations of the transformation L·M𝑛 and
is indexed by type 𝐴. The approximation relation (8.4.11) is defined such that the relation at
𝐴 = Funit implies Thm. 8.4.1.

Listing 8.7 defines the approximation relation ◁𝐴. Its definition is straightforwardly induc-
tive for all value types (e.g., sum, product, list, and arrow types).

The only non-trivial case is 𝑎1 ◁F𝐴 𝑎2, which is defined as

∀[𝜎 ∈ REM𝑛, 𝑐 ∈ RM, 𝑏1 ∈ ⟦𝐴⟧] .
𝑎1 = 𝜂L(𝜎, 𝑐, 𝑏1) → (∃[𝑏2 ∈ ⟦L𝐴M𝑛⟧] .𝑏1 ◁𝐴 𝑏2 ∧ runrg(𝑎2, 𝜎, 𝑐, 𝑏2)) .

(8.4.12)

It states that, if the resource-decomposed computation 𝑎1 ∈ ⟦F𝐴⟧ has the form 𝜂L(𝜎, 𝑐, 𝑏1),
then the resource-guarded computation 𝑎2 ∈ ⟦LF𝐴M𝑛⟧ satisfies runrg(𝑎2, 𝜎, 𝑐, 𝑏2) for some 𝑏2 ∈
⟦L𝐴M𝑛⟧ such that 𝑏1◁𝐴 𝑏2. Here, 𝑏1 ∈ ⟦𝐴⟧ is the value (i.e., computational output) stored inside
the computation𝑎1. It additionally stores a tuple𝜎 ∈ REM𝑛 of resource effect and computational
cost 𝑐 ∈ RM. Likewise, 𝑏2 ∈ ⟦L𝐴M𝑛⟧ is the computational output stored inside the resource-
guarded computation 𝑎2. If we have 𝑎1 = ⊥ instead of 𝑎1 = 𝜂L(·, ·, ·), then the approximation
relation 𝑎1 ◁F𝐴 𝑎2 vacuously holds (Lem. 8.4.4).

Universal quantification over offsets The predicate runrg(𝑎2, 𝜎, 𝑐, 𝑏2) (Defn. 8.4.4) states
that, for any resource state 𝑠 ∈ (N2)𝑛 and offset 𝑘 ∈ (N2)𝑛offset, if the resource-guarded compu-
tation 𝑎2 is fed with the initial resource guards of initrg(𝑠, 𝜎 (𝑠)) + 𝑘 , then the computation 𝑎2
successfully runs. It has the same computational cost 𝑐 as the resource-decomposed computa-
tion 𝑎1, and returns a pair ⟨𝜎 (𝑠) + 𝑘, 𝑏2⟩.
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It is crucial that the predicate runrg(·, ·, ·, ·) universally quantifies over offsets 𝑘 ∈ (N2)𝑛offset.
Without this universal quantification, an inductive proof of the fundamental theoremThm. 8.4.2
of the logical relation ◁𝐴 does not go through: it fails in the inductive case of a let-binding. The
universal quantification over offsets comes into play in Lemmas 8.4.1 and 8.4.2, which are used
to prove Prop. 8.4.2 for a let-binding.

To illustrate the need for the universal quantification over offsets, consider a let-binding:

let 𝑥 = 𝑒1 in 𝑒2 where 𝑒1 : F𝐴 and 𝑥 : 𝐴 ⊢ 𝑒2 : F𝐵. (8.4.13)

In an inductive proof of the fundamental theorem, the inductive hypotheses are

⟦𝑒1⟧ ◁𝐴 L𝑒1M𝑛 ⟦𝑒2⟧ ◁𝐴→F𝐵 ⟦L𝑒2M𝑛⟧, (8.4.14)

which in turn yields
⟦𝑒2⟧ ⟦𝑒1⟧ ◁F𝐵 ⟦L𝑒2M𝑛⟧ ⟦L𝑒1M𝑛⟧. (8.4.15)

To derive the proof goal ⟦let 𝑥 = 𝑒1 in 𝑒2⟧ ◁F𝐵 ⟦Llet 𝑥 = 𝑒1 in 𝑒2M𝑛⟧, the resource guards must
be initialized to the combined high-water-mark measurements of the resource components of
computations 𝑒1 and 𝑒2. To this end, in Eq (8.4.15), the predicate runrg(·, ·, ·, ·) needs to be able
to initialize the resource guards to the high-water marks of let 𝑥 = 𝑒1 in 𝑒2. This necessitates
the universal quantification over offsets 𝑘 ∈ (N2)𝑛offset in the predicate runrg(·, ·, ·, ·).

Fundamental theorem of the logical relation The fundamental theorem of a logical re-
lation states that the logical relation, which is a type-indexed relation, holds for all types. In a
logical-relation-based proof, the logical relation is defined in such a way that a target theorem
follows from the fundamental theorem of the logical relation.
Definition 8.4.5 (Approximation relation on environments). The approximation relation ◁𝐴
lifts to environments (i.e., mapping from variables to denotations). Given environments 𝛾1 ∈ ⟦Γ⟧
and 𝛾2 ∈ ⟦LΓM𝑛⟧, I define

𝛾1 ◁Γ 𝛾2 ⇐⇒ ∀[(𝑥 : 𝐴) ∈ Γ] .𝛾1(𝑥) ◁𝐴 𝛾2(𝑥). (8.4.16)

Definition 8.4.6 (Approximation relation on typing judgments). The approximation relation

◁𝐴 lifts to typing judgments. Given a well-typed expression Γ ⊢ 𝑒 : 𝐴, I define

Γ ⊢ ⟦𝑒⟧ ◁𝐴 ⟦L𝑒M𝑛⟧ ⇐⇒ ∀[𝛾1 ◁Γ 𝛾2] .⟦𝑒⟧(𝛾1) ◁𝐴 ⟦L𝑒M𝑛⟧(𝛾2). (8.4.17)

Theorem 8.4.2 (Fundamental theorem of the logical relation). For all Γ ⊢ 𝑒 : 𝐴, we have

Γ ⊢ ⟦𝑒⟧ ◁𝐴 ⟦L𝑒M𝑛⟧. (8.4.18)

The soundness of resource decomposition (Thm. 8.4.1) follows from the instantiation of
Thm. 8.4.2 at type Funit. Given a closed resource-decomposed expression 𝑒 : Funit, Thm. 8.4.2
yields

⟦𝑒⟧ ◁Funit ⟦L𝑒M𝑛⟧. (8.4.19)
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Assume that the computation 𝑒 runs successfully:

⟦𝑒⟧ = 𝜂L(𝜎, 𝑐, ⟨ ⟩) for some 𝜎 ∈ REM𝑛, 𝑐 ∈ RM. (8.4.20)

Unfolding Defn. 8.4.4 of the predicate runrg(·, ·, ·, ·) gives

∀[𝑠 ∈ (N2)𝑛, 𝑘 ∈ (N2)𝑛offset] .⟦L𝑒M𝑛⟧ (initrg(𝑠, 𝜎 (𝑠)) + 𝑘) = 𝜂L(𝑐, ⟨𝜎 (𝑠) + 𝑘, ⟨ ⟩⟩) . (8.4.21)

Fixing 𝑠 ≔ ⋄𝑛 = ((0, 0), . . . , (0, 0)), we obtain

⟦L𝑒M𝑛⟧ (𝜎 (⋄𝑛) + 𝑘) = ⟦L𝑒M𝑛⟧ (initrg(⋄𝑛, 𝜎 (⋄𝑛)) + 𝑘) by Defn. 8.4.3 (8.4.22)
= 𝜂L(𝑐, ⟨𝜎 (⋄𝑛) + 𝑘, ⟨ ⟩⟩) by Eq (8.4.21). (8.4.23)

The last line establishes Thm. 8.4.1.

8.4.3 Soundness Proof

The proof of Thm. 8.4.2 proceeds by structural induction on expressions 𝑒 . This section high-
lights three illustrative cases in the inductive proof:

1. Prop. 8.4.1 concerns mark𝑖 ;
2. Prop. 8.4.2 concerns let 𝑥 = 𝑒1 in 𝑒2;
3. Prop. 8.4.3 concerns fixed-point expressions for recursive functions.

Proposition 8.4.1 (Approximation relation holds formark𝑖 ). Wehave ⟦mark𝑖⟧◁Funit⟦Lmark𝑖M𝑛⟧.

Proof. The translation Lmark𝑖M𝑛 is defined as (Listing 8.6):

fun _ 𝑠 = (let ⟨ℎ, 𝑟 ⟩ = 𝑠 (𝑖) in if 𝑟 = 0 then excp else return ⟨𝑠 [𝑖 ↦→ (ℎ, 𝑟 − 1)], ⟨ ⟩⟩) . (8.4.24)

The denotation ⟦mark𝑖⟧ is defined in Eq (8.2.22):

𝜂L(𝜎, (0, 0), ⟨ ⟩) where 𝜎 ≔ ⋄𝑛 [𝑖 ↦→

{

] . (8.4.25)

To prove the claim that ⟦mark𝑖⟧ ◁Funit ⟦Lmark𝑖M𝑛⟧, according to the definition of the approxi-
mation relation ◁Funit (Listing 8.7), it suffices to establish

runrg(⟦Lmark𝑖M𝑛⟧, 𝜎, (0, 0), ⟨ ⟩). (8.4.26)

According to Defn. 8.4.4 of the predicate runrg(·, ·, ·, ·), the proof goal expands to

∀[𝑠 ∈ (N2)𝑛, 𝑘 ∈ (N2)𝑛offset] .⟦Lmark𝑖M𝑛⟧ (initrg(𝑠, 𝜎 (𝑠))+𝑘) = 𝜂L((0, 0), ⟨𝜎 (𝑠)+𝑘, ⟨ ⟩⟩) . (8.4.27)

To this end, fix an arbitrary resource state 𝑠 ∈ (N2)𝑛 and an arbitrary offset 𝑘 ∈ (N2)𝑛offset:

𝑠 = ((ℎ𝑖, 𝑟𝑖))𝑛𝑖=1 𝑘 = ((𝑘𝑖, 𝑘𝑖))𝑛𝑖=1. (8.4.28)

I conduct case analysis on the value of 𝑟𝑖 : (i) 𝑟𝑖 ≥ 1 and (ii) 𝑟𝑖 = 0.
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Consider the first case where 𝑟𝑖 ≥ 1. From Defn. 8.2.3 of the resource effect

{

∈ REM
appearing in the definition of the tuple 𝜎 ∈ REM𝑛 (Eq (8.4.25)), it follows that

𝜎 (𝑠) = 𝑠 [𝑖 ↦→ (ℎ𝑖, 𝑟𝑖) ⊕ (1, 0)] = 𝑠 [𝑖 ↦→ (ℎ𝑖, 𝑟𝑖 − 1)] . (8.4.29)

From Defn. 8.4.3 of the resource state initrg(·, ·), we obtain

initrg(𝑠, 𝜎 (𝑠)) = 𝑠 [𝑖 ↦→ (ℎ𝑖, ℎ𝑖 − (ℎ𝑖 − 𝑟𝑖))] = 𝑠 [𝑖 ↦→ (ℎ𝑖, 𝑟𝑖)] = 𝑠 . (8.4.30)

Supposewe run the resource-guarded expression Lmark𝑖M𝑛 (Eq (8.4.24)) with the resource guards
initialized to the resource state initrg(𝑠, 𝜎 (𝑠)) + 𝑘 . The resource-guarded expression Lmark𝑖M𝑛
takes the second branch because we have

(initrg(𝑠, 𝜎 (𝑠)) + 𝑘) (𝑖) = 𝑟𝑖 + 𝑘𝑖 ≥ 1, (8.4.31)

which follows from the assumption 𝑟𝑖 ≥ 1. Furthermore, after running the expression Lmark𝑖M𝑛 ,
the final resource state of the resource guards is

(initrg(𝑠, 𝜎 (𝑠)) + 𝑘) [𝑖 ↦→ (8.4.32)
((initrg(𝑠, 𝜎 (𝑠)) + 𝑘) (𝑖).ℎ, (initrg(𝑠, 𝜎 (𝑠)) + 𝑘) (𝑖).𝑟 − 1)] (8.4.33)

= initrg(𝑠, 𝜎 (𝑠)) [𝑖 ↦→ (initrg(𝑠, 𝜎 (𝑠)) (𝑖).ℎ, initrg(𝑠, 𝜎 (𝑠)) (𝑖).𝑟 − 1)] + 𝑘 (8.4.34)
= 𝑠 [𝑖 ↦→ (ℎ𝑖, 𝑟𝑖 − 1)] + 𝑘 by Eq (8.4.30)

(8.4.35)
= 𝜎 (𝑠) + 𝑘 by Eq (8.4.29).

(8.4.36)

Thus, the output of running the expression Lmark𝑖M𝑛 is ⟨𝜎 (𝑠) + 𝑘, ⟨ ⟩⟩. It establishes the proof
goal (8.4.27) for the case where 𝑟𝑖 ≥ 1.

Conversely, consider the second case where 𝑟𝑖 = 0. We have

𝜎 (𝑠) = 𝑠 [𝑖 ↦→ (ℎ𝑖, 0) ⊕ (1, 0)] (8.4.37)
= 𝑠 [𝑖 ↦→ (ℎ𝑖 + 1, 0)] (8.4.38)

initrg(𝑠, 𝜎 (𝑠)) = 𝑠 [𝑖 ↦→ (ℎ𝑖 + 1, ℎ𝑖 + 1 − (ℎ𝑖 − 𝑟𝑖))] (8.4.39)
= 𝑠 [𝑖 ↦→ (ℎ𝑖 + 1, 1)] . (8.4.40)

If we run the resource-guarded expression Lmark𝑖M𝑛 (Eq (8.4.24)) with the resource guards ini-
tialized to initrg(𝑠, 𝜎 (𝑠)) + 𝑘 , the expression takes the second branch, and returns the final
resource guards of

(initrg(𝑠, 𝜎 (𝑠)) + 𝑘) [𝑖 ↦→ (8.4.41)
((initrg(𝑠, 𝜎 (𝑠)) + 𝑘) (𝑖).ℎ, (initrg(𝑠, 𝜎 (𝑠)) + 𝑘) (𝑖).𝑟 − 1)] (8.4.42)

= initrg(𝑠, 𝜎 (𝑠)) [𝑖 ↦→ (initrg(𝑠, 𝜎 (𝑠)) (𝑖).ℎ, initrg(𝑠, 𝜎 (𝑠)) (𝑖).𝑟 − 1)] + 𝑘 (8.4.43)
= 𝑠 [𝑖 ↦→ (ℎ𝑖 + 1, 0)] + 𝑘 by Eq (8.4.40)

(8.4.44)
= 𝜎 (𝑠) + 𝑘 by Eq (8.4.38).

(8.4.45)
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Thus, again, the output of running the expression Lmark𝑖M𝑛 is ⟨𝜎 (𝑠) + 𝑘, ⟨ ⟩⟩. This establishes
the proof goal (8.4.27) for the case where 𝑟𝑖 = 0. □

Lemma 8.4.1 (Rewrite initrg(·, ·)). Given two tuples of 𝜎1, 𝜎2 ∈ REM𝑛
of resource effects, consider

a resource state 𝑠 ∈ (N2)𝑛 . We then have

initrg(𝑠, (𝜎2 ◦ 𝜎1) (𝑠)) = initrg(𝑠, 𝜎1(𝑠)) + (𝜎2 ◦ 𝜎1) (𝑠).ℎ − 𝜎1(𝑠).ℎ, (8.4.46)

where 𝜎2(𝜎1(𝑠)).ℎ − 𝜎1(𝑠).ℎ is an offset (Defn. 8.4.2).

Proof. Fix arbitrary tuples 𝜎1, 𝜎2 ∈ REM𝑛 of resource effects and an arbitrary resource state
𝑠 ∈ (N2)𝑛 . Let

𝑠 = ((ℎ0,𝑖, 𝑟0,𝑖))𝑛𝑖=1 𝜎1(𝑠) = ((ℎ1,𝑖, 𝑟1,𝑖))𝑛𝑖=1 𝜎2(𝜎1(𝑠)) = ((ℎ2,𝑖, 𝑟2,𝑖))𝑛𝑖=1. (8.4.47)

We have

initrg(𝑠, (𝜎2 ◦ 𝜎1) (𝑠)) = (ℎ2,𝑖, ℎ2,𝑖 − (ℎ0,𝑖 − 𝑟0,𝑖))𝑛𝑖=1 (8.4.48)
= (ℎ1,𝑖, ℎ1,𝑖 − (ℎ0,𝑖 − 𝑟0,𝑖))𝑛𝑖=1 + ((ℎ2,𝑖 − ℎ1,𝑖, ℎ2,𝑖 − ℎ1,𝑖))𝑛𝑖=1 (8.4.49)

= initrg(𝑠, 𝜎1(𝑠)) + ((𝜎2 ◦ 𝜎1) (𝑠).ℎ − 𝜎1(𝑠).ℎ), (8.4.50)

which establishes the claim (8.4.46). □

Lemma 8.4.2 (Rewrite initrg(·, ·)). Given two tuples of 𝜎1, 𝜎2 ∈ REM𝑛
of resource effects, consider

a resource state 𝑠 ∈ (N2)𝑛 . We then have

initrg(𝜎1(𝑠), (𝜎2 ◦ 𝜎1) (𝑠)) = 𝜎1(𝑠) + (𝜎2 ◦ 𝜎1) (𝑠).ℎ − 𝜎1(𝑠).ℎ. (8.4.51)

Proof. Fix arbitrary tuples 𝜎1, 𝜎2 ∈ REM𝑛 of resource effects and an arbitrary resource state
𝑠 ∈ (N2)𝑛 . Let

𝑠 = ((ℎ0,𝑖, 𝑟0,𝑖))𝑛𝑖=1 𝜎1(𝑠) = ((ℎ1,𝑖, 𝑟1,𝑖))𝑛𝑖=1 𝜎2(𝜎1(𝑠)) = ((ℎ2,𝑖, 𝑟2,𝑖))𝑛𝑖=1. (8.4.52)

We have

initrg(𝜎1(𝑠), (𝜎2 ◦ 𝜎1) (𝑠)) = (ℎ2,𝑖, ℎ2,𝑖 − (ℎ1,𝑖 − 𝑟1,𝑖))𝑛𝑖=1 (8.4.53)
= (ℎ1,𝑖, 𝑟1,𝑖)𝑛𝑖=1 + ((ℎ2,𝑖 − ℎ1,𝑖, ℎ2,𝑖 − ℎ1,𝑖))𝑛𝑖=1 (8.4.54)

= 𝜎1(𝑠) + (𝜎2 ◦ 𝜎1) (𝑠).ℎ − 𝜎1(𝑠).ℎ, (8.4.55)

which establishes the claim (8.4.51). □

Proposition 8.4.2 (Approximation relation holds for a let-binding). Given𝑑1◁F𝐴𝑑2 and 𝑓1◁𝐴→F𝐵
𝑓2, we have

(𝑥 ←T 𝑑1; 𝑓1(𝑥))︸               ︷︷               ︸
𝑒left

◁F𝐵 (𝜆𝑠.⟨𝑠1, 𝑥⟩ ←T (𝑑2(𝑠)); 𝑓2(𝑥) (𝑠1))︸                                      ︷︷                                      ︸
𝑒right

. (8.4.56)
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Proof. Given 𝑑1 ∈ ⟦F𝐴⟧, 𝑑2 ∈ ⟦LF𝐴M𝑛⟧, 𝑓1 ∈ ⟦𝐴→ F𝐵⟧, and 𝑓2 ∈ ⟦L𝐴→ F𝐵M𝑛⟧, assume

𝑑1 ◁F𝐴 𝑑2 𝑓1 ◁𝐴→F𝐵 𝑓2. (8.4.57)

There are two cases for the left-hand side 𝑒left in the proof goal (8.4.56): (i) 𝑒left = ⊥ and
(ii) 𝑒left = 𝜂L(·, ·, ·). The first case immediately implies the claim (8.4.56) due to Lem. 8.4.4.

For the second case where 𝑒left = 𝜂L(·, ·, ·), suppose

𝑒left = 𝜂L(𝜎, 𝑐, 𝑏1) for some 𝜎 ∈ REM𝑛, 𝑐 ∈ RM, 𝑏1 ∈ ⟦𝐵⟧. (8.4.58)

From Defn. 8.2.19 of the bind operator←T, it follows that

𝑑1 = 𝜂L(𝜎1, 𝑐1, 𝑎1) 𝑓1(𝑎1) = 𝜂L(𝜎2, 𝑐2, 𝑏1) for some 𝜎1, 𝜎2 ∈ REM𝑛, 𝑐1, 𝑐2 ∈ RM, 𝑎1 ∈ ⟦𝐴⟧
(8.4.59)

such that
𝜎 = 𝜎2 ◦ 𝜎1 𝑐 = 𝑐1 ⊕ 𝑐2. (8.4.60)

Unfolding the approximation relations ◁F𝐴 and ◁𝐴→F𝐵 (Listing 8.7) appearing in Eq (8.4.57), we
obtain

𝑎1 ◁𝐴 𝑎2 runrg(𝑑2, 𝜎1, 𝑐1, 𝑎2) for some 𝑎2 ∈ ⟦L𝐴M𝑛⟧ (8.4.61)
𝑏1 ◁𝐵 𝑏2 runrg(𝑓2(𝑎2), 𝜎2, 𝑐2, 𝑏2) for some 𝑏2 ∈ ⟦L𝐵M𝑛⟧. (8.4.62)

Unfolding runrg(𝑑2, 𝜎1, 𝑐1, 𝑎2) and runrg(𝑓2(𝑎2), 𝜎2, 𝑐2, 𝑏2) (Defn. 8.4.4) yields

∀[𝑠1 ∈ (N2)𝑛, 𝑘1 ∈ (N2)𝑛offset] .𝑑2 (initrg(𝑠1, 𝜎1(𝑠1)) + 𝑘1) = 𝜂L(𝑐1, ⟨𝜎1(𝑠1) + 𝑘1, 𝑎2⟩) (8.4.63)
∀[𝑠2 ∈ (N2)𝑛, 𝑘2 ∈ (N2)𝑛offset] .𝑓2(𝑎2) (initrg(𝑠2, 𝜎2(𝑠2)) + 𝑘2) = 𝜂L(𝑐2, ⟨𝜎2(𝑠2) + 𝑘2, 𝑏2⟩) . (8.4.64)

To prove the approximation relation ◁F𝐵 in the claim (8.4.56), we need to show

runrg(𝑒right, 𝜎, 𝑐, 𝑏2)
⇐⇒ ∀[𝑠 ∈ (N2)𝑛, 𝑘 ∈ (N2)𝑛offset] .𝑒right (initrg(𝑠, 𝜎 (𝑠)) + 𝑘) = 𝜂L(𝑐, ⟨𝜎 (𝑠) + 𝑘,𝑏2⟩) .

(8.4.65)

To this end, fix an arbitrary resource state 𝑠 ∈ (N2)𝑛 and an arbitrary offset 𝑘 ∈ (N2)𝑛offset.
Suppose we run the computation 𝑒right ∈ ⟦LF𝐵M𝑛⟧ with the resource guards being initialized
to initrg(𝑠, 𝜎 (𝑠)) + 𝑘 . The computation 𝑒right first runs 𝑑2 ∈ ⟦LF𝐴M𝑛⟧ with the initial resource
guards of initrg(𝑠, 𝜎 (𝑠)) + 𝑘 . We can rewrite

initrg(𝑠, 𝜎 (𝑠)) + 𝑘 = initrg(𝑠, (𝜎2 ◦ 𝜎1) (𝑠)) + 𝑘 by Lem. 8.4.1 (8.4.66)

= initrg(𝑠, 𝜎1(𝑠)) + (𝜎2 ◦ 𝜎1) (𝑠).ℎ − 𝜎1(𝑠).ℎ + 𝑘 (8.4.67)
= initrg(𝑠, 𝜎1(𝑠)) + 𝑘1, (8.4.68)

where we define 𝑘1 ≔ (𝜎2 ◦ 𝜎1) (𝑠).ℎ −𝜎1(𝑠).ℎ +𝑘 . It follows from Eq (8.4.63) that the output of
running 𝑑2 (initrg(𝑠, 𝜎1(𝑠)) +𝑘1) is the pair ⟨𝜎1(𝑠) +𝑘1, 𝑎2⟩, where the first component 𝜎1(𝑠) +𝑘1
is the resource guards’ final values.
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Next, after running 𝑑2, the computation 𝑒right runs 𝑓2(𝑎2) (𝜎1(𝑠) +𝑘1), where 𝜎1(𝑠) +𝑘1 is the
resource state produced by 𝑑2. We have

𝜎1(𝑠) + 𝑘1 = 𝜎1(𝑠) + (𝜎2 ◦ 𝜎1) (𝑠).ℎ − 𝜎1(𝑠).ℎ + 𝑘 (8.4.69)
= initrg(𝜎1(𝑠), (𝜎2 ◦ 𝜎1) (𝑠)) + 𝑘 by Lem. 8.4.2. (8.4.70)

Setting 𝑠2 ≔ 𝜎1(𝑠) and 𝑘2 ≔ 𝑘 , we appeal to Eq (8.4.64). It gives that the output of running
𝑓2(𝑎2) (𝜎1(𝑠) + 𝑘1) is a pair ⟨𝜎2(𝜎1(𝑠)) + 𝑘, 𝑏2⟩. Therefore, we have

𝑒right (initrg(𝑠, (𝜎2 ◦ 𝜎1) (𝑠)) + 𝑘) = 𝜂L(𝑐1 ⊕ 𝑐2, ⟨(𝜎2 ◦ 𝜎1) (𝑠) + 𝑘, 𝑏2⟩), (8.4.71)

establishing the proof goal (8.4.65). □

Lemma 8.4.3 (Approximation relation is closed under suprema of 𝜔-chains). Given a type 𝐴

and an element 𝑑2 ∈ ⟦L𝐴M𝑛⟧, the predicate (i.e., subset)

𝑃 ≔ {𝑑1 ∈ ⟦𝐴⟧ | 𝑑1 ◁𝐴 𝑑2} (8.4.72)

is closed under suprema of 𝜔-chains.

Proof. The proof goes by structural induction on the type𝐴. Because the approximation relation
◁𝐴 is defined compositionally for most cases (Listing 8.3), most cases immediately follow from
the inductive hypothesis. The only non-trivial case is 𝐴 = F(·), which I focus on in the proof.

Suppose 𝐴 = F𝐴inner. Consider an 𝜔-chain (𝑑𝑖)𝑖∈N such that ∀𝑖 ∈ N.𝑑𝑖 ∈ 𝑃 ; i.e.,

∀𝑖 ∈ N.𝑑𝑖 ◁F𝐴inner 𝑑2. (8.4.73)

The goal is to show that
∨
𝑑𝑖 ∈ 𝑃 : ∨

𝑑𝑖 ◁F𝐴inner 𝑑2. (8.4.74)

There are two cases for
∨
𝑑𝑖 : (i)

∨
𝑑𝑖 = ⊥ and (ii)

∨
𝑑𝑖 = 𝜂L(·, ·, ·). The first case is trivial. Since∨

𝑑𝑖 = ⊥, it is not of the form 𝜂L(·, ·, ·). Consequently, the definition of the approximation
relation ◁F𝐴inner (Listing 8.7) (vacuously) holds, establishing the proof goal (8.4.74).

Consider the second case: ∨
𝑑𝑖 = 𝜂L(𝜎, 𝑐, 𝑎) (8.4.75)

for some tuple 𝜎 ∈ REM𝑛 , computational cost 𝑐 ∈ RM, and denotation 𝑎 ∈ ⟦𝐴inner⟧. It means
that, for some 𝑘 ∈ N, we have

∀𝑗 ≥ 𝑘.𝑑 𝑗 = 𝜂L(𝜎, 𝑐, 𝑎 𝑗 )
∨
𝑗≥𝑘

𝑎 𝑗 = 𝑎. (8.4.76)

Expanding the definition of the approximation relation ◁F𝐴inner (Listing 8.7) appearing in the
assumption (8.4.73), we obtain that there exists 𝑎2 ∈ ⟦L𝐴innerM𝑛⟧ such that

∀𝑗 ≥ 𝑘.𝑎 𝑗 ◁𝐴inner 𝑎2 runrg(𝑑2, 𝜎, 𝑐, 𝑎2). (8.4.77)
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Applying the inductive hypothesis to ∀𝑗 ≥ 𝑘.𝑎 𝑗 ◁𝐴inner 𝑎2 in Eq (8.4.77) yields∨
𝑗≥𝑘

𝑎 𝑗 ◁𝐴inner 𝑎2. (8.4.78)

Finally, combining Eq (8.4.77) and Eq (8.4.78) yields∨
𝑑𝑖 = 𝜂L(𝜎, 𝑐, 𝑎) = 𝜂L ©­«𝜎, 𝑐,

∨
𝑗≥𝑘

𝑎 𝑗
ª®¬ ◁F𝐴inner 𝑑2. (8.4.79)

This establishes the proof goal (8.4.74). □

Lemma 8.4.4. Given a type 𝐴 ≔ 𝐴1 → 𝐴2 → · · · → F𝐴𝑘 (𝑘 ∈ N), we have ⊥⟦𝐴⟧ ◁𝐴 𝑎 for all

𝑎 ∈ ⟦L𝐴M𝑛⟧.

Proof. First of all, the bottom element ⊥⟦𝐴⟧ exists. It is given by the function

⊥⟦𝐴⟧ : (𝑎1, . . . , 𝑎𝑘−1) ∈ ⟦𝐴1 × · · · ×𝐴𝑘−1⟧ ↦→ ⊥⟦F𝐴𝑘⟧. (8.4.80)

Here, the bottom element ⊥⟦F𝐴𝑘⟧ exists because ⟦F𝐴𝑘⟧ is a lift as defined in Eq (8.2.15).
Furthermore, for any 𝑎𝑘 ∈ ⟦LF𝐴𝑘M𝑛⟧, we have ⊥⟦F𝐴𝑘⟧ ◁F𝐴𝑘

𝑎𝑘 because it (vacuously) holds
according to the definition of the approximation relation◁F𝐴𝑘

(Listing 8.7). Therefore,⊥⟦𝐴⟧◁𝐴𝑎
also holds for any 𝑎 ∈ ⟦L𝐴M𝑛⟧. □

Proposition 8.4.3. Given a type 𝐴 ≔ 𝐴1 → F𝐴2, if 𝑓1 ◁𝐴→𝐴 𝑓2, then fix(𝑓1) ◁𝐴 fix(𝑓2).

Proof. The claim is proved by fixed-point induction (Thm. 8.2.2). Given two denotations 𝑓1 ∈
⟦𝐴→ 𝐴⟧ and 𝑓2 ∈ ⟦L𝐴→ 𝐴M𝑛⟧, assume

𝑓1 ◁𝐴→𝐴 𝑓2. (8.4.81)

Define a predicate 𝑃 as
𝑃 ≔ {𝑎 ∈ ⟦𝐴⟧ | 𝑎 ◁𝐴 fix(𝑓2)}. (8.4.82)

The predicate 𝑃 is closed under suprema of 𝜔-chains (Lem. 8.4.3), and contains the bottom
element ⊥⟦𝐴⟧ (Lem. 8.4.4). Thus, the predicate 𝑃 is admissible (Defn. 8.2.15). Consequently, due
to fixed-point induction (Thm. 8.2.2), it suffices to prove

∀𝑎 ∈ ⟦𝐴⟧.𝑎 ∈ 𝑃 =⇒ 𝑓1(𝑎) ∈ 𝑃 . (8.4.83)

To this end, fix an arbitrary element 𝑎 ∈ ⟦𝐴⟧ such that 𝑎 ∈ 𝑃 ; i.e.,

𝑎 ◁𝐴 fix(𝑓2). (8.4.84)

It follows from the assumption (8.4.81) that

𝑓1(𝑎) ◁𝐴 𝑓2(fix(𝑓2)), (8.4.85)

where the right-hand side is equal to fix(𝑓2) as it is a fixed point. Hence, we obtain 𝑓1(𝑎) ∈ 𝑃 ,
establishing the proof goal (8.4.83). □
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8.5 Integrating Static Analysis and Bayesian Data-Driven

Analysis

This section describes the first instantiation of resource decomposition that combines Conven-
tional AARA (§4) and Bayesian data-driven analysis. In this instantiation, Conventional AARA
statically infers a cost bound of a resource-guarded program, and Bayesian data-driven anal-
ysis statistically infers symbolic bounds of resource components from their high-water-mark
measurements. This instantiation rests on a novel Bayesian inference method for learning a
function that relates the input size of a program to the high-water mark of a given resource
component. The Bayesian inference method is designed specifically to infer symbolic bounds
of recursion depths.

8.5.1 Code Annotations and Data Collection

This section discusses code annotations for specifying resource components and a data-collection
procedure for high-water-mark measurements of the resource components.

Code annotations Given a target program 𝑃 (𝑥), let 𝐿 be a finite set of labels used to identify
resource components5. Let 𝑟ℓ (ℓ ∈ 𝐿) denote the resource components that the user wishes
to employ in resource decomposition. To specify resource components, the original program
𝑃 (𝑥) is annotated with two annotations: markℓ 𝑞 and resetℓ (ℓ ∈ 𝐿, 𝑞 ∈ Z). The annotation
markℓ 𝑞 is semantically equivalent6to a sequence of |𝑞 | many annotations markℓ (if 𝑞 ≥ 0) or
unmarkℓ (if 𝑞 < 0) introduced in Rpcf𝑛 (§8.1). Let 𝑃rd(𝑥) be the resulting annotated program,
which is called a resource-decomposed program.

Data collection Given program inputs 𝑣1, . . . , 𝑣𝑁 (𝑁 ≥ 1), we run the resource-guarded pro-
gram 𝑃rd(𝑣𝑖) (𝑖 = 1, . . . , 𝑁 ), recording high-water-mark measurements of the resource compo-
nents to collect observed data D for Bayesian analysis.

During the program execution, each resource component 𝑟ℓ (ℓ ∈ 𝐿) maintains a counter
with three components: (i) a current value 𝑐ℓ ∈ Z; (ii) a current high-water mark ℎ′ℓ ∈ N; and
(iii) a global high-water mark ℎℓ ∈ N. They are all initialized to zero. The annotations markℓ 𝑞
and resetℓ (ℓ ∈ 𝐿, 𝑞 ∈ Z) manipulate the counter as follows:

1. markℓ 𝑞 increments 𝑐ℓ by 𝑞 ∈ Z units and sets ℎ′ℓ ← max(ℎ′ℓ , 𝑐ℓ);
2. reset𝑖 updates ℎℓ ← max(ℎℓ , ℎ′ℓ) and resets 𝑐ℓ , ℎℓ ← 0.

5In the formalization of resource decomposition (§8.2–8.4), I use the set 𝐿 ≔ {1, . . . , 𝑛} (𝑛 ∈ N) of labels such
that the resource components 𝑟ℓ (ℓ ∈ 𝐿) can be ordered. The ordering simplifies the notation when we define, for
example, an ordered tuple 𝜎 = (𝑓1, . . . , 𝑓𝑛) ∈ REM𝑛 of resource effects, one for each resource component. However,
in practice, it is more user-friendly to use arbitrary labels for identifying resource components than restricting the
labels to the set {1, . . . , 𝑛}.

6In practice, it is more user-friendly to offer a single constructmarkℓ 𝑞 than two distinct constructsmarkℓ and
unmarkℓ . However, in the formalization of resource decomposition (§8.2–8.4), it is more convenient to restrict
𝑞 ∈ Z in markℓ 𝑞 to the set {1,−1}.
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Each run of 𝑃rd(𝑣𝑖) (𝑖 = 1, . . . , 𝑁 ) yields high-water-mark measurements ℎℓ,𝑖 (ℓ ∈ 𝐿, 𝑖 =

1, . . . , 𝑁 ) for the resource components. Reorganizing these measurements, we obtain datasets

Dℓ ≔ {(ℓ, 𝑣𝑖, ℎℓ,𝑖) | 𝑖 = 1, . . . , 𝑁 } D ≔
⋃
ℓ∈𝐿
Dℓ . (8.5.1)

The original program 𝑃 (𝑥) should be annotated such that the high-water mark ℎℓ is equal to
the quantity intended for the resource component 𝑟ℓ (ℓ ∈ 𝐿).

8.5.2 Bayesian Data-Driven Resource Analysis

This section describes Bayesian data-driven analysis of resource components. The goal of
Bayesian inference is to use observed data Dℓ (ℓ ∈ 𝐿) to learn a symbolic bound 𝑓ℓ (𝑣) that
relates a program input 𝑣 with its maximum high-water mark ℎℓ,𝑣 while executing a resource-
guarded program 𝑃rd(𝑣).

My collaborators and I have developed a Bayesian inference method tailored for resource
components that track the recursion depths of functions. It is motivated by the fact that static
resource analysis (e.g., Conventional AARA) often fails on recursive programs, but can still suc-
ceed in finding the cost of a single recursive step. This is because the body of a (non-nested)
recursive function is sequential code, which is straightforward to analyze statically. Decompos-
ing the analysis into per-recursion cost (using Conventional AARA) and the recursion depth
(using Bayesian inference) solves the problem.

Language of symbolic bounds Each program input 𝑣 : 𝜏 is associated with a numeric value
𝑚𝜏 (𝑣) that denotes its “size”. The following domain-specific language (DSL) describes a fam-
ily of size measures 𝑚𝜏 and corresponding cost bounds 𝑝𝜏 that admit linear and logarithmic
expressions:

𝑚unit =𝑚int ::= 𝜆𝑣.1 (8.5.2)
𝑚𝐿(𝜏) ::= 𝜆[𝑣1, . . . , 𝑣𝑘] .𝑘 | 𝜆[𝑣1, . . . , 𝑣𝑘] .max{𝑚𝜏 (𝑣1), . . . ,𝑚𝜏 (𝑣𝑘)} (8.5.3)
𝑚𝜏1×𝜏2 ::= 𝜆⟨𝑣1, 𝑣2⟩.𝑚𝜏1 (𝑣1) | 𝜆⟨𝑣1, 𝑣2⟩.𝑚𝜏2 (𝑣2) (8.5.4)
𝑝𝜏 (𝑣) ::= 𝑐0 + 𝑐1𝑚𝜏 (𝑣) | 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3𝑚𝜏 (𝑣)); 𝑐0, 𝑐1, 𝑐2, 𝑐3 ∈ R≥0. (8.5.5)

In Eq (8.5.2), the base types have a trivial size measure of 1. In Eqs. (8.5.3) and (8.5.4), the
composite types are associated with multiple size measures. For example, given a nested list
type 𝜏 ≔ 𝐿(𝐿(int)), one size measure𝑚𝜏 is the outer list length and another size measure is the
maximum inner list length. For a graph algorithm where the input is an adjacency list (which
is encoded as a nested list), the first size measure corresponds to the number of vertices, and
the second corresponds to the maximum degree.

A recursion-depth bound 𝑝𝜏 (𝑣) in Eq (8.5.5) can only mention one size measure𝑚𝜏 (𝑣). This
restriction simplifies the Bayesian probabilistic model (8.5.6)–(8.5.9) while still allowing the
DSL to capture recursion-depth bounds of many real-world programs (e.g., UnbalancedBST
and Dijkstra in §8.5.3). The DSL can be extended to admit more expressive symbolic bounds.
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Bayesian inference for symbolic bounds I next describe how to synthesize functions 𝑝𝜏
(Eq (8.5.5)) for resource component 𝑟ℓ that relate an input 𝑣 : 𝜏 to the high-water mark ℎℓ,𝑣 of re-
source component 𝑟ℓ . Let 𝜏 be the input data type of a functional program under analysis and as-
sume momentarily that we have already selected a size measure𝑚𝜏 from the DSL (8.5.2)–(8.5.4),
with |𝑣 | ≔𝑚𝜏 (𝑣). Let v ≔ (𝑣1, . . . , 𝑣𝑁 ) be a vector of input values and hℓ ≔ (ℎℓ,1, . . . , ℎℓ,𝑁 ) the
corresponding high-water marks of the resource component 𝑟ℓ . Rather than pre-specify either
a linear or logarithmic symbolic form of the cost bound 𝑝𝜏 from the DSL (Eq (8.5.5)), I leverage
Bayesian model averaging [110] to infer the appropriate symbolic expression from the data.
That is, I use a probabilistic model 𝜋v(𝜃, hℓ) over a set of latent parameters 𝜃 and observable
high-water marks hℓ as follows:

𝑧 ∼ Bernoulli(0.5) (8.5.6)
𝑐 lin0 ∼ 𝜒2(𝛾0), 𝑐 lin1 ∼ LogNormal(0, 𝛾1) 𝑝 lin𝜏 ≔ 𝜆𝑣.𝑐 lin0 + 𝑐 lin1 |𝑣 | (8.5.7)

𝑐
log
0 , 𝑐

log
1 , 𝑐

log
2 , 𝑐

log
3 ∼ 𝜒

2(𝛾2) 𝑝
log
𝜏 ≔ 𝜆𝑣.𝑐

log
0 + 𝑐

log
1 log(1 + 𝑐 log2 + 𝑐

log
3 |𝑣 |) (8.5.8)

ℎℓ,𝑖 ∼

Uniform(0, 𝑝 lin𝜏 (𝑣𝑖 ;𝜃 lin)) if 𝑧 = 0
Uniform(0, 𝑝 log𝜏 (𝑣𝑖 ;𝜃 log)) if 𝑧 = 1 and 𝑝 log𝜏 (𝑣𝑖 ;𝜃 log) ≤ 2 log2( |𝑣𝑖 |)
Normal[0,𝑝 log𝜏 (𝑣𝑖 ;𝜃 log)]

(𝑝 log𝜏 (𝑣𝑖 ;𝜃 log), 1) otherwise.
(8.5.9)

The indicator random variable 𝑧 in Eq (8.5.6) selects one of the twomodels for generating the
high-water marks. The parameters 𝜃 lin ≔ {𝑐 lin𝑖 }1𝑖=0 for 𝑝 lin𝜏 (Eq (8.5.7)) and 𝜃 log ≔ {𝑐 log

𝑖
}3
𝑖=0 for

𝑝
log
𝜏 (Eq (8.5.8)) are drawn from broad prior distributions, where {𝛾0, 𝛾1, 𝛾2} are hyperparameters.
In the linear model, the degree-one coefficient 𝑐lin,1 is drawn from a log-normal distribution that
concentrates around 1, reflecting the domain knowledge that the constants of recursion depth
rarely exceed this value.

In Eq (8.5.9), the observed high-water mark ℎℓ,𝑖 is generated according to both 𝑧 and the
value 𝑝 log𝜏 (𝑣𝑖) of the logarithmic bound. If 𝑧 = 0, or 𝑧 = 1 and 𝑝 log𝜏 (𝑣𝑖 ;𝜃 log) ≤ 2 log2( |𝑣𝑖 |), then
the observed high-water mark is drawn from a uniform distribution between 0 and the cost
bound. The cutoff 2 log2( |𝑣𝑖 |) stems from the domain knowledge that few logarithmic bounds
have a constant that exceeds 2. This assumption is particularly useful for inferring recursion-
depth bounds of programs (e.g.,QuickSort and lookups in (possibly unbalanced) binary search
trees), where the true worst-case recursion-depth is linear, but the observed high-water marks
ℎℓ,𝑖 exhibit a logarithmic trend when the inputs 𝑣𝑖 are generated uniformly at random. Finally,
if 𝑧 = 1 and 𝑝 log𝜏 ( |𝑣𝑖 |;𝜃 log) > 2 log2( |𝑣𝑖 |), then the observed high-water mark ℎℓ,𝑖 is drawn from
a truncated normal distribution with a small variance (i.e., 1) to handle outliers and prevent
discontinuities in the model.

Ideally, I should set the density of this branch to zero. However, in such a case, if we ran a
sampling-based probabilistic inference algorithm on a dataset Dℓ where some observed high-
water mark ℎℓ,𝑖 (𝑖 = 1, . . . , |Dℓ |) exceeds 2 log2( |𝑣𝑖 |), we would obtain the density of zero when-
ever 𝑧 = 1, causing trouble to the inference algorithm.

The posterior distribution of the latent parameters 𝜃 = {𝑐 lin0:1, 𝑐
log
0:3 , 𝑧} conditioned on the
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observed data hℓ is given by Bayes’ rule:

𝜋v(𝜃 | hℓ) =
𝜋v(𝜃, hℓ)∫

𝜃
𝜋v(𝜃, hℓ) d𝜃

. (8.5.10)

I run a sampling-based probabilistic inference algorithm NUTS [111] in the probabilistic pro-
gramming language Stan [44] to repeatedly draw approximate samples of 𝜃 from the posterior.
Using an ensemble {(𝜃 lin𝑗 ;𝜃 log

𝑗
)}𝑀𝑗=1 of𝑀 approximate posterior samples of the numeric param-

eters, the posterior distribution of the model indicator 𝑧 ∈ {0, 1} is estimated as

𝐴 𝑗 ≔

𝑁∏
𝑖=1

1/𝑝 lin𝜏 (𝑣𝑖 ;𝜃 lin𝑗 ); Pr(𝑧 = 0 | Dℓ) ≈
1
𝑀

𝑀∑︁
𝑗=1

(
𝐴 𝑗

𝐴 𝑗 + 𝐵 𝑗

)
; (8.5.11)

𝐵 𝑗 ≔ 1/𝑝 log𝜏 (𝑣𝑖 ;𝜃
log
𝑗
)·1[𝑝 log𝜏 (𝑣𝑖 ;𝜃

log
𝑗
) ≤ 2 log2( |𝑣𝑖 |)]

+ 𝑁 (𝑣𝑖 ; 𝑝 log𝜏 (𝑣𝑖 ;𝜃
log
𝑗
), 1) · 1

[(
2 log2( |𝑣𝑖 |) < 𝑝

log
𝜏 (𝑣𝑖 ;𝜃

log
𝑗
)
)
∧

(
𝑣𝑖 ∈ [0, 𝑝 log𝜏 (𝑣𝑖 ;𝜃

log
𝑗
)]

)]
.

(8.5.12)

Here, the function 𝑁 (·; ·, ·) is the probability density function of a normal distribution.

Selecting the sizemeasure viamutual information Recall fromEqs. (8.5.3) and (8.5.4) that
a composite type 𝜏 may be associatedwithmany sizemeasures𝑚𝜏 . To select𝑚𝜏 for the symbolic
bound 𝑝𝜏 in the probabilistic model (8.5.6)–(8.5.9), we select the one with the highest statistical
dependence with the observed high-water marks hℓ . The quantitative measure of dependence
we use is mutual information, which characterizes all types of possible dependencies (e.g., lin-
ear, nonlinear, etc.) between a pair of random variables. The method of Kraskov et al. [148] is
used to estimate mutual information from finitely many samples {(ℎℓ,𝑖,𝑚𝜏 (𝑣𝑖)) | 1 ≤ 𝑖 ≤ 𝑁 }.
Remark 8.5.1 (Statistical Soundness of Resource Decomposition). The soundness of resource
decomposition described in Thm. 8.4.1 remains applicable in the presence of statistical uncertainty

from data-driven resource analysis (e.g., Bayesian resource analysis).

For illustration, suppose we integrate two analysis methods by resource decomposition: (i) Anal-

ysis𝐴 (e.g., AARA) to infer an overall cost bound of a resource-guarded program; and (ii) Analysis

𝐵 (e.g., Bayesian inference) to infer symbolic bounds of a resource component. Let 𝑝𝐴, 𝑝𝐵 ∈ [0, 1]
be the probabilities that Analysis 𝐴 and 𝐵 are sound, respectively. Thm. 8.4.1 states that an overall

cost bound of an original program is sound if it is composed of sound bounds from Analyses 𝐴 and

𝐵. Assuming these analyses are conducted independently, the probability of the overall cost bound

being sound is therefore at least 𝑝𝐴 · 𝑝𝐵 . In the integration of Conventional AARA and Bayesian

analysis, since Conventional AARA guarantees soundness, we have 𝑝𝐴 = 1. If two constituent

analysis methods are both sound (§8.6), we have 𝑝𝐴 = 𝑝𝐵 = 1, resulting in a sound overall bound

with probability 1.

More generally, if a data-driven method has a statistical guarantee (e.g., Thms. 7.4.1 and 7.4.2

for Hybrid AARA), then that guarantee is inherited in a relatively simple way when the method is

used within resource decomposition. «
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8.5.3 Numerical Evaluation

This section describes a prototype implementation and evaluation of resource decomposition
instantiated with Conventional AARA and Bayesian data-driven analysis (§8.5.2). The evalua-
tion aims to answer the following questions:
Q1: Can the resource-decomposition technique infer asymptotically tight and sound cost bounds

for benchmark programs with challenging constructs, such as functions whose recursion
depth scales logarithmically with the input size, or functions where the input size does not
decrease at each recursive step?

Q2: How do the accuracy and expressiveness of resource decomposition compare to those of
AARA [112] (which uses static analysis) and Hybrid AARA [188] (which uses static anal-
ysis and Bayesian inference)?

I do not intend to argue that this instantiation of resource decomposition is strictly su-
perior to Hybrid AARA, which also integrates Conventional AARA and Bayesian inference.
Indeed, Hybrid AARA has its own advantage over resource decomposition (§8.8.3). Instead, I
aim to demonstrate that, by using resource decomposition to integrate Conventional AARA
and Bayesian inference, we can infer more expressive and accurate cost bounds than Con-
ventional AARA or Bayesian inference alone, particularly in those benchmark programs with
non-polynomial bounds (e.g., 𝑛 log𝑛) that Hybrid AARA cannot express. To obtain a resource
analysis that is strictly superior to Hybrid AARA, we can simply use resource decomposition to
integrate the new data-driven analysis for recursion depth (§8.5.2) with Hybrid AARA instead
of Conventional AARA.

Benchmarks My collaborators and I have curated a benchmark suite consisting of 13 chal-
lenging functional programs in OCaml. §B.1.1 describes these benchmark programs in detail,
and §B.2 displays their source code. The resource metric of interest is the total number of
function calls (including all recursive calls and helper functions), which serves as a first ap-
proximation of the execution time.

To collect a dataset D for data-driven analysis, I generate program inputs as follows. For
input lists 𝑥 and input graphs 𝐺 = (𝑉 , 𝐸), the list lengths |𝑥 | and the number of vertices |𝑉 |
grow exponentially. To fill the content of a list, I sample integers from the interval [0, 232 − 1]
uniformly at random (with or without replacement, depending on the benchmarks). The set of
edges in a graph is generated randomly by the Erdős-Rényi model of random graphs [75].

Resource components For each benchmark, I manually annotate the source code to ob-
tain two programs: a resource-decomposed and a resource-guarded program. The resource-
decomposed code is used for collectingmeasurements of resource components, and the resource-
guarded code is instrumented with resource guards and is used by Conventional AARA to in-
fer overall cost bounds. Listings 2.3a and 2.3b display the two versions of annotated code for
MergeSort.

All resource components in the 13 benchmark programs track recursion depths.
• MergeSort,QuickSort, BubbleSort, BellmanFord: One resource component for recursion
depth.
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• HeapSort andHuffmanCode: Two resource components: the recursion depth of heapify
([61, §6.2]) during a heap insertion and the recursion depth of extracting the minimum
element.

• UnbalancedBST, RedBlackTree, AVLTree, and SplayTree: Two resource components: the
recursion depths of tree insertions and lookups.

• BalancedBST: Two resource components: the recursion depths of merge sort and tree
lookups.

• Prim and Dijkstra: Three resource components. The first tracks the recursion depth of
the function heapify when extracting the minimum element from a heap. The second
tracks the recursion depth of the decrease-key operation of a heap. The third tracks the
recursion depth of a traversal over each inner list of the adjacency list.

To infer symbolic bounds of resource components, the Bayesian model-selection approach
(§8.5.2) is implemented in the Stan [44] probabilistic programming language. It runs sampling-
based posterior inference via NUTS [111]. Because Stan does not support discrete random
variables, I marginalize out the indicator random variable 𝑧 (Eq (8.5.6)) from the probabilistic
model.

To infer overall cost bounds of programs, I use RaML [117, 118], an implementation of
Conventional AARA for OCaml programs. It runs the CLP [82] linear-program solver to infer
numeric values for the coefficients in polynomial potential functions.

For each benchmark program 𝑃 (𝑥) with 𝑛 resource components, its ground-truth resource-
component bound 𝑔𝑖 (𝑥) (𝑖 = 1, . . . , 𝑛) is manually derived. Let 𝑓 (𝑥, r) be an overall cost bound
of the corresponding resource-guarded program 𝑃rg(𝑥, r) inferred by RaML. A ground-truth
overall cost bound of the original program 𝑃 (𝑥) is then given by 𝑓 (𝑥, 𝑔1(𝑥), . . . , 𝑔𝑛 (𝑥)).

Soundness proportions Tab 8.1 shows the proportions of inferred symbolic bounds of re-
source components that are sound and the analysis time of benchmark programs. The second
column shows the number of lines of code (LOC). The third column shows the ground-truth
asymptotic bounds. In sorting algorithms, 𝑛 is the length of the input list. In tree algorithms, 𝑛1
is the length of the first input list for tree constructions, and 𝑛2 is the length of the second input
list for tree lookups. In graph algorithms, |𝑉 | is the number of vertices, and 𝑑 is the maximum
degree.

The fourth and fifth columns show inference results of Conventional and Hybrid AARA:
1. Correct means the inferred bound is asymptotically tight;
2. Wrong Asymptotics means the inferred symbolic bound is asymptotically loose (e.g., a

quadratic bound is inferred for MergeSort, while the ground-truth bound is 𝑐𝑛 log𝑛);
3. Untypable means AARA fails to infer a polynomial cost bound.

In the sixth column, 𝑖 means the 𝑖th resource component within a benchmark. The seventh and
eighth columns show the proportions of symbolic bounds drawn from posterior distributions
that are sound. The seventh column concerns the asymptotic soundness: whether the inferred
bounds belong to the correct (linear or logarithm) family of symbolic bounds. The eighth col-
umn concerns the soundness of the inferred concrete coefficients (i.e., the coefficients 𝑐 lin0:1 and
𝑐
log
0:3 ), which is a stricter notion of soundness than the asymptotic soundness in the seventh
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Table 8.1: Effectiveness of resource decomposition as compared to two AARA baselines: the
basic method [112] (which uses only static analysis) and the hybrid method [188] (which in-
tegrates static and data-driven analysis). The AARA baselines often give incorrect results due
to Wrong Asymptotics (A) or Untypable Programs (T ). Percentages of sound posterior bounds
from methods that use Bayesian inference are shown in parentheses.

AARA Baselines Resource Decomposition (AARA + Data-Driven; §8.5.2)

Basic Hybrid Sound Bounds Analysis Time

Benchmark LOC Ground Truth [112] [188] Guard Asymptotics Coefficients Data-Driven Static
MergeSort 29 𝑛 log(𝑛) ✗ (A) ✗ (A) 1 ✓ (100%) ✓ (59.5%) 6.0 s 0.4 s
QuickSort 22 𝑛2 ✓ ✓ (100%) 1 ✓ (100%) ✓ (10.5%) 6.3 s 0.3 s
BubbleSort 16 𝑛2 ✗ (T ) ✓ (40.1%) 1 ✓ (100%) ✓ (73.0%) 9.9 s 0.2 s

1 ✓ (100%) ✓ (31.6%) 3.9 s 3.2 s
HeapSort 87 𝑛 log(𝑛) ✗ (T ) ✗ (A) 2 ✓ (100%) ✓ (43.1%) 4.3 s

1 ✓ (100%) ✓ (31.6%) 0.5 s 6.7 s
HuffmanCode 121 𝑛 log(𝑛) ✗ (T ) ✗ (A) 2 ✓ (100%) ✓ (39.6%) 4.2 s

1 ✓ (100%) ✓ (27.3%) 14.8 s 2.3 s
BalancedBST 96 (𝑛1 + 𝑛2) log(𝑛1) ✗ (A) ✗ (A) 2 ✓ (100%) ✓ (7.8%) 10.0 s

1 ✓ (100%) ✗ (0%) 11.3 s 1.6 s
UnbalancedBST 47 (𝑛1 + 𝑛2)𝑛1 ✓ ✓ (100%) 2 ✓ (100%) ✗ (0%) 14.5 s

1 ✓ (100%) ✗ (0%) 7.5 s 1023.4 s
RedBlackTree 65 (𝑛1 + 𝑛2) log(𝑛1) ✗ (A) ✗ (A) 2 ✓ (100%) ✗ (0%) 7.9 s

1 ✓ (100%) ✗ (0%) 6.5 s 6.4 s
AVLTree 124 (𝑛1 + 𝑛2) log(𝑛1) ✗ (T ) ✗ (A) 2 ✓ (100%) ✗ (0%) 7.9 s

1 ✓ (100%) ✗ (0%) 61.5 s 11.1 s
SplayTree 103 (𝑛1 + 𝑛2)𝑛1 ✓ ✓ (100%) 2 ✓ (100%) ✗ (0%) 95.1 s

1 ✓ (100%) ✓ (69.4%) 16.2 s 2524.4 s
2 ✓ (100%) ✓ (59.8%) 21.0 sPrim 192 |𝑉 |𝑑 log( |𝑉 |) ✗ (T ) ✗ (A)
3 ✓ (100%) ✓ (94.2%) 29.0 s
1 ✓ (100%) ✓ (69.4%) 15.6 s 3179.3 s
2 ✓ (100%) ✓ (73.6%) 15.2 sDijkstra 203 |𝑉 |𝑑 log( |𝑉 |) ✗ (T ) ✗ (A)
3 ✓ (100%) ✓ (94.2%) 31.6 s

BellmanFord 93 |𝑉 |2𝑑 ✗ (T ) ✗ (0%) 1 ✓ (100%) ✓ (56.1%) 31.7 s 6.6 s

column.
For instance, for MergeSort, the ground-truth recursion-depth bound is 1 + log2(𝑛). Given

an inferred recursion-depth bound of the form

𝑐0 + 𝑐1 ln(1 + 𝑐2 + 𝑐3𝑛), (8.5.13)

where 𝑐0, . . . , 𝑐3 ∈ R≥0, it can be rewritten as

𝑐0 + 𝑐1 ln(1 + 𝑐2 + 𝑐3𝑛) = 𝑐0 + 𝑐1 ln(𝑐3) + 𝑐1 ln(2) log2
(
1
𝑐3
+ 𝑐2
𝑐3
+ 𝑛

)
. (8.5.14)

Hence, to check the soundness of coefficients for MergeSort, I check

1 ≤ 𝑐0 + 𝑐1 ln(𝑐3) ∧ 1 ≤ 𝑐1 ln(2). (8.5.15)

In RedBlackTree, I use the ground-truth recursion depth of 2 log2(𝑛) for tree insertions and
lookups, where 𝑛 is the number of nodes in the tree. This is because 2 log2(𝑛) is the best the-
oretical bound of the red-black tree’s height I know of. However, this bound is not necessarily
the tightest recursion-depth bound.
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In SplayTree, I use the ground-truth recursion-depth bound of 𝑛 for tree insertions and
lookups because it is the worst-case height of a splay tree at any point. However, if we consider
a sequence of splay-tree operations, as I do here, their logarithmic amortized costs come into
play. In fact, if we successively insert 𝑛1 elements into the empty splay tree and then perform 𝑛2
lookups, the total cost is𝑂 ((𝑛2+𝑛1) log(𝑛1)) [208]. On the other hand, resource decomposition
infers bounds of the form𝑂 ((𝑛2+𝑛1)𝑛1) as the worst-case asymptotic complexity of single tree
insertions and lookups is 𝑂 (𝑛1).

By Remark 8.5.1, the soundness proportion of overall cost bounds is lower-bounded by the
product of the soundness proportions of all resource components.

All 13/13 benchmarks achieve 100% sound asymptotic bounds. Furthermore, 9/13 bench-
marks have positive proportions of sound coefficients. This demonstrates the effectiveness of
the new hybrid-resource-analysis framework in practice. When Conventional AARA fails to
infer asymptotically tight bounds (e.g., MergeSort) or any polynomials bounds (e.g., Bubble-
Sort), resource decomposition can successfully infer a posterior distribution containing sound
symbolic bounds.

Four benchmarks (i.e., UnbalancedBST, RedBlackTree, AVLTree, and SplayTree) have 0%
sound coefficients. UnbalancedBST and SplayTree have the worst-case recursion depth of 1 · 𝑛
for tree insertions and lookups. Although the method correctly infer 100% linear recursion-
depth bounds, the coefficient 𝑐1 in the linear bound samples 𝑐0 + 𝑐1𝑛 is below 1 in all posterior
samples. This is because the worst-case inputs rarely arise if inputs are generated randomly,
and most data points lie well below the line 1 · 𝑛. RedBlackTree has the worst-case recursion
depth of 2 log2(𝑛), and AVLTree has the worst-case recursion depth of log𝜙 (1 +

√
5𝑛), where 𝜙

is the golden ratio. Again, with randomly generated inputs, the worst-case inputs rarely arise.
Moreover, it is unclear what the tight worst-case recursion depth of RedBlackTree is.

Comparison to Hybrid AARA Because Hybrid AARA can only infer polynomial bounds, it
cannot infer asymptotically tight bounds for 8/13 benchmarks whose ground-truth bounds in-
volve logarithm (e.g.,MergeSort). Since Conventional AARA is a special case of Hybrid AARA,
3/13 benchmarks that can be analyzed by Conventional AARA are also handled successfully
by Hybrid AARA. The remaining 2/13 benchmarks (i.e., BubbleSort and BellmanFord) have
ground-truth polynomial bounds and cannot be handled by Conventional AARA. To conduct
Hybrid AARA on these two benchmarks, the best we can do is to analyze the entire source
code using data-driven analysis on the total costs of the programs. Since Conventional AARA
already fails to reason about the outermost functions’ recursion depths in both benchmarks,
we cannot perform data-driven analysis on a single loop iteration and static analysis on the
outermost functions. For BubbleSort, Hybrid AARA’s data-driven analysis yields 40.1% sound
quadratic bounds [188]. For BellmanFord, it delivers 0.0% sound cubic bounds, even if we only
examine the most significant coefficient (for the factor |𝑉 |2𝑑) in the inferred polynomial cost
bounds.

Analysis time The last two columns of Tab 8.1 show the analysis time of Bayesian infer-
ence for resource components’ bounds and Conventional AARA for the overall cost bounds.
The analysis time of Bayesian inference is under 2min. Its variance is due to the variance in
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Figure 8.1: Posterior distributions of resource guards and total cost in HeapSort.
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Figure 8.2: Posterior distributions of resource guards and total cost in RedBlackTree.

the dataset sizes |Dℓ |. The analysis time of Conventional AARA varies greatly, from 0.16 s
(BubbleSort) to 53min (Dijkstra). RaML takes a long time for RedBlackTree, Prim, and Dijkstra
because their resource-guarded programs yield a large number of linear constraints to solve.

Distributions of inferred bounds Figs. 8.1 and 8.2 display three posterior distributions in
HeapSort and RedBlackTree, respectively: two resource components’ symbolic bounds and the
overall cost bounds. In the two leftmost plots of Fig. 8.1 for HeapSort’s resource components,
the 5–95th percentile ranges of the posterior distributions (light-blue shades) have visible width.
This variation accounts for the uncertainty of the distance between the true worst-case bounds
and the maximum observed values. Furthermore, the probabilistic model used in Bayesian
inference is designed such that any sound symbolic bound, including the true bound, has a
positive density in the posterior distribution.

In the two leftmost plots in Fig. 8.2 for RedBlackTree’s resource components, although the
posterior distributions lie above the observed data (black dots), they are still below the ground-
truth bound 2 log2(𝑛) (dashed red lines). The ground-truth bound is the best (but not necessarily
tight) bound that we know of for the red-black tree’s height. If one seeks a more conservative
bound, one can adjust the probabilistic model by adding more buffer on top of the maximum
observed data.

In the rightmost plots of Figs. 8.1 and 8.2 for the overall cost bounds, the median inferred
cost bounds (blue line and surface) are significantly higher than the observed costs (black dots),
even though they are very close to each other in the two leftmost plots for individual resource
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Figure 8.3: Interactively derived bounds of two resource components and the total cost in
Kruskal. Blue wireframes are the bounds inferred by AARA+interactive resource analysis, and
black dots indicate observed data.

components. This is because the overall cost bounds 𝑓 (x, r) of the resource-guarded programs
of HeapSort and RedBlackTree, which are statically inferred by Conventional AARA, are sound
but not tight with respect to the observed cost measurements.

8.6 Integrating StaticAnalysis and InteractiveTheoremProv-

ing

This section presents an integration of static resource analysis, specifically AARA [112], and in-
teractive resource analysis, where cost bounds are derived via interactive theorem provers (e.g.,
Coq [29] and Agda [182]). While AARA and resource analysis via interactive theorem proving
both guarantee soundness of inferred bounds, they differ in expressiveness and automation.
AARA is fully automatic, but can only express polynomial cost bounds. Meanwhile, interactive
methods let the user manually prove any symbolic cost bounds that is expressible in the under-
lying program logic. By combining these complementary techniques, we can derive non-trivial
cost bounds while reducing the manual work of interactive analysis. The manual work of de-
riving a cost bound of a code fragment 𝑃 via interactive theorem proving can be amortized if 𝑃
is a helper function in many programs that the user would like to analyze.

To showcase this instantiation, I analyze Kruskal’s algorithm for minimum spanning trees
implemented in OCaml, where the resource metric of interest is the number of function calls.
§B.2.14 displays OCaml code of Kruskal. Given a weighted graph, Kruskal first runsMergeSort
to sort all edges in the ascending order of their weights. The algorithm next assigns a singleton
set (i.e., singleton spanning tree) to each vertex. The algorithm then iteratively merges two sets
in the ascending order of edge weights, where sets are tracked by a union-find data structure.
Every operation in the union-find data structure has an amortized cost of𝑂 (𝛼 (𝑛)), where 𝛼 (·)
is the inverse Ackermann function and 𝑛 is the number of elements in the data structure [14,
138, 214, 215].

To apply resource decomposition to Kruskal, I use two resource components: (i) recursion
depth of merge sort for sorting all edges; and (ii) total cost of all calls to the union-find data
structure. Their symbolic bounds, 𝑔1 and 𝑔2, can be derived by interactive resource analysis [52,
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180, 222]:

𝑔1(𝑑, |𝑉 |) ≔ 1 + ⌈log2(𝑑 · |𝑉 |)⌉ 𝑔2(𝑑, |𝑉 |) ≔ 𝑐make · |𝑉 | + 𝑐eq · 𝑑 · |𝑉 | + 𝑐union · |𝑉 |, (8.6.1)

where 𝑑 is the maximum degree of vertices, |𝑉 | is the number of vertices, and 𝑐𝑖 is an amortized
cost of a union-find operation 𝑖 ∈ {make, eq, union}. Amortized cost bounds of union-find op-
erations are formally derived by Charguéraud and Pottier [52] using Iris with time credits [168]:

𝑐make ≔ 3 𝑐eq ≔ 4𝛼 ( |𝑉 |) + 9 𝑐union ≔ 4𝛼 ( |𝑉 |) + 12. (8.6.2)

Meanwhile, the original program of Kruskal is extended with two resource guards 𝑟𝑖 (𝑖 = 1, 2)
that track the two resource components. Analyzing the resulting resource-guarded program,
AARA infers the following overall cost bound for Kruskal parametric in the resource guards:

𝑓 (𝑑, |𝑉 |, 𝑟1, 𝑟2) ≔ 7 + 3.5|𝑉 | + 𝑑 · |𝑉 | + 3.5𝑑 · |𝑉 | · 𝑟1 + 1.5𝑟2. (8.6.3)

Finally, substituting resource-component bounds 𝑔𝑖 (Eq (8.6.1)) for 𝑟𝑖 (𝑖 = 1, 2) in Eq (8.6.3) gives
an overall cost bound for the original Kruskal:

𝑓 (𝑑, |𝑉 |, 𝑔1(𝑑, |𝑉 |), 𝑔2(𝑑, |𝑉 |)) = 7 + 26|𝑉 | + 18𝑑 · |𝑉 | + 3.5𝑑 · |𝑉 | · ⌈log2(𝑑 · |𝑉 |)⌉
+ 6𝛼 ( |𝑉 |) · 𝑑 · |𝑉 | + 6𝛼 ( |𝑉 |) · |𝑉 |.

(8.6.4)

This bound is sound because, by Thm. 8.4.1, composing the resource components’ sound bounds
(8.6.1) and the resource-guarded program’s sound bound (8.6.3) yields a sound bound of the
original Kruskal. The bound (8.6.4) is 𝑂 (𝑑 · |𝑉 | log(𝑑 · |𝑉 |)), which is dominated by the cost of
merge sort.

Fig. 8.3 displays inferred bounds (blue wireframes) for the two resource components and
total cost of Kruskal. The bounds are sound with respect to the observed cost measurements
(black dots).

8.7 Integrating SMT-Based Semi-Automatic Analysis with

Bayesian Data-Driven Analysis

This section demonstrates a third instantiation of resource decomposition that integrates SMT-
based semi-automatic resource analysis and Bayesian data-driven resource analysis. For illus-
tration, I analyze quicksort on lists of natural numbers, where the resource metric of interest is
the number of function calls. To compare natural numbers, the comparison function converts
them to binary encodings and traverses them. Hence, an overall cost bound of quicksort is
𝑂 (𝑛2 log𝑚), where 𝑛 is the input list length and𝑚 is the maximum number appearing in the
list. §B.2.15 displays the source code.

TiML [222] is an SMT-based semi-automatic resource-analysis method for Standard ML
programs. In TiML, the user first annotates a program to define sizes of data structures and
specify candidate symbolic cost bounds. Walking through the annotated code, a type checker
generates verifications conditions (VCs), which are then automatically checked by the SMT
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Figure 8.4: Posterior distributions of a resource guard and total cost in QuickSortTiML.

solver Z3 [72]. TiML is sound: if Z3 successfully verifies the VCs, the user-supplied candidate
bounds must be worst-case bounds.

To analyze quicksort described above (dubbed QuickSortTiML), I set a resource compo-
nent to be the logarithmic cost of the comparison function. TiML struggles to verify concrete

bounds with logarithm because SMT solvers do not handle logarithm well. TiML can only infer
asymptotic bounds with logarithm (e.g., MergeSort) by pattern-matching VCs with the Master
Theorem [222]. To complement TiML, I use Bayesian data-driven analysis to statistically in-
fer a logarithmic symbolic bound of the resource component. I run QuickSortTiML on many
inputs, recording the cost of the comparison function and two input sizes 𝑛 (input list length)
and 𝑚 (maximum number in the list). For Bayesian inference of the comparison function’s
cost, I reuse the same probabilistic model (8.5.6)–(8.5.9) from the first instantiation of resource
decomposition (§8.5.2), which can infer logarithmic and linear symbolic bounds.

Meanwhile, I use TiML to verify a candidate cost bound of the resource-guarded code of
QuickSortTiML, which extends the original code with a resource guard to track the comparison
function’s cost. TiML successfully verifies a user-supplied cost bound

𝑓 (𝑛,𝑚, 𝑟 ) ≔ 2𝑛 + 𝑛(𝑛 + 1) (𝑟 + 2), (8.7.1)

where 𝑛 and𝑚 are the two original input sizes and 𝑟 is the resource guard. Finally, I substitute
a statistically inferred resource-component bound, say 𝑔(𝑛,𝑚) = ⌈1.1 + 1.2 log2(𝑚 + 1)⌉, for 𝑟
in Eq (8.7.1). It yields an overall cost bound for the original QuickSortTiML:

𝑓 (𝑛,𝑚,𝑔(𝑛,𝑚)) = 2𝑛 + 𝑛(𝑛 + 1) (⌈1.1 + 1.2 log2(𝑚 + 1)⌉ + 2). (8.7.2)

Fig. 8.4 displays posterior distributions of the resource guard and total cost of QuickSort-
TiML. 8410/12000 (70.1%) posterior samples of the resource-component bounds are sound with
respect to the ground-truth bound 1 + ⌈log2(𝑚 + 1)⌉ of the comparison function. Hence, due
to Remark 8.5.1 and the soundness guarantee of TiML, the posterior distribution of overall cost
bounds, which are given by composing TiML’s and Bayesian analysis’s inferred bounds, also
have the soundness proportion of 70.1%.

Even though TiML struggles to verify symbolic bounds involving logarithm, it is still ben-
eficial to retain it, instead of resorting to Bayesian analysis exclusively. Fig. 8.4 (right plot)
exhibits a large gap between observed total costs (black dots) and the ground-truth total cost
bound (which is close to the blue wireframe). If we conducted purely data-driven analysis with-
out TiML, the inferred overall bounds could be unsound with a high probability.
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8.8 Discussion

This chapter has introduced the second hybrid resource analysis: resource decomposition. In
this section, I first reflect on the design of resource decomposition, discussing its generaliza-
tion (§8.8.1). Next, I discuss how to identify suitable resource components in practice (§8.8.2).
Finally, I compare resource decomposition with Hybrid AARA, describing their upsides and
downsides (§8.8.3).

8.8.1 Interface Design of Resource Decomposition

This section discusses the resource-guard-mediated interface between constituent analyses in
resource decomposition. It also discusses possible generalization of resource guards.

User-adjustable interface Similarly to Hybrid AARA, resource decomposition has a user-
adjustable interface: the user can freely specify what quantities should be analyzed by one of
the constituent analysis methods. Consequently, resource decomposition covers a spectrum
ranging from one analysis to another analysis, as does Hybrid AARA. If the user specifies no
resource components, a whole program is analyzed by one analysis method. On the other
hand, if a single resource component represents the cost of a whole program, then the program
is analyzed by the other analysis method.

Variable-based interface In resource decomposition, the interface between constituent anal-
yses is a resource guard, which is a numeric non-negative variable. Let 𝑃rd(𝑥) be a resource-
decomposed program and 𝑃rg(𝑥, r) be a resource-guarded program with resource guards r. One
constituent analysis analyzes the program 𝑃rg(𝑥, r) to infer an overall cost bound 𝑓 (𝑥, 𝑟1, . . . , 𝑟 |r|),
while the other constituent analysis examines the program 𝑃rd(𝑥) to infer symbolic bounds
𝑔𝑖 (𝑥) (𝑖 = 1, . . . , |r|) of high-water marks of the resource components. The inferred symbolic
bounds 𝑓 (𝑥, 𝑟1, . . . , 𝑟 |r|) and 𝑔𝑖 (𝑥) (𝑖 = 1, . . . , |r|) are composed by substituting the latter for the
resource guards 𝑟𝑖 in the former. Thus, resource guards act as an interface between the inference
results of the constituent analyses.

In the literature of program analysis, numeric-variable-based interfaces are not used outside
resource analysis. This is because many program-analysis tasks concern logical properties of
programs, while numeric variables are only useful for quantitative properties (e.g., cost bounds).
Within the literature of resource analysis, as numeric-variable-based interfaces, SPEED [102]
uses counters, and calf [180] uses clocks. §5.2.1 and §5.2.3 describe similarities and differences
between resource guards and counters (in SPEED) and clocks (in calf), respectively.

Comparisonwith ghost variables Tab 8.2 compares resource components, resource guards,
and ghost variables. Resource components and ghost variables have similar functionalities: they
are both placed in original programs and do not modify their operational semantics. Hence, re-
source components and ghost variables are both ghosts. Nonetheless, they have different use
cases and serve different roles. Resource components are used in hybrid resource analysis:
they specify what quantities are analyzed by constituent analysis methods of the resource-
decomposition framework. Meanwhile, ghost variables are used in program verification and
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Table 8.2: Comparison of resource components, resource guards, and ghost variables.

Resource Component Resource Guard Ghost Variable

Placement Original program Modified program Original program
Control Flow Unmodified Modified Unmodified
Use Case Hybrid resource analysis Hybrid resource analysis Program verification and

contracts
Role Specify a resource metric to

be analyzed by one of the
constituent analyses

Create a resource-guarded
program whose cost bound
is parametric in resource
components

Store old values of mutable
program variables or repre-
sent extra-functional proper-
ties [125]

contracts: ghost variables retain old values of mutable program variables or represent extra-
functional properties (e.g., resource usage) [125].

More importantly, the chief novelty of the resource-decomposition framework is not re-
source components, but the automatic insertion of resource guards according to user-specified
resource components. Program verification via ghost variables has no counterparts to this au-
tomatic insertion of resource guards. Resource components only serve as user annotations for
specifying what quantities are tracked by resource guards.

Generalization of resource components and guards Resource guards can be generalized
to more complex data types (e.g., lists and trees) to store more information. In the current
formulation of resource decomposition, resource guards are numeric variables tracking user-
specified resource components. Thus, a single resource guard only captures one number, that
is, one quantitative aspect of an inference result. Examples include the cost of a code fragment,
the recursion depth of a function, and the number of recursive calls of a function.

If a resource guard is extended from a numeric type (e.g., N and Q≥0) to a more complex
data type, it can capture richer information about an inference result. If a resource guard has a
sum type 𝜏1 + 𝜏2 (e.g., Booleans), it can capture which branch of an if-else expression is taken.
Furthermore, if a resource guard has a list type 𝐿(𝜏1 + 𝜏2), it can represent a chain of branches
taken in a sequence of if-else expressions. Lastly, with a tree-typed resource guard, it can
represent a recursion tree (i.e., tree-shaped visualization of recursive calls) of a function.

A technical challenge of this idea is that we would need to develop an analysis method to
infer symbolic bound returning non-numerical objects (e.g., lists and trees). Also, upper bounds
only make sense when some ordering (e.g., partial orders and total orders) exists, but it does
not necessarily exist for resource guards of non-trivial types.

8.8.2 Using Resource Decomposition in Practice

This section discusses how to identify suitable resource components.

Choice of resource components As with program annotations in other program-analysis
settings (e.g., loop invariants and ghost variables), identifying suitable resource components
is an essential part of developing an effective instantiation of resource decomposition. These
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components must be carefully selected by the user such that the resource guards in the resulting
resource-guarded program can each be analyzed by existing resource-analysis methods. So the
resource components must be developed in tandem with the chosen resource analyses, and this
requires knowledge of both the program being analyzed and the strengths and limitations of
the analysis methods.

Typically, resource components capture quantities that cannot be analyzed by the analysis
technique that analyzes a resource-guarded program. This chapter has demonstrated three ex-
amples of resource components: recursion depths (§8.5), the total cost of union-find operations
(§8.6), and the individual cost of a comparison function (§8.7). In §8.5 and §8.6, Conventional
AARA infers an overall cost bound 𝑓 (𝑥, r) of a resource-guarded program. Just like any other
static resource analysis, Conventional AARA can fail to statically infer recursion-depth bounds
(e.g., 𝑂 (𝑛) recursion depth of BubbleSort). Hence, in §8.5, resource components are set to
recursion depths, and their symbolic bounds are inferred by a different analysis technique, par-
ticularly Bayesian analysis. Similarly, Conventional AARA is unable to express non-polynomial
symbolic bounds (e.g., logarithmic recursion-depth bounds of MergeSort and the inverse Ack-
ermann function appearing in the time complexity of a union-find data structure). So resource
components are set to such quantities in Kruskal (§8.6), and their bounds are derived by inter-
active resource analysis.

Automatic selection of resource components It is possible to automate the selection of
resource components. Given a target program 𝑃 (𝑥), suppose we analyze it by the integration
of static and data-driven analyses as in §8.5. Our goal is to infer a cost bound of the program 𝑃

with maximal reliance on static analysis. If static analysis fails to analyze the whole program
𝑃 , we incrementally expand the scope of data-driven analysis until we derive a bound. We
examine functions in the program 𝑃 in the reversed topological order in the call graph. For
each function 𝑓 , we test if the function 𝑓 can be analyzed by static analysis. If not, we narrow
the scope of static analysis by trying out candidate resource components:

1. The recursion depth of the function 𝑓 ;
2. The number of recursive calls to the function 𝑓 ;
3. The maximum cost of a single function call to the function 𝑓 (including its recursive calls

to itself); and
4. The total cost of all function calls to the function 𝑓 made in the program 𝑃 .

If a resource component is set to the cost of the program 𝑃 ’s main function (which is the last
function to examine in the reversed topological order in the call graph), resource decomposition
boils down to fully data-driven analysis.

This automatic procedure for selecting resource components stems from an observation
that static analysis commonly fails for the following reasons: (i) the analysis is unable to bound
the number of recursive calls (or loop iterations); or (ii) the analysis is unable to bound the size
of an argument to a function in the program 𝑃 . Given a recursive function 𝑓 , if static analysis
does not fail for the second reason, but the first reason, we can analyze (i) the recursion body by
static analysis; and (ii) the number of recursive calls by data-driven analysis. However, if static
analysis fails for the second reason, we have a resource component track the maximum cost of
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Table 8.3: Comparison of Hybrid AARA and resource decomposition.

Hybrid AARA (§7) Resource Decomposition (§8)

Interface Resource-annotated typing judgment Resource guard
Outer Inference Result Resource-annotated typing tree Symbolic bound 𝑓 (𝑥, 𝑟 ) of a resource-

guarded program
Inner Inference Result Resource-annotated typing judgment Symbolic bound 𝑔(𝑥) of a resource com-

ponent
Information Exchange Linear constraints are propagated from

Conventional AARA to data-driven anal-
ysis

No exchange of information between
constituent analyses

Inferred Bounds Polynomial bounds Any symbolic bounds
Source Code Constituent analyses only need black-

box access to each other’s code fragments
Constituent analyses may need white-
box access to each other’s code fragments

Analysis Methods Modified to incorporate linear con-
straints

Unmodified

Combined Analyses Conventional AARA + data-driven anal-
ysis

Any

a single function call to 𝑓 (including its recursive calls to itself). Lastly, if the total number of
calls to the function 𝑓 made in the program 𝑃 cannot be statically analyzed, we have a resource
component track the total cost of all calls to the function 𝑓 .

8.8.3 Comparison between Hybrid AARA and Resource Decomposi-

tion

This section compares the two hybrid resource analyses introduced in this thesis: Hybrid AARA
and resource decomposition. Tab 8.3 summarizes the comparison.

Interface design Hybrid AARA and resource decomposition differ in two aspects of their
interface designs:

1. Encodings of inference results; and
2. Exchange of information between constituent analyses.
For an interface between inference results, Hybrid AARA uses types (namely resource-

annotated types), while resource decomposition uses numeric variables (namely resource guards).
In Hybrid AARA, data-driven analysis infers a resource-annotated typing judgment 𝐽anno, and
Conventional AARA infers a resource-annotated typing tree 𝑇anno. To compose the two in-
ference results, the typing judgment 𝐽anno is inserted into the typing tree 𝑇anno. In resource
decomposition, one analysis infers a resource-component bound 𝑔(𝑥) and another analysis in-
fers an overall cost bound 𝑓 (𝑥, 𝑟 ) parametric in both an original input 𝑥 and a resource guard 𝑟 .
The two inference results are composed by substitution, resulting in 𝑓 (𝑥,𝑔(𝑥)). This difference
is the most fundamental difference between the two hybrid resource analyses. It is responsible
for the other differences as discussed below.

Hybrid AARA and resource decomposition differ in whether they exchange information
between constituent analyses while they are conducted. Hybrid AARA propagates linear con-

151



straints from Conventional AARA to data-driven analysis before deriving an overall cost bound
(by either optimization or sampling). Specifically, Hybrid Opt and Hybrid BayesWC merge
linear constraints from Conventional AARA with linear constraints from the respective data-
driven analyses, solving the resulting linear program for an overall cost bound. Hybrid BayesPC
uses linear constraints from the static part to restrict the state space of a sampling algorithm
in Bayesian inference. By contrast, resource decomposition does not exchange constraints be-
tween constituent analyses. They are performed independently to obtain their respective sym-
bolic bounds, which are then composed by substitution.

In Hybrid AARA, the need to exchange information (i.e., linear constraints) between con-
stituent analyses arises from the use of resource-annotated types in the encoding of inference
results. Given an annotated expression statℓ 𝑒 (ℓ ∈ L), the data-driven part of Hybrid AARA
infers a resource-annotated typing judgment Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩, which assigns potential
functions to the input and output of the expression 𝑒 . Given a fixed net-cost bound of the ex-
pression 𝑒 , there exist (infinitely) many ways to assign input and output potential functions. An
appropriate resource-annotated typing judgment is determined only when we know howmuch
output potential must remain after the expression 𝑒 is executed. Therefore, before inferring a
resource-annotated typing judgment, the data-driven part of Hybrid AARAmust receive linear
constraints from the static part of Hybrid AARA.

Expressible symbolic bounds Hybrid AARA and resource decomposition have a trade-off
in their expressible symbolic bounds. Thus, neither of them is more expressive than the other.

Thanks to the compositionality of types, symbolic bounds inferred by constituent analy-
ses of Hybrid AARA are local: they are parametric in the inputs (and outputs) of local code
fragments. For illustration, consider an annotated code fragment statℓ 𝑒 (ℓ ∈ L). Data-driven
analysis inside Hybrid AARA infers a resource-annotated typing judgment of the expression 𝑒 .
It is a symbolic bound parametric in the input and output of 𝑒 , which is the scope of data-driven
analysis, rather than the input and output of the whole program. However, Hybrid AARA can
only express polynomial bounds due to the fact that resource annotated types only capture
polynomial potential functions.

On the other hand, for resource decomposition, resource-component bounds are global:
they are parametric in the inputs of entire programs. Let 𝑃main(𝑥) be a target program for re-
source analysis and 𝑃helper(𝑦) be a (helper) function defined inside the program 𝑃main(𝑥). Sup-
pose we set a resource component to the recursion depth of the function 𝑃helper(𝑦). Resource-
component bounds can have arbitrary shapes, including non-polynomial bounds. However,
resource-component bounds must be parametric in the global input 𝑥 (and also the output if
the user wishes) of the target program 𝑃main(𝑥), as opposed to the local input 𝑦 of the helper
function 𝑃helper(𝑦). This is unsatisfactory since it would be more sensible to derive a recursion-
depth bound of 𝑃helper(𝑦) in terms of its own input 𝑦.

If we instead derive a recursion-depth bound 𝑓 ( |𝑦 |) parametric in the input size of 𝑃helper(𝑦),
we additionally need to obtain a bound |𝑦 | ≤ 𝑔( |𝑥 |) relating the local input size |𝑦 | and the global
input size |𝑥 |. The bound |𝑦 | ≤ 𝑔( |𝑥 |) is used to create a recursion-depth bound 𝑓 (𝑔( |𝑥 |))
parametric in the global input 𝑥 . Otherwise, if we simply substitute the resource-component
bound 𝑓 ( |𝑦 |) for a resource guard, the resulting overall cost bound of 𝑃main(𝑥) mentions the
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local input𝑦. This is undesirable as, in resource analysis, cost bounds should only be parametric
in the global input 𝑥 .

Black-box access to the source code Hybrid AARA is more suitable than resource decom-
position if some code fragments are black boxes (i.e., their code is unavailable publicly). In
Hybrid AARA, given an annotated code fragment statℓ 𝑒 (ℓ ∈ L), the static part needs no ac-
cess to the expression 𝑒’s internal code. This is because resource-annotated typing judgments,
which are used as an interface between constituent analyses in Hybrid AARA, store informa-
tion about not only the costs of code fragments but also how their inputs sizes change. On the
other hand, in resource decomposition, a single resource component only captures one num-
ber. For example, if a resource component is set to the high-water-mark cost of a code fragment
𝑒 , the resource component cannot capture the net cost or size-change information of 𝑒 . As a
result, when a resource-guarded program is analyzed to infer an overall cost bound, we cannot
omit the code fragment 𝑒 , since the analysis may require to know how the expression 𝑒 changes
the input size.

To fix this drawback of resource decomposition, we may use another resource component
to represent the output size of the expression 𝑒 . This works if 𝑒 has a simple data type (e.g., non-
nested lists), and its size is expressible as a high-water mark of annotations mark and unmark.
But if it has a complex data type (e.g., nested lists) with multiple size measures (e.g., the outer
list length and the combined inner list length), resource composition may not work effectively.

Black-box access to analysis methods Resource decomposition is more suitable than Hy-
brid AARA if constituent analyses to be integrated are black boxes (i.e., their implementations
cannot be easily modified). In resource decomposition, constituent analyses methods are per-
formed individually, and their inferred symbolic bounds are composed by substitution. By con-
trast, Hybrid AARA, particularly Hybrid BayesPC, propagates linear constraints from the static
part to the data-driven part to restrict the latter’s search space. Hence, the data-driven analysis
method must be modified to incorporate linear constraints. For instance, the prototype im-
plementation of Hybrid BayesPC (§7.5.3) uses the sampling algorithm Reflective Hamiltonian
Monte Carlo (ReHMC) [47, 49, 50, 171], which adapts the conventional HMC be able to incor-
porate linear constraints. If a different data-driven method is to be used (e.g., large language
models (LLMs) [51]), its implementation needs to be modified to be used in Hybrid BayesPC.

Range of composable analysis techniques Resource decomposition is more versatile than
Hybrid AARA in the integration of analysis techniques: the former imposes fewer restrictions
on the kind of resource analyses it can integrate. In resource decomposition, one constituent
analysis infers a resource-component bound from a resource-decomposed program, and the
other analysis infers an overall cost bound of a resource-guarded program. For both of the
constituent analyses, their inference results are symbolic bounds parametric in the program
inputs. Therefore, any analysis techniques can be integrated by resource decomposition as
long as their inference results are symbolic bounds. Hybrid AARA, on the other hand, is only
applicable to the integration of Conventional AARA and another analysis method (e.g., data-
driven analysis) that can infer resource-annotated typing judgments. This is due to the use of
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resource-annotated types in the interface design of Hybrid AARA.
Conceptually, Hybrid AARA is not specific to Conventional AARA—any technique can be

used in place of Conventional AARA as long as it returns a symbolic bound with a placeholder
for a resource-annotated typing judgment. However, in practice, only Conventional AARA,
which returns resource-annotated typing trees, meets this criterion.
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Chapter 9

Optimization of Probabilistic

Program-Input Generators

This chapter presents optimization of program-input generators. Given a target program 𝑃 (𝑥)
of data-driven resource analysis, a program-input generator generates inputs 𝑣1, . . . , 𝑣𝑁 to the
program 𝑃 (𝑥). The inputs 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 ) are used to collect cost measurements of 𝑃 (𝑥).
Typically, data-driven analysis has no control over the data-collection procedure: fixed default
generators are used to generate program inputs in data-driven analysis.

In this chapter, I present a new data-driven-analysis methodology where statistical analy-
sis infers not only worst-case cost bounds but also worst-case generators for data collection.
§9.1 motivates the optimization of generators. §9.2 presents a domain-specific language (DSL)
of generators where (i) all values of a user-specified target size have positive probabilities of
being generated; and (ii) the DSL admits generators of any algebraic data types. §9.3 presents a
genetic-algorithm-based optimization procedure for generators. Finally, §9.4 evaluates the op-
timization algorithm of generators. The empirical evaluation shows that optimized generators
trigger higher costs than baseline generators that draw integers uniformly at random from a
broad interval. However, optimized generators sometimes fail to trigger the worst-case costs.

9.1 Introduction

Random input generation Data-driven resource analysis in the literature [94, 131, 234]
typically generates program inputs randomly (e.g., sample integers uniformly at random from
some interval), running an input program on these inputs to record their cost measurements.
Randomly generated inputs do not always exhibit worst-case costs. As a result, Opt (§7.3.2),
which optimizes a symbolic cost bound without adding an extra buffer on top of maximum ob-
served costs, may return unsound bounds (see Fig. 7.2a). Bayesian data-driven analysis methods
BayesWC (§7.3.3) and BayesPC (§7.3.4) partially mitigate the unsoundness of Opt by (i) allow-
ing the user to specify how conservative inferred cost bounds should be in a probabilistic model;
and (ii) returning a robust posterior distribution of cost bounds where any bound has a positive
probability density (Eq (7.3.9)).

Nonetheless, even with the ability to adjust the gaps between observed costs and predicted
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Figure 9.1: Runtime-cost data generated by probabilistic program-input generators for Quick-
Sort. For each input size, 10 integer lists are generated. Inferred cost bounds (blue lines) are
derived by Opt (§7.3.2), which optimizes a cost bound subject to the constraint that the bound
lies above all cost measurements. The rightmost plot displays the runtime-cost data of the prob-
abilistic generators obtained by a genetic algorithm.

cost bounds, Bayesian data-driven analysis can still struggle to infer sound cost bounds from
cost measurements of randomly generated inputs. This happens when the average-case com-
plexity of a program is significantly lower than its worst-case complexity. For example, in
QuickSort, the worst-case time complexity is 𝑂 (𝑛2), while the average-case complexity over
lists of uniformly distributed random integers is 𝑂 (𝑛 log𝑛). Furthermore, the time complexity
of QuickSort concentrates tightly around𝑂 (𝑛 log𝑛) [162, 163, 164, 221]. Unless this knowledge
is incorporated into a probabilistic model, it is difficult for data-driven analysis to correctly infer
an 𝑂 (𝑛2) worst-case cost bound.

In Fig. 9.1, the leftmost plot shows the costs of QuickSort on integer lists whose elements are
drawn uniformly at random from an interval [−500, 500]. Here, the resource metric of interest
is the number of function calls (including helper functions). For each input size, 10 integer
lists are generated. In the plot, the black dots indicate the costs of program inputs, the blue
line is a quadratic cost bound inferred by conducting Opt on the generated runtime-cost data,
and the red dashed line is the worst-case cost bound of QuickSort. Indeed, for the input size
of 𝑛 = 256 in the plot, the worst-case cost (red dashed line) is significantly higher than the
maximum observed cost of 10 randomly generated integer lists (black dots).

Hybrid resource analysis To further mitigate the unsoundness of data-driven analysis, hy-
brid resource analysis developed in this thesis combines data-driven analysis it with sound
resource analysis. For example, Hybrid AARA (§7) splits the source code into two disjoint
code regions, which are respectively analyzed by Bayesian data-driven analysis and Conven-
tional AARA. Also, in resource decomposition, the first instantiation (§8.5) performs Bayesian
inference on recursion depths of functions and Conventional AARA on the costs of individual
recursive calls. However, hybrid resource analysis only works when the source code of an input
program is available.

Generator optimization Orthogonal to hybrid resource analysis, another approach to miti-
gating the unsoundness of data-driven analysis is to search a diverse set of program-input gener-
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ators for an optimal generator for a target program. The suggested approach works as follows.
Given a program 𝑃 : 𝜏1 → 𝜏2, let G = {𝐺1,𝐺2, . . .} be a (possibly infinite) set of program-input
generators of type 𝜏1. Generators are programs that, when executed, generate values of type
𝜏1 of a specified input size. We run an optimization algorithm (e.g., genetic algorithm) in the
space G to identify an optimal (or nearly optimal) generator 𝐺opt that triggers high computa-
tional cost of the target program 𝑃 . The generator 𝐺opt is then executed to generate program
inputs 𝑣1, . . . , 𝑣𝑁 of varying input sizes. Finally, the program 𝑃 is executed on inputs 𝑣1, . . . , 𝑣𝑁
to construct runtime-cost data D to be used in statistical analysis.

The optimization of program-input generators is allowed to be adaptive: it runs an input
program 𝑃 : 𝜏1 → 𝜏2 on some program input 𝑣 : 𝜏1 and uses its cost measurement to adapt the
next search space to focus on. By contrast, in existing data-driven analysis, the data-collection
procedure uses a fixed set of program inputs to record cost measurements, regardless of an
input program 𝑃 .

A generator is a domain-specific program that has the same inductive structure as the target
data type 𝜏1 of values to generate. A generator takes as input the size of a value to generate. A
genetic algorithm is employed to search for an optimal (or near-optimal) generator. The genetic
algorithm maintains a finite pool, called a population, of generators. In each iteration, a new
population is created by performing genetic operations (e.g., mutations and crossovers) on the
abstract syntax trees (ASTs) of generators in the current population1.

An alternative to the optimization of generators is to optimize costs of individual input
sizes. We first perform fuzzing to identify worst-case (or nearly worst-case) inputs for each
input size [42, 152, 155, 160, 181, 185, 219, 226]. The worst-case costs discovered by fuzzing for
different input sizes are then aggregated into a dataset D of cost measurements.

Compared to this alternative approach, the optimization of generators is more scalable:
while the search space of program inputs grows exponentially in the input size, while the search
space of generators is independent of the input size. Wei et al. [224] demonstrate that Singular-
ity, a fuzzer of generators they have developed, is more effective than a program-input fuzzer
when the input size is large. Furthermore, generator fuzzing has an advantage that, once a de-
sirable generator is identified, it can generate values of any input sizes subsequently, without
the need to running a generator-optimization algorithm again. On the other hand, in program-
input fuzzing, every time the user wants a value of a new input size, a fuzzer must be invoked,
which can be time-consuming.

Fig. 9.1 shows runtime-cost data generated by probabilistic generators besides a random
one: (strictly) sorted lists2, (strictly) reversely sorted lists, and lists of identical elements. Unlike
Singularity [224], these generators are all probabilistic: they can generate different values every
time they are executed. Furthermore, for a fixed list length, any content of a generated list has
a positive probability of being generated, subject to the constraint that integers come from the
interval [−210, 210−1]. The rightmost plot in Fig. 9.1 shows the runtime-cost data of generators
obtained by a genetic algorithm. The best generator from the genetic algorithm successfully
generates runtime-cost data close to the ground-truth 𝑂 (𝑛 log𝑛) cost bound (red dashed line).

1The use of genetic algorithms to search for an optimal program is known as genetic programming [146, 147].
2A worst-case input of QuickSort in Fig. 9.1 is a non-strictly reversely sorted list, which can be a list where all

elements are identical. The resourcemetric of interest is the number of function calls, including helper functions. A
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9.2 Language of Probabilistic Program-Input Generators

This section introduces a domain-specific language (DSL) of probabilistic program-input gen-
erators. A generator is a program that probabilistically generates values of a fixed algebraic
data type and a fixed target size. The DSL of generators has the following characteristics that
Singularity [224], an existing work on generators, does not have:

1. All values of a user-specified target size have positive probabilities of being generated;
2. The DSL admits generators of any user-defined algebraic data types.
§9.2.1 defines the syntax of generators and sizes of values. §9.2.2 then describes an opera-

tional semantics of generators. Finally, §9.2.3 presents a type system of values and generators.

9.2.1 Syntax

Algebraic data types Fix a set T of type names and a set C of data constructors. Generators
support algebraic data types 𝜏sum defined in the following grammar:

𝜏atom F int | 𝑡 ∈ T atomic types
𝜏prod F 𝜏atom,1 × · · · × 𝜏atom,𝑘 product type;𝑘 ∈ N
𝜏sum F 𝑐1 𝜏prod,1 + · · · + 𝑐𝑘 𝜏prod,𝑘 sum type;𝑘 ∈ N, 𝑐1, . . . , 𝑐𝑘 ∈ C.

This grammar is analogous to OCaml’s grammar for type definitions, where product types 𝜏prod
are prepended with data constructors 𝑐 ∈ C. In the following, when data constructors do not
matter, I simply write 𝜏prod,1 + · · · + 𝜏prod,𝑘 , omitting data constructors.

The unit type unit can be defined as the unit of the product-type constructor, and the
Boolean type can be defined as the sum type unit + unit.

The user provides a finite set 𝑇 of type definitions of the form

𝑡 ≔ 𝜏sum,𝑡 , (9.2.1)

where 𝑡 ∈ T is a type name being defined and 𝜏sum,𝑡 is the type definition of 𝑡 . The type
definition 𝜏sum,𝑡 is allowed to mention other type names in the set𝑇 , including 𝑡 itself. If a type
name 𝑡 ∈ T is defined in a finite set 𝑇 of type definitions, I write 𝑡 ∈ dom(𝑇 ).

Values Values 𝑣 are formed by the following grammar:

𝑣 F 𝑧 ∈ Z | fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩) (𝑘 ∈ N; 𝑐 ∈ C; 𝑡 ∈ dom(𝑇 )) .

Only values of atomic types (i.e., int and type names 𝑡 ∈ T ) are considered as standalone
values. Sub-values such as tuples ⟨𝑣1, . . . , 𝑣𝑘⟩ and tagged values 𝑐 𝑣 are never generated as stan-
dalone values.

For illustration, consider a recursive type definition for integer lists:

𝐿int ≔ (nil unit) + (cons int × 𝐿int), (9.2.2)

strictly sorted list is not a worst-case input, as it makes fewer calls to the recursively implemented append function
than a reversely sorted list when recursive results are combined at the end of each recursive call of QuickSort.

158



where nil, cons ∈ C are data constructors for the empty list and non-empty lists, respectively.
The empty list is encoded as

[ ] ≔ fold𝐿int (nil ⟨⟩) . (9.2.3)

Sizes of values To run a generator, the user specifies the size of a value to generate. In con-
trast to the content of a value (e.g., lists), its size is fixed by the user, instead of being probabilis-
tically generated. Otherwise, if the size as well as the content of a value were probabilistically
generated by a generator, we would not be able to compare the quality of two generators fairly.

Given a value 𝑣 and a type name 𝑡 ∈ T , the size of the value 𝑣 according to the type name 𝑡
is a finite multiset of natural numbers denoted by size𝑡 (𝑣) ⊂ N≥1. The elements of size𝑡 (𝑣) each
indicate the numbers of constructs fold𝑡 (·) that appear along different branches of the value 𝑣 ’s
AST. The size size𝑡 (𝑣) is defined as

size𝑡 (𝑧 ∈ Z) ≔ ∅ size𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩) ≔
𝑘⊎
𝑖=1

size𝑡 (𝑣𝑖) (9.2.4)

size𝑡 (fold𝑡 (𝑣)) ≔
1 +

∑︁
𝑠∈size𝑡 (𝑣)

𝑠

 size𝑡1 (fold𝑡2 (𝑣)) ≔ size𝑡1 (𝑣), (9.2.5)

where the operator
⊎

in Eq (9.2.4) denotes a (disjoint) union of multisets, and Eq (9.2.5) assumes
𝑡1 ≠ 𝑡2.

In the left equation of Eq (9.2.4), the size of an integer with respect to any type name 𝑡 ∈ T
is defined as the empty set ∅. This is because integers contain no occurrences of the construct
fold𝑡 (·). In the right equation of Eq (9.2.4), given a tagged tuple 𝑣 ≔ 𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩, its size with
respect to a type name 𝑡 ∈ T is given by the union of size𝑡 (𝑣𝑖) (𝑖 = 1, . . . , 𝑘). That is, if the AST
of the tagged tuple 𝑣 has multiple branches, the size is given by the union of the constituent
branches’ sizes.

Eq. (9.2.5) has two cases for a value fold𝑡 (𝑣). The first case is where the outermost construct
fold𝑡 (·) has the same type 𝑡 as the type in the size operator size𝑡 (·). Given a value fold𝑡 (𝑣),
where 𝑣 = 𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩ (𝑐 ∈ C), its size with respect to the type name 𝑡 is a singleton set whose
sole element is one plus the sum of the sizes size𝑡 (𝑣𝑖) (𝑖 = 1, . . . , 𝑛) of constituent components
in the tuple. Conversely, if we seek size𝑡𝑡 (fold𝑡2 (𝑣)) where 1 ≠ 𝑡2, then it is given by size𝑡1 (𝑣).

For illustration, consider a nested integer list given by the type

𝐿outer ≔ unit + 𝐿inner × 𝐿outer 𝐿inner ≔ unit + int × 𝐿inner. (9.2.6)

Consider a nested integer list

𝑣 ≔ [[𝑧1,1, . . . , 𝑧1,𝑛1], . . . , [𝑧𝑘,1, . . . , 𝑧𝑘,𝑛𝑘 ]] (𝑘 ∈ N;𝑛1, . . . , 𝑛𝑘 ∈ N), (9.2.7)

where 𝑘 is the outer list length, and 𝑛𝑖 (𝑖 = 1, . . . , 𝑘) is the length of the 𝑖th inner list. We have

size𝐿outer (𝑣) = 1 + 𝑘 size𝐿inner (𝑣) = {1 + 𝑛1, . . . , 1 + 𝑛𝑘}. (9.2.8)
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The outer list size size𝐿outer (𝑣) is 1+𝑘 , instead of just 𝑘 , because the empty list (Eq (9.2.3)) already
has size 1. Additionally, the size of the nested list 𝑣 with respect to the inner list type 𝐿inner is a
multiset {1 + 𝑛1, . . . , 1 + 𝑛𝑘}, whose elements are the inner lists’ sizes.

To run a generator, the user specifies target sizes for all relevant types names. In the above
example of nested integer lists (Eq (9.2.6)), the user specifies two target sizes 𝑠outer, 𝑠inner ∈ N,
which are natural numbers instead of multisets. Let 𝑣 denote a nested list to be generated. The
target size 𝑠outer is the outer list size size𝐿outer (𝑣), and the target size 𝑠inner is the size of all inner
lists in the nested list 𝑣 .

The current implementation of generators cannot generate those values whose sizes cannot
be specified by single numbers (e.g., a nested list whose inner lists have different lengths). If
the user seeks greater flexibility in specifying the size and shape of a value to be generated, the
implementation of generators can be modified such that target sizes are lists, instead of single
numbers. For instance, for a nested list, if the user would like the inner lists to be of different
sizes, they can provide a list of numbers to be used as inner lists’ sizes. However, for simplicity,
the user-specified target sizes are restricted to numbers, as opposed to lists.

Distributions for tagged values and tuples To generate inhabitants of algebraic data types,
generators make two decisions:

1. Which data constructor 𝑐 ∈ C to choose for a tagged value 𝑐 𝑣 of a sum type;
2. How to split a target size 𝑠 ∈ N of a tuple among its components.

To make these decisions probabilistically, a generator is equipped with two categorical distri-
butions, 𝑑sum and 𝑑prod. They are both formed by the following grammar:

𝑑 F (𝑝1, . . . , 𝑝𝑘) (𝑝1, . . . , 𝑝𝑘 ∈ [0, 1];
∑
𝑖 𝑝𝑖 = 1).

For the first decision, given a categorical distribution 𝑑sum, a data constructor 𝑐𝑖 ∈ C (𝑖 =
1, . . . , 𝑛) is selected with probability 𝑝𝑖 ∈ [0, 1] to create a tagged value 𝑐𝑖 𝑣 . For the second deci-
sion, for each type name 𝑡 ∈ dom(𝑇 ), its target size 𝑠𝑡 ∈ N is split among a tuple’s components
according to a multinomial distribution parametrized by 𝑠𝑡 ∈ N and a categorical distribution
𝑑prod. Multinomial distributions generalize binomial distributions and have two parameters:
𝑠 ∈ N (i.e., the target size) and (𝑝1, . . . , 𝑝𝑘) (i.e., a categorical distribution 𝑑prod). Given 𝑠 ∈ N
many objects, each of them is randomly assigned the 𝑖th class (i.e., the 𝑖th component of a tuple)
with probability 𝑝𝑖 ∈ [0, 1]. The size assigned to the 𝑖th component is the number of objects
assigned to the 𝑖th component.

Expressions Fix a countable set X of program variables. Expressions 𝑒 are formed by the
grammar

𝑒 F 𝑥 ∈ X | 𝑧 ∈ Z | succ(𝑒) | pred(𝑒) variable and arithmetic expressions
| fold𝑡 (𝑐 ⟨𝑒1, . . . , 𝑒𝑘⟩) fold; 𝑐 ∈ C; 𝑡 ∈ T
| proj𝑘𝜏 (𝑒) projection;𝜏 ∈ {int} ∪ T ;𝑘 ∈ N≥1
| size𝑡 (𝑒) size; 𝑡 ∈ T .
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The projection operator proj𝑘𝜏 (𝑒) (𝑡 ∈ {int} ∪T and 𝑘 ∈ N≥1) first evaluates the expression
𝑒 . If its value has the form fold𝑡 (⟨𝑣1, . . . , 𝑣𝑖⟩) with 𝑖 ≥ 𝑘 and the 𝑘 th component 𝑣𝑘 has the type 𝜏 ,
the projection operator returns 𝑣𝑘 . Otherwise, if the evaluation result of the expression 𝑒 does
not have enough components or its 𝑘 th component has a type different from 𝜏 ∈ {int} ∪ T , a
random value of type 𝜏 is generated and returned.

The size operator size𝑡 (𝑒) evaluates the expression 𝑒 and returns a size 𝑠 ∈ N, where
{𝑠} = size𝑡 (𝑣) and 𝑣 is the expression 𝑒’s value. When expressions 𝑒 are generated during
an optimization of generators, the size operator size𝑡 (·) is only applied to an expression 𝑒 that
has the type 𝑡 . Consequently, when the expression 𝑒 is evaluated to a value 𝑣 , the size size𝑡 (𝑣)
is guaranteed to be a singleton multiset.

Generators for integers A generator 𝑔 generating integers is defined as

gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑒lower, 𝑒upper, 𝑒ℓ), (9.2.9)

where 𝑥1, . . . , 𝑥𝑚 are input variables and 𝑒lower, 𝑒lower, 𝑒ℓ are expressions. The expressions 𝑒lower
and 𝑒lower encode lower and upper bounds, respectively, of a uniform distribution to sample
from. The expression 𝑒ℓ encodes a list of integers3that the generator should not sample. The
expressions 𝑒lower and 𝑒upper can be standard expressions 𝑒 (defined above) that mention the
parameters 𝑥1, . . . , 𝑥𝑚 of the generator. Alternatively, the expressions 𝑒lower and 𝑒upper can be
a fixed minium bound 𝑧min ∈ Z and a fixed maximum bound 𝑧max ∈ Z, respectively. The two
constants 𝑧min, 𝑧max ∈ Z are user-tunable hyperparameters, and a prototype implementation
sets 𝑧min ≔ −500 and 𝑧max ≔ 500.

The generator 𝑔 works as follows. It first samples a Boolean variable 𝑏 ∈ {0, 1} from a
Bernoulli distribution:

𝑏 ∼ Bernoulli(𝑝), (9.2.10)

where 𝑝 ∈ (0, 1) is a user-tunable hyperparameter and is set to 0.985 in a prototype implemen-
tation. If 𝑏 = 1 (with probability 𝑝), the generator 𝑔 goes on to draw an integer uniformly at
random from a set:

𝑧 ∼ Uniform( [𝑒lower, 𝑒upper] \ 𝑒ℓ), (9.2.11)

where [𝑒lower, 𝑒upper] \ 𝑒ℓ denotes the set of all integers in the interval [𝑒lower, 𝑒upper], excluding
those in the list 𝑒ℓ . The sampling of integers from the set (9.2.11) is only well-defined if the set
is non-empty. Otherwise, if 𝑏 = 0 (with probability 1−𝑝) or [𝑒lower, 𝑒upper] \𝑥 = ∅, the generator
𝑔 resorts to a default generator, drawing an integer uniformly at random from a broad interval
(e.g., [−210, 210 − 1] in a prototype implementation).

Generators for type names Given a type name 𝑡 ∈ T of a value to be generated, suppose
the definition of the type 𝑡 has the form

𝑡 ≔ 𝑐1 𝜏1 + · · · + 𝑐𝑘 𝜏𝑘 𝜏𝑖 ≔ 𝜏𝑖,1 × · · · × 𝜏𝑖,𝑛𝑖 (𝑖 = 1, . . . , 𝑘). (9.2.12)
3Since the component 𝑒ℓ inside the generator (9.2.9) is a list of integers, whenever integers (or compound values

involving integers) are generated, the integer-list type 𝐿int (Eq (9.2.2)) should be defined. This is required even
when integer lists are not generated anywhere.

161



A generator 𝑔 for the type 𝑡 has the same inductive structure as the type definition (9.2.12). The
generator 𝑔 has parameters 𝑥1, . . . , 𝑥𝑚 . For a product type 𝜏𝑖 ≔ 𝜏𝑖,1 × · · · × 𝜏𝑖,𝑛𝑖 (𝑖 = 1, . . . , 𝑘),
the generator 𝑔 evaluates an expression 𝑒𝑖, 𝑗 and assigns its value 𝑣𝑖, 𝑗 to the 𝑗 th component of a
tuple ( 𝑗 = 1, . . . , 𝑛𝑖 ). The expression 𝑒𝑖, 𝑗 (𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑛𝑖 ) can call other generators
and mention the following variables: (i) parameters 𝑥1, . . . , 𝑥𝑚 of the generator 𝑔; and (ii) values
𝑣𝑖,1, . . . , 𝑣𝑖, 𝑗−1 that have been generated for the preceding components of a tuple. If the 𝑖th com-
ponent of the sum type 𝑡 is chosen, the generator 𝑔 evaluates all 𝑒𝑖, 𝑗 for 𝑗 = 1, . . . , 𝑛𝑖 , yielding a
tagged value 𝑐𝑖 ⟨𝑣𝑖,1, . . . , 𝑣𝑖,𝑛𝑖 ⟩.

Formally, generators for type names are defined as follows. Fix a countable set G of gener-
ator identifiers. Code blocks ℎ are formed by the grammar

ℎ ::= let 𝑥1 = 𝑔1 ⟨𝑒1,1, . . . , 𝑒1,𝑛1⟩ in . . . let 𝑥𝑘 = 𝑔𝑘 ⟨𝑒𝑘,1, . . . , 𝑒𝑘,𝑛𝑘 ⟩ in fold𝑡 (𝑐 ⟨𝑥1, . . . , 𝑥𝑘⟩),
(9.2.13)

where 𝑔1, . . . , 𝑔𝑘 ∈ G are generator identifiers. The code block ℎ generates all components of a
tuple, tags it with a data constructor, and encloses it inside fold𝑡 (·).

A generator identifier 𝑔 ∈ G for the type name 𝑡 (Eq (9.2.12)) is defined as

gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑡, (𝑑basesum , 𝑑
rec
sum), (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )), (ℎ𝑖 ; 𝑖 = 1, . . . , 𝑘)),

(9.2.14)
where 𝑥1, . . . , 𝑥𝑚 are input variables of the generator 𝑔. The right-hand side of Eq (9.2.14) con-
tains three components: (i) the target type name 𝑡 ∈ T ; (ii) a pair of (𝑑basesum , 𝑑

rec
sum) of categorical

distributions; (iii) a tuple (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )) of categorical distributions; and (iv) a
tuple (ℎ𝑖 ; 𝑖 = 1, . . . , 𝑘) of code blocks. Here, 𝑇 is a finite set of type definitions.

The pair (𝑑basesum , 𝑑
rec
sum) of categorical distributions in Eq (9.2.14) is used to determine which

data constructor 𝑐𝑖 (𝑖 = 1, . . . , 𝑘) is chosen during the execution of the generator. The distribu-
tion 𝑑basesum is used when the target size 𝑠𝑡 is one; otherwise, the distribution 𝑑basesum is used. It is
crucial to use different distributions for these two cases because when 𝑠𝑡 = 1, the generator 𝑔
should not choose a data constructor 𝑐𝑖 (𝑖 = 1, . . . , 𝑘) that always leads to fold𝑡 (·). For exam-
ple, for the integer-list type 𝐿int (Eq (9.2.2)), if the target size is 𝑠𝐿int = 0, the generator should
not choose the second branch of the sum type 𝐿int, which would lead to fold𝐿int (·). Dually, if
𝑠𝑡 > 1, the generator should not choose a data constructor that never leads to fold𝑡 (·). Thus,
the two distributions 𝑑basesum and 𝑑recsum may need to have different supports (i.e., the set of values
with positive probabilities).

The tuple (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )) of categorical distributions in Eq (9.2.14) is used
to split user-specified target sizes among components of tuples. Suppose that the generator
decides to generate a tuple of the product type 𝜏𝑖 (𝑖 = 1, . . . , 𝑘). For each type name 𝑡 ∈ dom(𝑇 ),
if the generator 𝑔 has not generated fold𝑡 (·) yet (i.e., the value being currently generated is not
wrapped inside fold𝑡 (·)), the target size 𝑠𝑡 is copied to each component of a tuple. Otherwise, if
the generator has generated fold𝑡 (·), the target size 𝑠𝑡 is split among the components 𝜏𝑖,1, . . . , 𝜏𝑖,𝑛𝑖
of the product type according to a multinomial distribution parametrized by 𝑠𝑡 and 𝑑𝑖,𝑡prod.

For illustration, consider a nested integer list (Eq (9.2.6)). Let 𝑠𝐿inner, 𝑠𝐿inner ∈ N be target sizes
of an outer list and inner lists, respectively. During the execution of a generator 𝑔, it recursively
generates a chain of 𝑠𝐿inner ∈ N many constructs fold𝐿outer (·), and this chain forms an outer list.
In each recursive call, if 𝑠𝐿outer ≥ 1, this target size of the outer list is decremented by one.
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E:Var
𝑉 (𝑥) = 𝑣
𝑉 ⊢𝑇 𝑥 ⇓ 𝑣

E:Int
𝑧 ∈ Z

𝑉 ⊢𝑇 𝑧 ⇓ 𝑧

E:Succ
𝑉 ⊢𝑇 𝑒 ⇓ 𝑧

𝑉 ⊢𝑇 succ(𝑒) ⇓ (𝑧 + 1)

E:Pred
𝑉 ⊢𝑇 𝑒 ⇓ 𝑧

𝑉 ⊢𝑇 pred(𝑒) ⇓ (𝑧 − 1)

E:Fold
∀𝑖 = 1, . . . , 𝑘 .(𝑉 ⊢𝑇 𝑒𝑖 ⇓ 𝑣𝑖 )

𝑉 ⊢𝑇 fold𝑡 (𝑐 ⟨𝑒1, . . . , 𝑒𝑘⟩) ⇓ fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩)

E:Proj
𝑉 ⊢𝑇 𝑒 ⇓ fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑛⟩) 𝑛 ≥ 𝑘 𝑣𝑘 :𝑇 𝜏

𝑉 ⊢𝑇 proj𝑘𝜏 (𝑒) ⇓ 𝑣𝑘

E:Proj:Fail:1
𝑉 ⊢𝑇 𝑒 ⇓ fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑛⟩) 𝑛 < 𝑘 𝑣 = value(𝜏)

𝑉 ⊢𝑇 proj𝑘𝜏 (𝑒) ⇓ 𝑣

E:Proj:Fail:2
𝑉 ⊢𝑇 𝑒 ⇓ fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑛⟩) 𝑛 ≥ 𝑘 ¬(𝑣𝑘 : 𝜏) 𝑣 = value(𝜏)

𝑉 ⊢𝑇 proj𝑘𝜏 (𝑒) ⇓ 𝑣

E:Size
𝑉 ⊢𝑇 𝑒 ⇓ fold𝑡 (𝑣) size𝑡 (fold𝑡 (𝑣)) = {𝑧}

𝑉 ⊢𝑇 size𝑡 (𝑒) ⇓ 𝑧

E:Size:Fail
𝑉 ⊢𝑇 𝑒 ⇓ 𝑣 𝑣 . fold𝑡 (_) 𝑧 = value(int)

𝑉 ⊢𝑇 size𝑡 (𝑒) ⇓ 𝑧

Lst. 9.1: Operational semantics of expressions 𝑒 .

Otherwise, if 𝑠𝐿outer = 0 and hence cannot be decremented, the generator raises an exception.
In this (outer) recursion, the generator has not generated fold𝐿inner (·) yet, so the target size
𝑠𝐿inner for inner lists is copied to each node of the outer list. To generate individual inner lists,
the generator runs an inner recursion, recursively generating a chain of constructs fold𝐿inner (·).
Each recursive call first decrements the target size 𝑠𝐿inner by one and then splits the remaining
size between the two components of an inner list, namely the head and the tail, according to a
multinomial distribution.

Generator programs A generator program𝐺 in the DSL of generators is a finite set of (pos-
sibly mutually recursive) generator definitions, each of which has either the form (9.2.9) (if the
target type is int) or the form (9.2.14) (if the target type is a type name 𝑡 ∈ T ). In addition, the
generator program4defines a main generator 𝑔main ∈ 𝐺 to run.

9.2.2 Operational Semantics

Expressions Operational semantics of expressions is defined by a judgment

𝑉 ⊢𝑇 𝑒 ⇓ 𝑣, (9.2.15)

4In the following, whenever there is no risk of confusion between a target program 𝑃 for data-driven resource
analysis and a generator program 𝐺 that generates program inputs for the target program 𝑃 , I refer to the latter
simply as a program.

163



E:Gen:TypeName
(gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑡𝑔, (𝑑basesum , 𝑑

rec
sum), (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )), (ℎ𝑖 ; 𝑖 = 1, . . . , 𝑘))) ∈ 𝐺

𝑗 = choose((𝑑basesum , 𝑑
rec
sum), 𝑆 (𝑡𝑔)) (𝑆1, . . . , 𝑆𝑘 ) = split((𝑑 𝑗,𝑡

prod; 𝑡 ∈ dom(𝑇 )), 𝑆 [𝑡𝑔 ↦→ 𝑆 (𝑡𝑔) − 1], 𝜋)
∀𝑖 = 1, . . . ,𝑚.(𝑉 ⊢𝑇 𝑒𝑖 ⇓ 𝑣𝑖 ) {𝑥𝑖 ↦→ 𝑣𝑖 | 𝑖 = 1, . . . ,𝑚}; (𝑆1, . . . , 𝑆𝑘 );𝜋 ∪ {𝑡𝑔} ⊢𝐺,𝑇 ℎ 𝑗 ⇓ 𝑣

𝑉 ; 𝑆 ;𝜋 ⊢𝐺,𝑇 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩ ⇓ 𝑣

E:CodeBlock
ℎ ≡ let 𝑥1 = 𝑔1 ⟨𝑒1,1, . . . , 𝑒1,𝑛1⟩ in . . . let 𝑥𝑘 = 𝑔𝑘 ⟨𝑒𝑘,1, . . . , 𝑒𝑘,𝑛𝑘 ⟩ in fold𝑡 (𝑐 ⟨𝑥1, . . . , 𝑥𝑘⟩)
∀𝑖 = 1, . . . , 𝑘 .(𝑉 ∪ {𝑦1 ↦→ 𝑣1, . . . , 𝑦𝑖−1 ↦→ 𝑣𝑖−1}; 𝑆𝑖 ;𝜋 ⊢𝐺,𝑇 𝑔𝑖 ⟨𝑒𝑖,1 . . . 𝑒𝑖,𝑛𝑖 ⟩ ⇓ 𝑣𝑖 )

𝑉 ; (𝑆1, . . . , 𝑆𝑘 );𝜋 ⊢𝐺,𝑇 ℎ ⇓ fold𝑡 (𝑐)⟨𝑣1, . . . , 𝑣𝑘⟩

E:Gen:Int
(gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑒lower, 𝑒upper, 𝑒ℓ )) ∈ 𝐺 𝑏 ∼ Bernoulli(𝑝) 𝑏 = 1 𝑉 ⊢𝑇 𝑒lower ⇓ 𝑣lower
𝑉 ⊢𝑇 𝑒upper ⇓ 𝑣upper 𝑉 ⊢𝑇 𝑒ℓ ⇓ 𝑣ℓ [𝑣lower, 𝑣upper] \ 𝑣ℓ ≠ ∅ 𝑧 ∼ Uniform( [𝑣lower, 𝑣upper] \ 𝑣ℓ )

𝑉 ; 𝑆 ;𝜋 ⊢𝐺,𝑇 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩ ⇓ 𝑧

E:Gen:Int:Fail:1
(gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑒lower, 𝑒upper, 𝑒ℓ )) ∈ 𝐺 𝑏 ∼ Bernoulli(𝑝) 𝑏 = 1

𝑉 ⊢𝑇 𝑒lower ⇓ 𝑣lower 𝑉 ⊢𝑇 𝑒upper ⇓ 𝑣upper 𝑉 ⊢𝑇 𝑒ℓ ⇓ 𝑣ℓ [𝑣lower, 𝑣upper] \ 𝑣ℓ = ∅ 𝑧 = value(int)
𝑉 ; 𝑆 ;𝜋 ⊢𝐺,𝑇 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩ ⇓ 𝑧

E:Gen:Int:Fail:2
(gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑒lower, 𝑒upper, 𝑒ℓ )) ∈ 𝐺 𝑏 ∼ Bernoulli(𝑝) 𝑏 = 0 𝑧 = value(int)

𝑉 ; 𝑆 ;𝜋 ⊢𝐺,𝑇 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩ ⇓ 𝑧

Lst. 9.2: Operational semantics of generators 𝑔 and code blocks ℎ.

where 𝑉 is an environment (i.e., a mapping from variables to values), 𝑇 is a set of type defini-
tions, 𝑒 is an expression, and 𝑣 is a value. The judgment (9.2.15) states that, under an environ-
ment 𝑉 and a set 𝑇 of type definitions, the expression 𝑒 evaluates to a value 𝑣 .

Listing 9.1 defines the judgment (9.2.15). The underscore in the rule E:Size:Fail means it
does not matter what goes in here.

The operators proj𝑘𝜏 (·) and size𝑡 (·) can fail. For the projection operator proj𝑘𝜏 (𝑒), the rule
E:Proj is only applicable when the expression 𝑒’s value has at least 𝑘 ∈ N components (the
second premise) and the 𝑘 th component can be typed with 𝜏 ∈ {int} ∪ T (the third premise).
Otherwise, the rules E:Proj:Fail:1 and E:Proj:Fail:2 apply, where the former is used when
the expression 𝑒’s value does not have enough components, and the latter is used when the
𝑘 th component is not typable with 𝜏 . In the rule E:Proj:Fail:2, to type-check the value 𝑣 with
the type 𝜏 , the set 𝑇 of type definitions is necessary (Listing 9.3). In both E:Proj:Fail:1 and
E:Proj:Fail:2, the premise 𝑣 = value(𝜏) generates a (random) value of type 𝜏 and returns it.

Given the size operator size𝑡 (𝑒), the rule E:Size is only applicable when the expression 𝑒
evaluates to fold𝑡 (𝑣) for some value 𝑣 . Otherwise, the rule E:Size:Fail applies, generating a
(random) integer 𝑣 = value(int).
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Generators for type names Operational semantics of generators is given by a judgment

𝑉 ; 𝑆 ;𝜋 ⊢𝐺,𝑇 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩ ⇓ 𝑣, (9.2.16)

where 𝑉 is an environment, 𝑆 is a mapping from type names to their target sizes, 𝜋 is a set of
type names 𝑡 ∈ T , 𝐺 is a program of generators (i.e., a set of generator definitions), and 𝑇 is a
set of type definitions, 𝑔 ∈ 𝐺 is a generator, 𝑒1, . . . , 𝑒𝑚 are expressions, and 𝑣 is a value. The set
𝜋 records type names that the generator has seen so far and is initialized to the empty set ∅.
The judgment (9.2.16) states that, under an environment𝑉 , mapping 𝑆 , and set 𝜋 , the generator
𝑔 ∈ 𝐺 with arguments 𝑒1, . . . , 𝑒𝑚 generates a value 𝑣 . The judgment (9.2.16) does not indicate
the probability of generating a value 𝑣 .

Listing 9.2 defines the judgment (9.2.16). In the rule E:Gen:TypeName, the last premise
contains an evaluation judgment for a code block ℎ:

𝑉 ; (𝑆1, . . . , 𝑆𝑘);𝜋 ⊢𝐺,𝑇 ℎ ⇓ 𝑣 . (9.2.17)

This judgment is defined by the rule E:CodeBlock (Listing 9.2).
The rule E:Gen:TypeName concerns a generator application 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩, where 𝑔 is a gen-

erator for a type name, instead of int. Suppose the first premise: the generator 𝑔 is defined as
E:Gen:TypeName:

gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑡𝑔, (𝑑basesum , 𝑑
rec
sum), (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )), (ℎ𝑖 ; 𝑖 = 1, . . . , 𝑘)) .

(9.2.18)
Assume that the type name 𝑡𝑔 ∈ T is defined as

𝑡𝑔 ≔ 𝜏1 + · · · + 𝜏𝑛 𝜏𝑖 ≔ 𝑐𝑖,1 × · · · × 𝑐𝑖,𝑛𝑖 (𝑖 = 1, . . . , 𝑛). (9.2.19)

The generator first probabilistically chooses a branch 𝑗 ∈ {1, . . . , 𝑛} in a sum type by draw-
ing from a categorical distribution (the second premise):

𝑗 = choose((𝑑basesum , 𝑑
rec
sum), 𝑆 (𝑡𝑔)) . (9.2.20)

Here, 𝑆 (𝑡𝑔) returns a numeric size of the type name 𝑡𝑔 ∈ T , which is the target type name of the
generator 𝑔. Given two categorical distributions 𝑑base, 𝑑rec and a target size 𝑠 ∈ N, the operator
choose((𝑑base, 𝑑rec), 𝑠) is defined as

choose((𝑑base, 𝑑rec), 𝑠) ≔
{
𝑗 ∼ 𝑑base if 𝑠 = 1
𝑗 ∼ 𝑑rec if 𝑠 > 1,

(9.2.21)

where the notation 𝑗 ∼ 𝑑 means 𝑗 ∈ N≥1 is drawn from a categorical distribution 𝑑 .
Next, the generator 𝑔 decides how to split the target-size mapping 𝑆 among the 𝑘 ≔ 𝑛 𝑗

components of the chosen product type 𝜏 𝑗 . The third premise of the rule E:Gen:TypeName
states

(𝑆1, . . . , 𝑆𝑘) = split((𝑑 𝑗,𝑡prod; 𝑡 ∈ dom(𝑇 )), 𝑆 [𝑡𝑔 ↦→ 𝑆 (𝑡𝑔) − 1], 𝜋), (9.2.22)

where the tuple (𝑆1, . . . , 𝑆𝑘) is the result of splitting the mapping 𝑆 . The mapping 𝑆 [𝑡𝑔 ↦→
𝑆 (𝑡𝑔) − 1] is obtained by subtracting 1 from the target size of 𝑡𝑔 ∈ T stored in the mapping 𝑆 ,
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provided that 𝑆 (𝑡𝑔) ≥ 1. Otherwise, if 𝑆 (𝑡𝑔) = 0, the generator raises an exception because it
cannot generate a value of the target size 𝑆 (𝑡𝑔). The output of split((𝑑𝑡 ; 𝑡 ∈ dom(𝑇 )), 𝑆, 𝜋) is
defined as

(𝑆1(𝑡), . . . , 𝑆𝑘 (𝑡)) ≔
{
I + s if 𝑡 ∈ 𝜋
(𝑆 (𝑡), . . . , 𝑆 (𝑡)) otherwise.

(𝑡 ∈ dom(𝑇 )) (9.2.23)

The tuple I in Eq (9.2.23) is defined as

I ≔ (𝑟1, . . . , 𝑟𝑘) 𝑟𝑖 ≔


1 if 𝜏𝑖

always
−−−−−→

𝑇
𝑡

0 otherwise,
(𝑖 = 1, . . . , 𝑘) (9.2.24)

where the relation 𝜏𝑖
always
−−−−−→

𝑇
𝑡 means that the type 𝜏𝑖 can always reach the type name 𝑡 ∈ T

regardless of which path is taken. The relation is defined in Listing 9.6. The tuple s in Eq (9.2.23)
is a random tuple of size 𝑘 drawn from a multinomial distribution:

s ∼ Multinomial(𝑆 (𝑡) − I, 𝑑𝑡 ). (9.2.25)

If 𝜏𝑖
always
−−−−−→

𝑇
𝑡 holds, the construct fold𝑡 (·) is guaranteed to appear inside the 𝑖th component

of the tuple. Thus, the size 𝑆𝑖 (𝑡) should be at least one to account for the construct fold𝑡 (·).
To ensure 𝑆𝑖 (𝑡) ≥ 1 whenever 𝜏𝑖

always
−−−−−→

𝑇
𝑡 holds (𝑖 = 1, . . . , 𝑘), we first subtract the tuple I

from the tuple of target sizes 𝑆 (𝑡) (Eq (9.2.24)), draw a sample s from a multinomial distribution
(Eq (9.2.25)), and then add the tuple I back to the result (Eq (9.2.23)).

If the set 𝜋 of type names contains the type name 𝑡 ∈ T , it means the generator has seen
the type 𝑡 (i.e., the value currently being generated is wrapped inside fold𝑡 (·)). In this case,
the target size 𝑆 (𝑡) is split according to a multinomial distribution parametrized by 𝑆 (𝑡) and 𝑑𝑡 .
Otherwise, if 𝑡 ∉ 𝜋 , the target size 𝑠𝑡 is copied to all 𝑘 components.

Finally, the generator 𝑔 evaluates each argument 𝑒𝑖 (𝑖 = 1, . . . ,𝑚) (the fourth premise in the
rule E:Gen:TypeName) and evaluates the code block ℎ 𝑗 corresponding to the chosen branch 𝑗
(the last premise). The set 𝜋 of type names that the generator 𝑔 has seen so far is extended with
the target type 𝑡𝑔.

To evaluate a code block, the rule E:CodeBlock comes into play, where a generator ap-
plication 𝑔𝑖 ⟨𝑒𝑖,1 . . . 𝑒𝑖,𝑛𝑖 ⟩ (𝑖 = 1, . . . , 𝑘) (the second premise) can access not only the parameters
𝑥1, . . . , 𝑥𝑚 of the generator 𝑔 but also the variables 𝑦1, . . . , 𝑦𝑖−1. These variables are bound to the
values 𝑣1, . . . , 𝑣𝑖−1 of the preceding components of a tuple that have been generated. Finally, the
generated values 𝑣𝑖 (𝑖 = 1, . . . , 𝑘) are aggregated into a final output fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩).

Generators for integers A generator 𝑔 first draws a Boolean random variable 𝑏 ∈ {0, 1}
from a Bernoulli distribution (the second premise):

𝑏 ∼ Bernoulli(𝑝), (9.2.26)
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V:Int
𝑧 ∈ Z
𝑧 :𝑇 int

V:Fold
(𝑡 ≔ · · · + 𝑐 𝜏 + · · · ) ∈ 𝑇 𝜏 ≔ 𝜏1 × · · · × 𝜏𝑘 ∀𝑖 ∈ {1, . . . , 𝑘}.(𝑣𝑖 :𝑇 𝜏𝑖 )

fold𝑡 (𝑐 ⟨𝑣1, . . . , 𝑣𝑘⟩) :𝑇 𝑡

Lst. 9.3: Well-typed values 𝑣 .

T:Var
Γ(𝑥) = 𝜏
Γ ⊢𝑇 𝑥 : 𝜏

T:Int
𝑧 ∈ Z

Γ ⊢𝑇 𝑧 : int

T:Succ
Γ ⊢𝑇 𝑒 : int

Γ ⊢𝑇 succ(𝑒) : int

T:Pred
Γ ⊢𝑇 𝑒 : int

Γ ⊢𝑇 pred(𝑒) : int

T:Fold
(𝑡 ≔ · · · + 𝑐 𝜏 + · · · ) ∈ 𝑇 𝜏 ≔ 𝜏1 × · · · × 𝜏𝑘 ∀𝑖 ∈ {1, . . . , 𝑘}.(Γ ⊢𝑇 𝑒𝑖 : 𝜏𝑖 )

Γ ⊢𝑇 fold𝑡 (𝑐 ⟨𝑒1, . . . , 𝑒𝑘⟩) : 𝑡

T:Proj

Γ ⊢𝑇 proj𝑘𝜏 (𝑒) : 𝜏

T:Size
𝑡 ∈ dom(𝑇 ) Γ ⊢𝑇 𝑒 : 𝑡

Γ ⊢𝑇 size𝑡 (𝑒) : int

Lst. 9.4: Type system of expressions 𝑒 .

where 𝑝 ∈ (0, 1) is a user-tunable hyperparameter and is set to 0.985 in a prototype implemen-
tation. If 𝑏 = 1, the generator 𝑔 computes the set [𝑒lower, 𝑒upper] \ 𝑒ℓ . If this set is non-empty, the
rule E:Gen:Int (Listing 9.2) applies, drawing an integer uniformly at random from the set:

𝑧 ∼ Uniform( [𝑣lower, 𝑣upper] \ 𝑣ℓ). (9.2.27)

Otherwise, if the set is empty (e.g., 𝑒lower > 𝑒upper), the rule E:Gen:Int:Fail:1 applies, generating
a (random) integer, which is indicated by the last premise 𝑣 = value(int). Also, if𝑏 = 0, the rule
E:Gen:Int:Fail:2 applies, also generating a (random) integer. Because 0 < 𝑝 < 1, the generator
can generate any integer (ideally from some broad interval specified by the user) with a positive
probability at least 1 − 𝑝 .

9.2.3 Type System

A typing judgment of values is
𝑣 :𝑇 𝜏, (9.2.28)

where 𝑣 is a value,𝑇 is a set of type definitions, and 𝜏 ∈ {int} ∪ T is a type. Listing 9.3 defines
the typing judgment (9.2.28).

A typing judgment of expressions is

Γ ⊢𝑇 𝑒 : 𝜏, (9.2.29)

where Γ is a typing context (i.e., a mapping from variables to their types), 𝑇 is a set of type
definitions, 𝑒 is an expression, and 𝜏 ∈ {int} ∪ T is a type.
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T:Gen:TypeName
(𝑡𝑔 ≔ 𝜏1 + · · · + 𝜏𝑘 ) ∈ 𝑇 ∀𝑖 ∈ {1, . . . , 𝑘}.𝜏𝑖 ≔ 𝜏𝑖,1 × · · · × 𝜏𝑖,𝑛𝑖 |𝑑basesum | = |𝑑recsum | = 𝑘

∀𝑖 ∈ {1, . . . , 𝑘}, 𝑡 ∈ dom(𝑇 ).|𝑑𝑖,𝑡prod | = 𝑛𝑖 ∀𝑖 ∈ {1, . . . , 𝑘}.({𝑥𝑖 : 𝜏𝑖 | 𝑖 = 1, . . . ,𝑚} ⊢Σ,𝑇 ℎ𝑖 : 𝑡𝑔)

· ⊢Σ,𝑇 (gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑡𝑔, (𝑑basesum , 𝑑
rec
sum), (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )), (ℎ𝑖 ; 𝑖 = 1, . . . , 𝑘))) : 𝜏1 × · · · × 𝜏𝑚 → 𝑡𝑔

T:CodeBlock
(𝑡 ≔ · · · + 𝑐 𝜏 + · · · ) ∈ 𝑇

𝜏 ≔ 𝜏1 × · · · × 𝜏𝑘 ℎ ≡ let 𝑥1 = 𝑔1 ⟨𝑒1,1, . . . , 𝑒1,𝑛1⟩ in . . . let 𝑥𝑘 = 𝑔𝑘 ⟨𝑒𝑘,1, . . . , 𝑒𝑘,𝑛𝑘 ⟩ in fold𝑡 (𝑐 ⟨𝑥1, . . . , 𝑥𝑘⟩)
∀𝑖 ∈ {1, . . . , 𝑘}.Γ ∪ {𝑦1 : 𝜏1, . . . , 𝑦𝑖−1 : 𝜏𝑖−1} ⊢Σ,𝑇 𝑔𝑖 ⟨𝑒𝑖,1, . . . , 𝑒𝑖,𝑛𝑖 ⟩ : 𝜏𝑖

Γ ⊢Σ,𝑇 ℎ : 𝑡

T:Gen:App
Σ(𝑔) = 𝜏1 × · · · × 𝜏𝑚 → 𝜏 ∀𝑖 ∈ {1, . . . ,𝑚}.(Γ ⊢𝑇 𝑒𝑖 : 𝜏𝑖 )

Γ ⊢Σ,𝑇 𝑔 ⟨𝑒1, . . . , 𝑒𝑚⟩ : 𝜏

T:Gen:Int
Γ = {𝑥𝑖 : 𝜏𝑖 | 𝑖 = 1, . . . ,𝑚} Γ ⊢𝑇 𝑒lower : int Γ ⊢𝑇 𝑒upper : int Γ ⊢𝑇 𝑒ℓ : 𝐿int

· ⊢Σ,𝑇 (gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑒lower, 𝑒upper, 𝑒ℓ )) : 𝜏1 × · · · × 𝜏𝑚 → int

Lst. 9.5: Type system of generators and code blocks.

Listing 9.4 defines the typing judgment (9.2.29). The rule T:Proj does not have a premise—
the expression proj𝑘𝜏 (𝑒) is always well-typed. If the expression 𝑒 does not have enough compo-
nents for projection or the 𝑘 th component of 𝑒’s value is not of type 𝑡 ∈ T , then a random value
of type 𝑡 is generated by the rules E:Proj:Fail:1 and E:Proj:Fail:2 in the operational semantics
(Listing 9.1).

A typing judgment of generators is

Γ ⊢Σ,𝑇 𝑔 : 𝜏1 × · · · × 𝜏𝑚 → 𝜏, (9.2.30)

where Γ is a typing context, Σ is a signature (i.e., a mapping from generator identifiers to their
types), 𝑇 is a set of type definitions, 𝑔 is a generator, and 𝜏𝑖 ∈ {int} ∪ T (𝑖 = 1, . . . ,𝑚) are
input types, and 𝜏 ∈ {int} ∪ T is an output type. In order for a program 𝐺 (i.e., a finite set
of generator definitions) to be well-typed, each generator definition gene𝑔 ⟨· · ·⟩ = · · · must be
well-typed according to the type signature Σ(𝑔).

Listing 9.5 defines the typing judgment (9.2.30). The rule T:Gen:TypeName concerns a gen-
erator definition

gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑡𝑔, (𝑑basesum , 𝑑
rec
sum), (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )), (ℎ𝑖 ; 𝑖 = 1, . . . , 𝑘)),

(9.2.31)
which intends to generate values of type 𝑡𝑔 ∈ T . Assume the first and second premises of the
rule T:Gen:TypeName:

𝑡𝑔 ≔ 𝜏1 + · · · + 𝜏𝑘 𝜏𝑖 ≔ 𝜏𝑖,1 × · · · × 𝜏𝑖,𝑛𝑖 (𝑖 = 1, . . . , 𝑘). (9.2.32)

The third premise requires the categorical distributions 𝑑basesum and 𝑑recsum to have 𝑘 ∈ N many
components, where𝑘 is the number of components in the sum type 𝑡𝑔 (Eq (9.2.32)). Additionally,

168



the fourth premise requires each categorical distribution 𝑑𝑖,𝑡prod (𝑖 = 1, . . . , 𝑘 and 𝑡 ∈ dom(𝑇 )) to
have 𝑛𝑖 ∈ N many components, where 𝑛𝑖 is the number of components in the product type 𝜏𝑖 .
The last premise then requires that the code block ℎ𝑖 (𝑖 = 1, . . . , 𝑘) to be well-typed.

The rule T:CodeBlock concerns a code block ℎ of the form

ℎ ≡ let 𝑥1 = 𝑔1 ⟨𝑒1,1, . . . , 𝑒1,𝑛1⟩ in . . . let 𝑥𝑘 = 𝑔𝑘 ⟨𝑒𝑘,1, . . . , 𝑒𝑘,𝑛𝑘 ⟩ in fold𝑡 (𝑐 ⟨𝑥1, . . . , 𝑥𝑘⟩) .
(9.2.33)

Each generator application 𝑔𝑖 ⟨𝑒𝑖,1, . . . , 𝑒𝑖,𝑛𝑖 ⟩ (𝑖 = 1, . . . , 𝑘) must have type 𝜏𝑖 such that, when
all generated components of a tuple are assembled into fold𝑡 (𝑐 ⟨𝑥1, . . . , 𝑥𝑘⟩), it has type 𝜏 ≔

𝜏1 × · · · × 𝜏𝑘 . To type-check a generator function, the rule T:Gen:App is used.
Finally, the rule T:Gen:Int concerns a generator for integers:

gene𝑔 ⟨𝑥1, . . . , 𝑥𝑚⟩ = (𝑒lower, 𝑒upper, 𝑒ℓ), (9.2.34)

where the expressions 𝑒lower and 𝑒upper must have type int, and the expression 𝑒ℓ must have
type 𝐿int, which is the integer-list type (Eq (9.2.2)).

Infeasible target sizes A well-typed generator does not necessarily successfully generate
values. A generator raises an exception when the rule E:Gen:TypeName in the operational
semantics (Listing 9.2) performs

(𝑆1, . . . , 𝑆𝑘) = split((𝑑 𝑗,𝑡prod; 𝑡 ∈ dom(𝑇 )), 𝑆 [𝑡𝑔 ↦→ 𝑆 (𝑡𝑔) − 1], 𝜋). (9.2.35)

It happens when the generator attempts to generate a value fold𝑡𝑔 (·), whereas the target size
𝑆 (𝑡𝑔) is zero and hence cannot be decremented.

To illustrate how infeasible target sizes can arise, consider the integer-list type:

𝐿int ≔ (nil unit) + (cons int × 𝐿int). (9.2.36)

It has two branches in the sum type, equippedwith data constructors nil and cons, respectively.
The first branch leads to the empty list, which has the size 1 with respect to the type name 𝐿int.
Consequently, in a generator 𝑔 for integer lists, the distribution 𝑑basesum must be

𝑑basesum = (1, 0). (9.2.37)

That is, the generator chooses the nil data constructor whenever the target size is 𝑠𝐿int = 1.
Otherwise, if we have

𝑑basesum = (1 − 𝜖, 𝜖) (𝜖 > 0), (9.2.38)

then the generator attempts to create a non-empty list with probability 𝜖 > 0 even when the
target size is inadequate (i.e., 𝑠𝐿int = 1).

To avoid inadequate target sizes, one idea is to first identify which data constructors in the
type 𝐿int can lead to the type itself. The nil constructor never leads to the type 𝐿int: as we
unfold the product type unit associated with the nil constructor, we never reach the type 𝐿int.
By contrast, the cons data constructor always leads to the type 𝐿int: we immediately reach the
target type by following the second component of the product type int × 𝐿int. By restricting
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the support of the distribution 𝑑basesum to the nil constructor, which never leads to the target type,
the generator never attempts to generate a non-empty list when the target size is inadequate.

Dually to the distribution 𝑑basesum , the distribution 𝑑recsum should ideally be

𝑑recsum = (0, 1). (9.2.39)

That is, the generator should choose the cons data constructor whenever the target size is
𝑠𝐿int > 1. Otherwise, the generator might try to create the empty list when 𝑠𝐿int > 1, yielding
a value with a different size from the target size. This is problematic, but it does not raise an
exception during execution, unlike in Eq (9.2.38).

9.3 Optimization of Generators

This section describes an optimization algorithm to identify generators that trigger high costs
of input programs. The optimization algorithm runs a genetic algorithm on the abstract syntax
trees (ASTs) of generators. Each iteration of the genetic algorithm creates a new population of
generators from the old population by genetic operations (e.g., mutations and crossovers).

9.3.1 Templates of Generators

To create the initial population in a genetic algorithm, generators are randomly synthesized.
This is done in two steps:

1. A template of a generator program is synthesized; and
2. Generator definitions are synthesized from the template.

The template defines the following characteristics of a generator program 𝐺 :
• The set of generator identifiers 𝑔 ∈ 𝐺 ;
• The call graph of generators in 𝐺 describing how they call each other;
• The number and types of parameters of generators 𝑔 ∈ 𝐺 ; and
• The supports of distributions𝑑basesum ,𝑑recsum, and (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )) in Eq (9.2.14).

Once a template is generated, a generator definition for each identifier 𝑔 ∈ 𝐺 is fleshed out with
expressions and distributions.

Call graphs of generators Generators can call each other. For example, assume that a gen-
erator 𝑔 for a type name 𝑡 ∈ T contains the following code block:

ℎ ≡ let 𝑥1 = 𝑔1 ⟨𝑒1,1, . . . , 𝑒1,𝑛1⟩ in . . . let 𝑥𝑘 = 𝑔𝑘 ⟨𝑒𝑘,1, . . . , 𝑒𝑘,𝑛𝑘 ⟩ in fold𝑡 (𝑐 ⟨𝑥1, . . . , 𝑥𝑘⟩) . (9.3.1)

The generator 𝑔 calls generators 𝑔1, . . . , 𝑔𝑘 , some of which may be identical to 𝑔 itself. Hence, a
call graph of generators contains edges from the generator 𝑔 to generators 𝑔1, . . . , 𝑔𝑘 .

To decide on the set of generator identifiers and their call graph, a template-synthesis algo-
rithm takes as input a categorical distribution 𝑑cycle of the cycle length of mutual recursion:

𝑑cycle = (𝑝1, . . . , 𝑝𝑘) (𝑝1, . . . , 𝑝𝑘 ∈ [0, 1];
∑
𝑖 𝑝𝑖 = 1). (9.3.2)
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𝑡 ∈ dom(𝑇 )

𝑡
always
−−−−−→

𝑇
𝑡

(𝑡1 ≔ 𝜏1) ∈ 𝑇 𝜏1
always
−−−−−→

𝑇
𝑡2

𝑡1
always
−−−−−→

𝑇
𝑡2

∃𝑖 ∈ {1, . . . , 𝑘}.𝜏𝑖
always
−−−−−→

𝑇
𝑡

𝜏1 × · · · × 𝜏𝑘
always
−−−−−→

𝑇
𝑡

∀𝑖 ∈ {1, . . . , 𝑘}.𝜏𝑖
always
−−−−−→

𝑇
𝑡

𝑐1 𝜏1 + · · · + 𝑐𝑘 𝜏𝑘
always
−−−−−→

𝑇
𝑡

Lst. 9.6: Judgment 𝜏
always
−−−−−→

𝑇
𝑡 that a type 𝜏 always reaches a type 𝑡 ∈ dom(𝑇 ).

This distribution is used to determine howmany generators of the same target type name 𝑡 ∈ T
are involved in mutual recursion. For instance, suppose a call graph contains a cycle wherein
the generators of a target type name 𝑡 ∈ T are𝑔1, . . . , 𝑔𝑘 (𝑘 ∈ N≥1). The cycle may contain other
generators (of target types other than 𝑡 ). If a generator 𝑔𝑖 (indirectly) calls 𝑔𝑖+1 (𝑖 = 1, . . . , 𝑘 − 1)
and 𝑔1 ≡ 𝑔𝑘 , then this mutual recursion among generators of target type 𝑡 has cycle length 𝑘 .

Let 𝜏target ∈ {int}∪T be the target type of values to generate. If 𝜏target ≡ int, the template-
synthesis algorithm simply creates a call graph with a sole generator 𝑔 for integers, which does
not call other generators.

Conversely, if 𝜏target ∈ T is a type name, the template-synthesis algorithmwalks through the
type definition 𝜏target ≔ 𝜏 , iteratively adding edges to the call graph. The algorithm explores the
type definition 𝜏 , maintaining lists g𝑡 (𝑡 ∈ T ) of generator identifiers of target type 𝑡 created so
far. The algorithm adds a new generator and a new call-graph edge to this generator whenever
a type name 𝑡 is encountered such that |g𝑡 | < 𝑘𝑡 , where 𝑘𝑡 is the mutual-recursion cycle length
for the type name 𝑡 and is drawn from the distribution 𝑑cycle (Eq (9.3.2)). Otherwise, if the
mutual-recursion cycle length has been reached (i.e., |g𝑡 | = 𝑘𝑡 ), the algorithm links the current
generator to the first generator in the list g𝑡 , thereby closing a cycle of mutual recursion.

Types of generator parameters Let 𝑡target ∈ T be a target type name and 𝑇 be a finite set
of type definitions. For each generator in a generator program, the number of parameters is
drawn from a user-specified categorical distribution. The types of these parameters are chosen
from the set of types 𝜏 ∈ {int} ∪ T such that (i) 𝜏 can be reached from the target type name
𝑡target as we unfold and explore its type definition in the set 𝑇 ; and (ii) 𝜏 does not reach 𝑡target.
Reachability of types is formally given by a judgment 𝜏

can−−→
𝑇

𝑡 defined in Listing 9.7.
The second condition ensures that argument types are strictly simpler than the target type

𝑡target. For instance, assume the target type is the integer-list type: 𝑡target ≔ 𝐿int (Eq (9.2.2)). Ar-
gument types should not be the target type 𝐿int itself. Rather, it is more sensible for generators
to generate values of a complex type 𝑡target using arguments of simpler types. Thus, generators
for integer lists can only have arguments of type int, but not 𝐿int.

Reachability of types Reachability of types is given by two judgments:

𝜏
always
−−−−−→

𝑇
𝑡 𝜏

can−−→
𝑇

𝑡, (9.3.3)

where 𝜏 is a type (including not only atomic types {int} ∪ T but also product types and sum

types), 𝑇 is a finite set of type definitions, and 𝑡 ∈ T is a type name. The judgment 𝜏
always
−−−−−→

𝑇
𝑡
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𝑡 ∈ dom(𝑇 )

𝑡
can−−→
𝑇

𝑡

(𝑡1 ≔ 𝜏1) ∈ 𝑇 𝜏1
can−−→
𝑇

𝑡2

𝑡1
can−−→
𝑇

𝑡2

∃𝑖 ∈ {1, . . . , 𝑘}.𝜏𝑖
can−−→
𝑇

𝑡

𝜏1 × · · · × 𝜏𝑘
can−−→
𝑇

𝑡

∃𝑖 ∈ {1, . . . , 𝑘}.𝜏𝑖
can−−→
𝑇

𝑡

𝑐1 𝜏1 + · · · + 𝑐𝑘 𝜏𝑘
can−−→
𝑇

𝑡

Lst. 9.7: Judgment 𝜏
can−−→
𝑇

𝑡 that a type 𝜏 can reach a type name 𝑡 ∈ 𝑇 .

means that, as the type 𝜏 is unrolled, it eventually reaches the type name 𝑡 ∈ dom(𝑇 ), regardless
of which paths are taken. That is, every value of the type 𝜏 contains a subexpression of type
name 𝑡 . Dually, the judgment 𝜏

can−−→
𝑇

𝑡 means that, as the type 𝜏 is unrolled, at least one path
reaches the type name 𝑡 . That is, at least one value of type 𝜏 contains a subexpression of type
name 𝑡 .

Listings 9.6 and 9.7 define the two judgments (9.3.3). Their inductive definitions differ in

how they handle sum types: the judgment 𝜏
always
−−−−−→

𝑇
𝑡 must hold for all components of a sum

type, whereas the judgment 𝜏
can−−→
𝑇

𝑡 only needs to hold for at least one component.

The relation 𝜏
always
−−−−−→

𝑇
𝑡 is used in splitting a tuple of target sizes during generator exe-

cution (Eq (9.2.23)). The relation 𝜏
always
−−−−−→

𝑇
𝑡 is used to determine the supports of categorical

distributions that appear inside generator definitions when synthesizing generator definitions.

Supports of distributions Generators for type names (Eq (9.2.14)) contain the following
distributions: (i) categorical distributions 𝑑basesum and 𝑑recsum for choosing data constructors in sum
types; and (ii) a tuple (𝑑𝑖,𝑡prod; 𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )) of categorical distributions for splitting
target sizes among components of tuples. The template-synthesis algorithm determines sup-
ports (i.e., sets of values with positive probabilities) of these distributions based on the reacha-
bility of types (Eq (9.3.3)).

Given a finite set𝑇 of type definitions, let 𝑡𝑔 ∈ dom(𝑇 ) be a target type name of a generator
𝑔. Assume the type name 𝑡 is defined as

𝑡𝑔 ≔ 𝜏1 + · · · + 𝜏𝑘 𝜏𝑖 ≔ 𝜏𝑖,1 × · · · × 𝜏𝑖,𝑛𝑖 (𝑖 = 1, . . . , 𝑘). (9.3.4)

The supports of the distributions 𝑑basesum and 𝑑recsum in the generator 𝑔 are

support(𝑑basesum ) =
{
𝑡 ∈ dom(𝑇 ) | ¬

(
(𝜏1 + · · · + 𝜏𝑘)

can−−→
𝑇

𝑡𝑔

)}
(9.3.5)

support(𝑑recsum) =
{
𝑡 ∈ dom(𝑇 ) | (𝜏1 + · · · + 𝜏𝑘)

can−−→
𝑇

𝑡𝑔

}
. (9.3.6)

The supports of the distributions 𝑑𝑖,𝑡prod (𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )) are

support(𝑑𝑖,𝑡prod) =
{
𝑡 ∈ dom(𝑇 ) | 𝜏𝑖

can−−→
𝑇

𝑡

}
(𝑖 = 1, . . . , 𝑘, 𝑡 ∈ dom(𝑇 )) . (9.3.7)
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Algorithm 2 Genetic algorithm for searching for an optimal generator program
Require: Population size 𝑁popu ≥ 1; tournament size 1 ≤ 𝑁tour ≤ 𝑁popu
Require: Number 𝑁epochs ≥ 1 of epochs; number 𝑁iters ≥ 1 of iterations within each epoch
Require: Hyperparameters 𝜃 = (𝜃temp, 𝜃gene, 𝜃op, 𝜃score)
1: procedure GeneticAlgorithm(𝑁popu, 𝑁tour, 𝑁epochs, 𝑁iters, 𝜃 )
2: for 𝑖 = 1, . . . , 𝑁epochs do

3: T← synthesizeTemplate(𝜃temp)
4: P← randomPopulation(𝑁popu,T, 𝜃gene)
5: 𝐺best ← bestGene(P, 𝜃score)
6: for 𝑗 = 1, . . . , 𝑁iters do

7: for 𝑛 = 1, . . . , 𝑁popu do

8: 𝐺𝑛 ← GeneticOperation(T, P, 𝑁tour, (𝜃gene, 𝜃op))
9: P← {𝐺1, . . . ,𝐺𝑁popu}
10: 𝐺best ← bestGene({𝐺best} ∪ P, 𝜃score)
11: return 𝐺best

9.3.2 Genetic Algorithm

To search for an optimal (or nearly optimal) generator program of a given target type, I adopt
a genetic algorithm5. Genetic algorithms are heuristic-based optimization algorithms for dis-
crete search spaces and are widely used in fuzzing (e.g., AFL [233], SlowFuzz [185], and Perf-
Fuzz [155]). A genetic algorithm maintains a population of generator programs, and in each
iteration, a new population is created from the old one by performing genetic operations (e.g.,
mutations and crossovers).

Alg. 2 shows the pseudocode of the genetic algorithm for generator optimization. This
pseudocode is adapted from Singularity, a generator fuzzer developed by Wei et al. [224].

In the 𝑖th epoch (𝑖 = 1, . . . , 𝑁epochs), the algorithm synthesizes a template T of a generator
program based on a hyperparameter 𝜃temp (line 3). The hyperparameter 𝜃temp specifies (i) a set
𝑇 of type definitions; (ii) a target type name 𝑡 ∈ dom(𝑇 ); (iii) a categorical distribution 𝑑cycle of
the mutual-recursion cycle length (Eq (9.3.2)); and (iv) a categorical distribution of the number
of input variables in generators. Next, a population P of 𝑁popu ≥ 1 many generator programs is
created by randomly synthesizing generators from the template T and a hyperparameter 𝜃gene
(line 4). The hyperparameter 𝜃gene specifies the maximum depth of ASTs of expressions inside
generator definitions. In line 5, to identify the best generator𝐺best in the initial population P, the
algorithm calculates scores of all generators in the population according to a hyperparameter
𝜃score. The algorithm then selects a generator with the highest score.

In each iteration 𝑗 = 1, . . . , 𝑁iters within each epoch, a new population is created from the
previous one. In line 8, each generator𝐺𝑛 (𝑛 = 1, . . . , 𝑁popu) to be included in the new population
is created by performing a procedure GeneticOperation (Alg. 3). Finally, a new population P
is formed (line 9), and the best generator 𝐺best so far is updated (line 10).

5The application of genetic algorithms to the abstract syntax trees (ASTs) of programs is known as genetic
programming [146, 147].
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Algorithm 3 Genetic operation used inside the genetic algorithm
Require: Generator template T and population P
Require: Tournament size 𝑁tour ≥ 1
Require: Hyperparameter 𝜃 = (𝜃gene, 𝜃op)
1: procedure GeneticOperation(T, P, 𝑁tour, 𝜃 )
2: for 𝑔𝑖 ∈ T[generators] do
3: for 𝑒 𝑗 ∈ 𝑔𝑖 [expressions] do
4: ⊕ ← chooseOperator(𝜃op)
5: for 𝑘 = 1, . . . , arity(⊕) do
6: 𝐻𝑘 ← tournament(P, 𝑁tour, 𝜃op)
7: 𝑒𝑘 ← extractExpression(𝐻𝑘 , 𝑒 𝑗 )
8: 𝑒 𝑗,new ← ⊕(𝑒1, . . . , 𝑒arity(⊕) ;𝜃gene)
9: 𝑔𝑖,new ← {𝑒 𝑗,new} 𝑗
10: 𝐺new ← {𝑔𝑖,new}𝑖
11: return 𝐺new

Scoring To calculate a score of a given generator𝐺 , the genetic algorithm first runs the gen-
erator 𝐺 to generate values 𝑣1, . . . , 𝑣𝑁 of varying sizes. The hyperparameter 𝜃score specifies
(i) mappings 𝑆1, . . . , 𝑆𝑚 from type names to their target sizes; and (ii) the number of values to
generate for each mapping 𝑆𝑖 of target sizes. A target program 𝑃 (specified by the hyperparam-
eter 𝜃score) is executed on each generated values 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 ), recording a high-water-mark
cost 𝑐𝑖 ∈ Q≥0. Let D be a dataset of cost measurements:

D ≔ {(𝑣𝑖, 𝑐𝑖) | 𝑖 = 1, . . . , 𝑁 }. (9.3.8)

Let 𝑛1, . . . , 𝑛𝑘 be size measures (e.g., the length of an outer list and the maximum inner list
length) of inputs to the target program 𝑃 . The genetic algorithm performs optimization-based
data-driven analysis (Opt in §7.3.2) to infer a multivariate polynomial bound of a user-specified
polynomial degree 𝑑 ∈ N

(𝑛1, . . . , 𝑛𝑘) ↦→ sum

({
𝑞𝑖1,...,𝑖𝑘

𝑘∏
𝑗=1

(
𝑛 𝑗

𝑖 𝑗

)
| 𝑖1, . . . , 𝑖𝑘 ∈ N, 𝑖1 + · · · + 𝑖𝑘 ≤ 𝑑

})
, (9.3.9)

where polynomial coefficients 𝑞𝑖1,...,𝑖𝑘 ∈ Q≥0 are to be inferred. After the polynomial coefficients
𝑞𝑖1,...,𝑖𝑘 are inferred, those coefficients of the same polynomial degree are summed up:

q ≔ (𝑞𝑑 , . . . , 𝑞0) 𝑞 𝑗 ≔ sum
(
{𝑞𝑖1,...,𝑖𝑘 | 𝑖1 + · · · + 𝑖𝑘 = 𝑗}

)
( 𝑗 = 0, . . . , 𝑑). (9.3.10)

The score of a generator is given by the tuple q and is ordered lexicographically such that
coefficients with higher polynomial degrees have higher priorities.

Genetic operators Alg. 3 displays the pseudocode of the procedure GeneticOperation,
which perform genetic operations to create a new generator program. The notationT[generators]
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in line 2 refers to the finite set of generator identifiers (and their call graph) specified by the
template T. To synthesize a new generator program, the algorithm synthesizes new genera-
tor definitions 𝑔𝑖,new, aggregating them into a generator program 𝐺new ≔ {𝑔𝑖,new}𝑖 (line 10).
Likewise, the notation 𝑔𝑖 [expressions] in line 3 refers to the set of expressions (i.e., arguments
to generator calls) and categorical distributions to synthesize. Once all necessary expressions
𝑒 𝑗,new are synthesized, they are aggregated into a generator definition 𝑔𝑖,new ≔ {𝑒 𝑗,new} 𝑗 (line 9).

For each expression/distribution 𝑒 𝑗 to synthesize, the algorithm first randomly chooses a
genetic operator ⊕ (e.g., mutations and crossovers) according to a hyperparameter 𝜃op, which
specifies a categorical distribution of genetic operators (line 4). To determine arguments to
the genetic operators ⊕, for each 𝑘 = 1, . . . , arity(⊕), the algorithm performs a tournament
(line 6). First, 𝑁tour ≥ 1 many generators are first sampled uniformly at random from the
current population P. The best generator 𝐻𝑘 is identified according to the hyperparameter
𝜃score. From the generator 𝐻𝑘 , an expression 𝑒𝑘 that corresponds to the expression placeholder
𝑒 𝑗 (i.e., they both appear in the same node inside the AST) is extracted (line 7). Finally, in line 8,
a new expression 𝑒 𝑗,new is synthesized by

𝑒 𝑗,new ← ⊕(𝑒1, . . . , 𝑒arity(⊕) ;𝜃gene), (9.3.11)

which performs the genetic operator ⊕ on the arguments 𝑒1, . . . , 𝑒arity(⊕) while respecting the
hyperparameter 𝜃gene (e.g., the maximum AST depth of expressions).

Like in Singularity [224], three genetic operators are offered: mutation ⊕mutate, crossover
⊕cross, and reproduction ⊕repro. Themutation operator ⊕mutate takes as input an expression 𝑒 and
mutates its AST while preserving its type. Specifically, the mutation operator first randomly
chooses a subexpression 𝑒1,sub inside the input expression 𝑒 , replacing the subexpression 𝑒1,sub
with a randomly sampled expression 𝑒2,sub of the same type.

The crossover operator ⊕cross takes as input two expressions 𝑒1 and 𝑒2 of the same type.
It then randomly chooses a pair (𝑒1,sub, 𝑒2,sub) of subexpressions inside 𝑒1 and 𝑒2, respectively,
where the two subexpressions have the same type. The crossover operator then swaps the
subexpressions 𝑒1,sub and 𝑒2,sub in the ASTs of 𝑒1 and 𝑒2. Finally, the operator returns one of the
two modified ASTs. Because the input expressions 𝑒1 and 𝑒2 are of the same type, there exists
at least one pair (𝑒1,sub, 𝑒2,sub) of subexpressions of the same type inside the ASTs of 𝑒1 and 𝑒2.

The reproduction operator ⊕repro takes in an expression simply and returns it without any
modification.

9.4 Evaluation

My collaborators and I have implemented a prototype of the generator-optimization algorithm
(§9.3) in Python. A user first supplies (i) a finite set𝑇 of type definitions; (ii) a Python program
𝑃 (𝑥) of input type 𝑡 ∈ dom(𝑇 ); and (iii) hyperparameters for the genetic algorithm (Alg. 2) (e.g.,
the number of iterations and the maximum AST depth of expressions). The genetic algorithm
runs, returning a generator program𝐺best with the highest score among all generators that the
algorithm has synthesized.

This section evaluates the prototype implementation of the generator-optimization algo-
rithm. The evaluation aims to answer the following questions:
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Q1: Is the DSL of generators (§9.2) expressive enough to captureworst-case inputs of functional
programs in practice?

Q2: Can the generator-optimization algorithm find a generator that produces (nearly) worst-
case program inputs?

Q3: How does the runtime-cost data of a generator returned by the genetic algorithm compare
with the runtime-cost data of a random-input generator?

9.4.1 Benchmark Suite

Benchmark programs To evaluate generator optimization, my collaborators and I have cu-
rated a benchmark suite consisting of 21 functional programs (written in Python). All bench-
mark programs are taken from (with or without modification) type-guided worst-case input
generation developed by Wang and Hoffmann [219].

• QuickSort,QuickSortRev,QuickSortStr, andQuickSortRevStr implement (deterministic)
quicksort where the head element is used as a pivot in the function partition. The four
benchmarks differ in (i) whether the function partition preserves the ordering of an
input list’s elements; and (ii) whether integer comparison uses the strong inequality (i.e.,
<) or the weak inequality (i.e., ≤).

• InsertionSort implements insertion sort.
• Lpairs takes an integer list 𝑥 and returns a list of pairs of adjacent elements that are
ordered in the list 𝑥 .

• LpairsAlt is similar to Lpairs, except that LpairsAlt alternates between two modes to de-
termine whether to include a pair in the output: the pair is ordered or out of order.

• Opairs takes an integer list 𝑥 and returns a list of pairs of (not necessarily adjacent) ele-
ments that are ordered in the list 𝑥 .

• LinearSearch takes two inputs, 𝑥 : 𝐿(int) and 𝑘 : int, and traverses the list 𝑥 to search
for the integer 𝑘 .

• QuickSelect and QuickSelectStr take two inputs, 𝑥 : 𝐿(int) and 𝑘 : int, and return the
𝑘 th smallest element in the list 𝑥 , provided that 0 ≤ 𝑘 < |𝑥 |. Otherwise, if 𝑘 < 0 or 𝑘 ≥ |𝑥 |,
return some default value.

• Queuemaintains a functional queue 𝑞 implemented using two stacks. The program takes
as input a list 𝑥 containing two kinds of requests: enqueue and dequeue. The kind of
requests is indicated by a Boolean value. The program traverses the list 𝑥 , updating the
queue 𝑞 according to each request in the list 𝑥 .

• QuickSortPairs andQuickSortPairsStr take in a list𝑥 of pairs of integers and run quicksort
on the list 𝑥 using lexicographic comparison between integer pairs.

• SplitSort and SplitSortStr take as input a list 𝑥 of pairs of integers. The programs first
partition the list 𝑥 into a nested list by grouping together those pairs with identical first
components. The programs then sort each inner list by running QuickSort and Quick-
SortStr, respectively.
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• Compare takes as input a pair (𝑥1, 𝑥2) of integer lists and performs lexicographic com-
parison between the lists 𝑥1 and 𝑥2.

• QuickSortLists andQuickSortListsStr take as input a nested list 𝑥 : 𝐿(𝐿(int)) of integers
and run quicksort on the list 𝑥 using lexicographic comparison.

• SortAll and SortAllStr take as input a nested list 𝑥 : 𝐿(𝐿(int)) of integers and sort each
inner list in the input 𝑥 .

If a benchmark’s name contains str (which stands for “strong”), it means the benchmark
uses the strong inequality (i.e., <), as opposed to the weak one (i.e., ≤), in integer comparison.

The benchmarksQuickSort andQuickSortStr implement the function partition such that
it preserves the ordering of an input list’s elements. For example, given an input list 𝑥 ≔

[1, 2, 4, 5] and an integer pivot 𝑝 ≔ 3, the list 𝑥 is partitioned into ( [1, 2], [3, 4]). This imple-
mentation is obtained if the partition is implemented recursively without using accumulators.

By contrast, the benchmarks QuickSortRev and QuickSortRevStr implement the function
partition such that the two output lists reversely order the integers. For example, given an
input list 𝑥 ≔ [1, 2, 4, 5] and an integer pivot 𝑝 ≔ 3, the list 𝑥 is partitioned into ( [2, 1], [4, 3]).
This happens because accumulators 𝑎1, 𝑎2 are used to maintain output lists: each iteration of
the function partition takes out the head ℎ of an input list, prepending the head ℎ to one
of the two accumulators 𝑎1, 𝑎2. This implementation of the partition function is used in the
benchmark qsort in Wang and Hoffmann [219].

Resource metrics The following resource metrics are used:
• Lpairs and LpairsAlt concern the output size.
• SplitSort concerns the number of comparisons in the function quicksort plus the num-
ber of function calls to the function append. This is identical to the tick metric used in
the benchmark split_sort in Wang and Hoffmann [219].

• The remaining benchmarks concern the number of function calls.

Input types The input types of the benchmarks are listed below:
• QuickSort to Opairs: 𝐿(int).
• LinearSearch to QuickSelectStr: 𝐿(int) × int.
• Queue: 𝐿(bool × int), where bool ≔ unit + unit.
• QuickSortPairs to SplitSortStr: 𝐿(int × int).
• Compare: 𝐿(int) × 𝐿(int).
• QuickSortLists to SortAllStr: 𝐿(𝐿(int)).

9.4.2 Experiment Results

Setup To evaluate the effectiveness of the generator-optimization algorithm, I measure the
relative errors of runtime-cost data generated by two generator programs:

1. A random-input generator program 𝐺random and
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2. The best generator program 𝐺genetic synthesized by the genetic algorithm (Alg. 2).
The random-input generator 𝐺random fills in data structures (e.g., lists and nested lists) with
(i) integers drawn uniformly at random from a broad interval; and (ii) Booleans drawn from
Bernoulli(0.5) (used in the benchmarkQueue).

The genetic algorithm (Alg. 2) is performed with the following parameters:

𝑁popu = 20 𝑁tour = 5 𝑁epochs = 4 𝑁iters = 15. (9.4.1)

All benchmarks share the same set of other hyperparameters (e.g., the maximum depth of ASTs
and a distribution of the mutual-recursion cycle length), with the only exception being the
benchmark LpairsAlt. This benchmark uses a categorical distribution 𝑑cycle (Eq (9.3.2))

𝑑cycle ≔ (0, 0, 0.2, 0.6, 0.2), (9.4.2)

which means that the mutual-recursion cycle length is set to 3 with probability 0.2, 4 with prob-
ability 0.6, and 5with probability 0.2. Meanwhile, the remaining benchmarks use the categorical
distribution

𝑑cycle ≔ (0.6, 0.4). (9.4.3)
I use a different distribution 𝑑cycle for LpairsAlt since its worst-case inputs have a cycle length
of 4, while the cycle length of 1 suffices for worst-case inputs of other benchmarks.

First, the generator programs 𝐺random and 𝐺genetic are executed 100 times, each with (i) a
different seed for pseudorandom number generators; and (ii) a randomly generated input ex-
pression (if the generator programs take inputs). These 100 runs yield values 𝑣1, . . . , 𝑣100, and
they are fed to a benchmark program 𝑃 to record cost measurements 𝑐1, . . . , 𝑐100. Finally, the
cost measurements are used to calculate the 50th and 95th percentiles of relative errors with
respect to ground-truth cost bounds.

To determine ground-truth cost bounds of the benchmark programs, they are re-implemented
in OCaml (while preserving the semantics) and are analyzed by RaML [117, 118] to statically
infer sound polynomial cost bounds. The ground-truth symbolic bounds inferred by Conven-
tional AARA are tight for all the 21 benchmark programs (i.e., worst-case inputs achieve the
bounds for infinitely many input sizes). However, it does not mean that the bounds are tight for
all input sizes. For instance, in the benchmark Lpairs, Conventional AARA infers a polynomial
bound 𝑛 ↦→ 𝑛, but this is only tight when an input list contains an even number of integers.

Relative errors Tab 9.1 reports relative errors of runtime-cost data generated by random-
input generators 𝐺random and the best generator 𝐺genetic returned by the genetic algorithm for
the 21 benchmark programs. The second column shows ground-truth asymptotic cost bounds.
In the benchmark Compare, the size measure 𝑛 is the size of the first input list, which is also
equal to the second input size. For the last four benchmarks, the size measure 𝑛 is the outer list
length, and the size measure𝑚 is the maximum inner list length. The third column shows the
fixed input size for which relative errors are measured.

For relative errors, Tab 9.1 calculates the relative errors of the 100 costs 𝑐1, . . . , 𝑐100 and
shows their 50th and 95th percentiles. Given a ground-truth cost bound 𝑐max ∈ Q≥0 and a cost
𝑐 ∈ Q≥0 generated by a generator, its relative error is defined as

(𝑐 − 𝑐max)/𝑐max, (9.4.4)
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Table 9.1: Relative errors of runtime-cost data generated by a random-input generator and
the genetic algorithm. For each benchmark, the 50th and 95th percentiles of relative errors are
reported. The symbols ✓, =, and ✗ indicate that the relative errors of the genetic algorithm are
better than, equal to, and worse than those of random-input generators, respectively.

Relative Error

50
th

Percentile 95
th

Percentile Time

Benchmark Ground Truth Input Size Random Genetic Random Genetic (min)
QuickSort 𝑛2 300 -0.945 -0.021 ✓ -0.939 -0.007 ✓ 39.0
QuickSortRev 𝑛2 300 -0.944 -0.020 ✓ -0.938 -0.007 ✓ 40.3
QuickSortStr 𝑛2 300 -0.945 -0.500 ✓ -0.939 -0.492 ✓ 38.0
QuickSortRevStr 𝑛2 300 -0.945 -0.500 ✓ -0.939 -0.492 ✓ 34.5
InsertionSort 𝑛2 300 -0.498 -0.419 ✓ -0.463 -0.363 ✓ 31.7
Lpairs 𝑛 300 -0.498 -0.017 ✓ -0.438 -0.003 ✓ 24.8
LpairsAlt 𝑛 300 -0.505 -0.030 ✓ -0.444 -0.003 ✓ 26.3
Opairs 𝑛2 300 -0.246 -0.174 ✓ -0.233 -0.065 ✓ 147.3
LinearSearch 𝑛 300 -0.000 -0.000 = -0.000 -0.000 = 46.0
QuickSelect 𝑛2 300 -0.985 -0.705 ✓ -0.984 -0.192 ✓ 46.4
QuickSelectStr 𝑛2 300 -0.985 -0.993 ✗ -0.984 -0.293 ✓ 44.5
Queue 𝑛 300 -0.120 -0.013 ✓ -0.095 -0.004 ✓ 34.4
QuickSortPairs 𝑛2 300 -0.945 -0.042 ✓ -0.938 -0.016 ✓ 59.5
QuickSortPairsStr 𝑛2 300 -0.945 -0.507 ✓ -0.938 -0.495 ✓ 58.7
SplitSort 𝑛2 300 -0.996 -0.048 ✓ -0.996 -0.021 ✓ 65.2
SplitSortStr 𝑛2 300 -0.996 -0.518 ✓ -0.996 -0.502 ✓ 60.1
Compare 𝑛 300 -0.997 -0.927 ✓ -0.997 -0.705 ✓ 193.2
QuickSortLists 𝑛2𝑚 (40, 40) -0.980 -0.604 ✓ -0.978 -0.470 ✓ 242.6
QuickSortListsStr 𝑛2𝑚 (40, 40) -0.980 -0.603 ✓ -0.978 -0.480 ✓ 293.4
SortAll 𝑛𝑚2 (40, 40) -0.735 -0.017 ✓ -0.729 -0.011 ✓ 253.7
SortAllStr 𝑛𝑚2 (40, 40) -0.736 -0.457 ✓ -0.729 -0.453 ✓ 263.7

which is always in the range [−1, 0] because 0 ≤ 𝑐 ≤ 𝑐max must hold. The closer the relative
error is to 0, the more desirable it is. The symbols ✓, =, and ✗ indicate that the relative er-
rors of the genetic algorithm are better than, equal to, and worse than those of random-input
generators, respectively.

In 20/21 benchmarks, the generator 𝐺genetic has a better (or equal) 50th-percentile relative
error than the random-input generator 𝐺random. The only exception is the benchmark Quick-
SelectStr, where the generator 𝐺genetic has a slightly worse 50th-percentile relative error than
the generator 𝐺random. Also, in the benchmark LinearSearch, both generators have the relative
errors of −0.000. The generator 𝐺random already performs well in this benchmark because a
randomly generated integer 𝑘 : int is unlikely to exist in a randomly generated integer list
𝑥 : 𝐿(int). Consequently, LinearSearch will likely traverse the entire list 𝑥 to search for the
integer 𝑘 , yielding the worst-case cost.

In all 21/21 benchmarks, including QuickSelectStr, the generator 𝐺genetic has a better (or
equal) 95th-percentile relative error. This answers the question Q3: the generators returned by
the genetic algorithm yield higher costs than the random-input generators.
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Figure 9.2: Runtime-cost data in the benchmarks QuickSortRev, QuickSortStr and Quick-
SortRevStr.

Analysis time The last column of Tab 9.1 shows the running time of the genetic algorithm.
The analysis time ranges from 24.8min (in Lpairs) to 293.4min (inQuickSortListsStr). Its vari-
ation can be partially explained by the input type of benchmark programs, which in turn de-
termines the number of atomic-type values (e.g., integers) that need to be drawn for each run
of a generator. For example, the benchmarks QuickSort to LpairsAlt, all of which have the in-
put type 𝐿(int), have similar running time of the genetic algorithm. However, the benchmark
Opairs, which also has the same input type 𝐿(int), takes significantly longer analysis time.

Expressiveness of generators To address the questionsQ1 andQ2, I consider the four vari-
ants of quicksort: QuickSort,QuickSortRev,QuickSortStr, andQuickSortRevStr. QuickSort and
QuickSortRev use the weak inequality (i.e., ≤) in the function partition, while QuickSortStr
andQuickSortRevStr use the strong inequality (i.e., <). Also, the function partition inQuick-
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Sort and QuickSortStr preserve the ordering of elements in an input list, while the function
partition inQuickSortRev andQuickSortRevStr reverses the ordering due to the use of accu-
mulators. In all the four benchmarks, the generators𝐺genetic returned by the genetic algorithm
generate lists of identical elements (with a high probability).

Two findings from Tab 9.1 are:
• In QuickSort and QuickSortRev, the generators 𝐺genetic have the 50th-percentile relative
errors close to zero: −0.021 and −0.020, respectively.

• In QuickSortStr and QuickSortRevStr, the generator 𝐺genetic has the 50th-percentile rela-
tive error−0.500, which is significantly worse than those of QuickSort andQuickSortRev.

Figs. 9.1 and 9.2 show the runtime-cost data of various generators, including the random-
input generator𝐺random (leftmost plot), and the best generators across iterations in the genetic
algorithm (rightmost plot). The worst-case input lists of the four benchmarks are listed below:

• QuickSort: a (non-strictly reversely) sorted list (e.g., [4, 3, 2, 1] where elements are strictly
reversely sorted and [0, 0, 0, 0] where elements are identical);

• QuickSortRev: a list where all elements are identical (e.g., [0, 0, 0, 0]);
• QuickSortStr: a strictly reversely sorted list (e.g., [4, 3, 2, 1], but not [0, 0, 0, 0]); and
• QuickSortRevStr: a list that would be reversely sorted if we go back and forth between
the front and rear of the list (e.g., [5, 3, 1, 2, 4]).

Although a strictly sorted list (e.g., [1, 2, 3, 4]) incurs a quadratic cost in QuickSort, it is not a
worst-case input of QuickSort. This is because such a list does not incur the maximum cost of
the function append when concatenating two recursive results of the function quicksort.

In QuickSort (Fig. 9.1) and QuickSortRev (Fig. 9.2a), the generators 𝐺genetic (shown in the
rightmost plots) yield inferred cost bounds (blue lines) that are very close to the ground-truth
bounds (red dashed lines). By contrast, inQuickSortStr (Fig. 9.2b), the generator𝐺genetic yields
a cost bound that is significantly below the ground-truth bound. Meanwhile, the third plot in
Fig. 9.2b shows that the generator𝐺rev for (strictly) reversely sorted lists yields an inferred cost
bound close to the ground-truth bound. This answers the question Q2: the genetic algorithm
can fail in discovering an optimal (i.e., worst-case) generator even if it is expressible in the DSL
of generators (§9.2). To fix this problem, the genetic algorithm should run with more epochs
and iterations.

Moreover, inQuickSortRevStr (Fig. 9.2c), the worst-case input is not expressible in the DSL
of generators, although the variantQuickSortRevStr of quicksort is a realistic implementation.
A worst-case input of QuickSortRevStr is a length-𝑛 list 𝑥𝑛 (𝑛 ∈ N) defined as

𝑥0 ≔ [ ] 𝑥1 ≔ [1] 𝑥𝑛 ≔ [𝑛] + 𝑥𝑛−2 + [𝑛 − 1] (𝑛 ≥ 2), (9.4.5)

where the operator+ denotes list concatenation. Such lists cannot be inductively generated: list
elements are not determined exclusively by the preceding elements. To generate such lists, the
sampling of integers must be aware of the target size of a list. However, this is not permitted in
the current design of generators: the target size cannot appear inside generator definitions, but
is only used to determinewhen the generator’s execution terminates. This answers the question
Q1: the DSL of generators cannot capture worst-case inputs of some real-world programs.
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Probabilistic execution of generators ForQuickSort, in the fourth plot of Fig. 9.1, the cost
bound inferred using the generator 𝐺ident lies below the ground-truth bound with a noticeable
margin. This is due to the probabilistic nature of generators: they always have a small but
positive probability of deviating from the generator’s standard behavior and drawing an integer
from a broad interval (E:Gen:Int:Fail:2 in Listing 9.2). The runtime-cost data in third plot of
Fig. 9.1 is generated by a generator 𝐺ident, which is described in Remark 9.4.1.
Remark 9.4.1 (Generator for lists of identical elements). A generator 𝐺ident for a length-𝑛 list

of identical elements works as follows. It has an input parameter 𝑥 : int and generates the 𝑖 th

element 𝑣𝑖 in a list by drawing an integer from an interval [𝑥, 𝑥]. The generator then recursively

calls itself, where the parameter 𝑥 is set to 𝑣𝑖 in the recursive call. However, with a small yet positive

probability, the generator𝐺ident can sample a random integer from a broad interval, yielding a list

of the form

[𝑣1, . . . , 𝑣1︸    ︷︷    ︸
𝑘 times

, 𝑣2, . . . , 𝑣2︸    ︷︷    ︸
𝑛−𝑘 times

] (0 < 𝑘 < 𝑛; 𝑣1, 𝑣2 ∈ Z; 𝑣1 ≠ 𝑣2). (9.4.6)

In the generation of the list (9.4.6), the generator𝐺ident initially keeps drawing 𝑣1. But halfway

through the execution (i.e., after 𝑘 recursive calls of the generator), it draws a random integer

𝑣2 ≠ 𝑣1 from a broad interval, drawing 𝑣2 repeatedly afterward. Such a list triggers a noticeably

lower cost than the ground-truth cost bound of QuickSort, particularly when 𝑘 is close to 𝑛/2.
The above generator 𝐺ident is not the only way to generate lists of identical elements (with a

high probability). An alternative generator 𝐻ident takes as input an integer parameter 𝑥 : int and
generates each element in a list by drawing an integer from the interval [𝑥, 𝑥]. If the generator
𝐻ident deviates from the standard behavior once, its output list has the form

[𝑣1, . . . , 𝑣1︸    ︷︷    ︸
𝑘 times

, 𝑣2, 𝑣1, . . . , 𝑣1︸    ︷︷    ︸
𝑛−𝑘−1 times

] (0 < 𝑘 < 𝑛; 𝑣1, 𝑣2 ∈ Z; 𝑣1 ≠ 𝑣2). (9.4.7)

The list (9.4.7) usually incurs a higher cost than the list (9.4.6) since the result of the function

partition is more uneven in the former than in the latter. «

Likewise, forQuickSortRev, in the fourth plot of Fig. 9.2a, the inferred cost bound (blue line)
is far from the ground-truth bound (red line), although lists of identical elements are worst-case
inputs of QuickSortRev. This is, again, due to the probabilistic nature of generators. Nonethe-
less, the genetic algorithm successfully triggers worst-case costs, as shown in the rightmost
plot of Fig. 9.2a. This is because some generators produce lists of (almost identical) elements
with higher costs than other generators. For instance, output lists of the generator 𝐻ident (Re-
mark 9.4.1) are likely to incur higher costs than output lists of the generator 𝐺ident, although
both generators produce lists of (almost) identical elements.

9.4.3 Random Enumeration of Generators

The generator-optimization algorithm (§9.3) adopts a genetic algorithm to search for a high-cost
generator. A benefit of the genetic algorithm is that, in theory, it can be adaptive: the algorithm
can choose to focus on different regions of a search space, depending on the performance of
the generators that the algorithm has examined. Consequently, for each target program, the
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Table 9.2: Relative errors of runtime-cost data generated by random enumeration and the ge-
netic algorithm. For each benchmark, the 50th and 95th percentiles of relative errors are re-
ported. The symbols ✓, =, and ✗ indicate that the relative errors of the genetic algorithm are
better than, equal to, and worse than those of the random enumeration, respectively.

Relative Error

50
th

Percentile 95
th

Percentile

Benchmark Ground Truth Input Size Enumerate Genetic Enumerate Genetic
QuickSort 𝑛2 300 -0.021 -0.021 = -0.007 -0.007 =

QuickSortRev 𝑛2 300 -0.020 -0.020 = -0.007 -0.007 =

QuickSortStr 𝑛2 300 -0.500 -0.500 = -0.492 -0.492 =

QuickSortRevStr 𝑛2 300 -0.500 -0.500 = -0.492 -0.492 =

InsertionSort 𝑛2 300 -0.498 -0.419 ✓ -0.463 -0.363 ✓

Lpairs 𝑛 300 -0.017 -0.017 = -0.003 -0.003 =

LpairsAlt 𝑛 300 -0.030 -0.030 = -0.003 -0.003 =

Opairs 𝑛2 300 -0.246 -0.174 ✓ -0.234 -0.065 ✓

LinearSearch 𝑛 300 -0.000 -0.000 = -0.000 -0.000 =

QuickSelect 𝑛2 300 -0.635 -0.705 ✗ -0.044 -0.192 ✗

QuickSelectStr 𝑛2 300 -0.582 -0.993 ✗ -0.020 -0.293 ✗

Queue 𝑛 300 -0.013 -0.013 = -0.007 -0.004 ✓

QuickSortPairs 𝑛2 300 -0.042 -0.042 = -0.016 -0.016 =

QuickSortPairsStr 𝑛2 300 -0.507 -0.507 = -0.495 -0.495 =

SplitSort 𝑛2 300 -0.048 -0.048 = -0.021 -0.021 =

SplitSortStr 𝑛2 300 -0.518 -0.518 = -0.502 -0.502 =

Compare 𝑛 300 -0.997 -0.927 ✓ -0.983 -0.705 ✓

QuickSortLists 𝑛2𝑚 (40, 40) -0.602 -0.604 ✗ -0.454 -0.470 ✗

QuickSortListsStr 𝑛2𝑚 (40, 40) -0.601 -0.603 ✗ -0.476 -0.480 ✗

SortAll 𝑛𝑚2 (40, 40) -0.029 -0.017 ✗ -0.022 -0.011 ✓

SortAllStr 𝑛𝑚2 (40, 40) -0.151 -0.457 ✗ -0.109 -0.453 ✗

genetic algorithm explores a different region of the search space and examines a different set
of generators.

An alternative approach to generator optimization is to randomly enumerate generators
non-adaptively. In line 8 of Alg. 2, instead of performing genetic operations to create a new
population from the old one, we randomly sample generators to form a new population, inde-
pendently of the old population. In effect, this random-enumeration approach creates a large,
finite set of generators by random sampling, evaluates each generator, and returns the highest-
scoring generator.

Evaluated on the benchmark suite in §9.4.1, the random-enumeration approach has better
performance than the genetic algorithm. Tab 9.2 compares the relative errors of the random
enumeration of generators and the genetic algorithm. The symbols ✓, =, and ✗ indicate that
the relative errors of the genetic algorithm are better than, equal to, and worse than those of the
random enumeration, respectively. For the 50th-percentile relative errors, the genetic algorithm
has better errors than the random enumeration in 3/21 benchmarks (indicated by ✓) and worse
errors in 6/21 benchmarks (indicated by ✗). They have the same relative errors in the remaining
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12/21 benchmarks (indicated by =). For the 95th-percentile relative errors, the genetic algorithm
has better errors than the random enumeration in 5/21 benchmarks and worse errors in 5/21
benchmarks.

The superior performance of the random-enumeration algorithm may stem from the fol-
lowing factors:

• The genetic algorithm may get stuck in the current population, struggling to explore a
new, remote region of the search space. On the other hand, the random-enumeration
algorithm can explore new regions (albeit non-adaptively) with no trouble.

• The search space may not be large enough to demonstrate the benefit of the genetic
algorithm, namely adaptive exploration of the search space.
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Chapter 10

Conclusion

This chapter summarizes the contributions of this thesis and discusses ideas for future work.

10.1 Contributions

Hybrid resource analysis A chief contribution of the thesis is the development of hybrid
resource analysis: resource analysis that integrates two resource-analysis techniques with com-
plementary strengths and weaknesses. Recall the thesis statement from §1.2:

Thesis Statement Hybrid resource analysis, which integrates two resource-analysis tech-

niques with complementary strengths and weaknesses, can (i) analyze programs and infer symbolic

cost bounds beyond the reach of automatic resource analysis (i.e., static and data-driven analyses);

and (ii) add more automation to interactive resource analysis.

To substantiate the statement, this thesis presents two hybrid-resource-analysis techniques:
Hybrid AARA (§7) and resource decomposition (§8). They both integrate two resource-analysis
techniques via user-adjustable interfaces. Hybrid AARA integrates Conventional AARA (§4)
and (optimization-based and Bayesian) data-driven analyses (§7.3), and the user specifies which
code fragment is to be analyzed by which analysis technique. In contrast to Hybrid AARA,
resource decomposition is not tied to Conventional AARA—it can integrate any pair of resource
analyses as long as they infer symbolic cost bounds. The user specifies how an overall cost
bound 𝑓 (𝑥,𝑔(𝑥)) should be decomposed into two symbolic bounds, 𝑓 (𝑥, 𝑟 ) and 𝑔(𝑥), which are
analyzed by different analysis techniques.

The two hybrid analyses represent two distinct approaches to the integration of resource-
analysis techniques. Hybrid AARA and resource decomposition have different designs of the
interfaces between constituent analyses: Hybrid AARA adopts a type-based interface, while
resource decomposition adopts a numeric-variable-based interface.

The type-based interface of Hybrid AARA uses resource-annotated types, borrowed from
Conventional AARA, to record polynomial potential functions stored in inputs and outputs of
expressions. Data-driven analysis infers a resource-annotated typing judgment, and Conven-
tional AARA infers a typing tree with a placeholder (i.e., a leaf node) for the statistically inferred
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typing judgment. The two inference results are composed by substitution. Data-driven analy-
sis must be aware of the linear constraints associated with the resource-annotated typing tree,
leading to a technical challenge in the inference algorithm (§7.4.2). This is addressed by lever-
aging a recently developed sampling algorithm that combines sampling and linear constraints:
ReHMC [47, 49, 50, 171].

The numeric-variable-based interface of resource decomposition uses a numeric variable,
as opposed to a resource-annotated type in Hybrid AARA, to represent a symbolic bound. The
numeric-variable-based interface overcomes two limitations of the type-based interface of Hy-
brid AARA: (i) it cannot express, let alone infer, non-polynomial bounds; and (ii) it does not let
constituent analyses infer quantities of different resource metrics.

Hybrid AARA and resource decomposition are evaluated on challenging benchmark suites.
The evaluation of Hybrid AARA (§7.6) demonstrates that Hybrid AARA successfully infers
accurate bounds when (i) Conventional AARA cannot analyze a program at all; and (ii) fully
data-driven analyses fail to infer accurate bounds from observed cost measurements. For the
resource-decomposition framework, the thesis showcases three concrete instantiations (§8.5–
8.7). Their evaluations demonstrate the resource decomposition’s ability to infer cost bounds
that Hybrid AARA cannot handle without resorting to fully data-driven analysis.

Additional contributions This thesis makes the following additional contributions:
• §6.2 formulates resource analysis as decision problems. Furthermore, building on the
resource-analysis decision problems in Gajser [87, 88], I introduce stronger variants of
the decision problemswhere target programs are guaranteed to terminate. These variants
are sensible in the presence of data-driven analysis, which requires target programs to
terminate in order to measure their costs. §6.3 then proves the undecidability of resource-
analysis decision problems introduced in §6.2.

• §6.4 proves that the typable fragment of Conventional AARA is polynomial-time com-
plete. That is, any polynomial-time function can be encoded as a typable program in
Conventional AARA.

• §9 develops a language of probabilistic program-input generators that generate values of
a given algebraic data type. §9.4 demonstrates that the generators returned by a genetic
algorithm can trigger higher computational costs than random-input generators.

10.2 Future Directions

This section discusses four future directions of research.

Data-driven analysis with constraints Hybrid BayesPC (§7.4.2) poses a technical chal-
lenge of combining sampling (used in Bayesian data-driven resource analysis) and constraint
optimization (used in Conventional AARA). This motivates the adoption of Reflective HMC
(ReHMC) [47, 49, 50, 171] in the prototype implementation of Hybrid BayesPC (§7.5.3).

Beyond Hybrid BayesPC, data-driven analysis subject to constraints is worth investigating.
For instance, a number of works incorporate constraints into large language models (LLMs)
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for code generation [30, 31, 175, 192, 227]. LLMs generate code token by token, where each
token is sampled from a probability distribution. To ensure that the code generated by LLMs is
syntactically well-formed and well-typed, Mündler et al. [175] incorporate type constraints to
LLMs by deciding whether given partial code can be fleshed out to be well-typed.

Resource-component bounds parametric in local inputs As discussed in §8.8.3, in re-
source decomposition, a symbolic bound of a resource component must be parametric in the
global input. If an inferred resource-component bound is parametric in a local input, it is neces-
sary to additionally derive a relation between the local and global inputs. Hence, an interesting
research question is to develop static analysis to derive such relations. One idea is to leverage
existing works on sized types [21, 130, 218].

Average-case resource analysis Throughout this thesis, the goal of resource analysis is to
infer a worst-case cost bound. However, a user may instead seek an average-case cost bound
over a probability distribution of computational cost. To define such a distribution of cost, we
can consider a deterministic program equippedwith a probability distribution of inputs. Amore
general setting is a probabilistic program, whose execution is probabilistic.

It is challenging to extend hybrid resource analysis fromworst-case cost bounds to average-
case cost bounds. Wang et al. [220] extend Conventional AARA to infer upper bounds on ex-
pected costs (i.e., average-case costs) of probabilistic functional programs, where resource met-
rics are required to be monotone. This is because AARA’s extension to probabilistic programs
only correctly infers expected net-cost bounds, but not expected high-water-mark-cost bounds.
Since Hybrid AARA (§4) builds on Conventional AARA, we can extend Hybrid AARA in the
same manner as Wang et al. [220], resulting in hybrid resource analysis for average-case cost
bounds under monotone resource metrics.

For resource decomposition (§8), it is unclear how to adapt it to average-case cost bounds.
To illustrate a technical challenge, suppose we analyze a probabilistic recursive program 𝑃 by
resource decomposition, where a resource component is the recursion depth of the program
𝑃 . For a run of the program 𝑃 , define three random variables: (i) 𝐶 represents the total cost;
(ii) 𝑋 represents the recursion depth; and (iii) 𝑌 represents the maximum cost of individual
recursive calls. A natural modification of resource decomposition is to first infer the following
two bounds and then return their product:

1. A bound on the expected recursion depth E[𝑋 ]; and
2. A bound on the expected maximum cost E[𝑌 ] of each individual recursive call.

However, the product E[𝑋 ]E[𝑌 ] is not necessarily a valid upper bound of the expected cost
E[𝐶] of the program 𝑃 . Although E[𝐶] ≤ E[𝑋𝑌 ] holds, E[𝑋𝑌 ] ≤ E[𝑋 ]E[𝑌 ] does not neces-
sarily hold, because the covariance

cov(𝑋,𝑌 ) ≔ E[𝑋𝑌 ] − E[𝑋 ]E[𝑌 ] (10.2.1)

can be negative, zero, or positive.

Hybrid analysis beyond resource analysis Beyond resource analysis, the idea of hybrid
analysis may be applicable to non-quantitative program-analysis tasks. As discussed in §7.7.3,
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two challenges exist in the application of hybrid analysis to non-quantitative program analysis
where search spaces are typically discrete: (i) it is difficult to justify data-driven (and hybrid)
analysis; and (ii) effective gradient-based inference algorithms are not applicable.

To overcome the first challenge, a suitable program-analysis task must not be safety crit-
ical. For instance, using data-driven analysis to infer standard functional types (e.g., int and
int→ int) is undesirable since functional types are safety critical in some sense: the difference
between the 99% and 100% guarantees of sound inferred types can matter to the user. Instead, a
more promising domain for data-driven analysis is the refinement type where refinements (i.e.,
logical formulas that functional types are annotated with) are not safety critical but neverthe-
less are useful to the user. For example, if data-driven analysis infers that the output of a given
program 𝑃 (𝑥) is a sorted list with probability 0.75 (and a non-sorted list with probability 0.25),
the user can meaningfully use the information. Concretely, given this inference result, the user
may decide to use insertion sort, instead of merge sort, to sort the output list of the program
𝑃 (𝑥) since insertion sort is more efficient than merge sort for almost sorted lists.

For the second challenge, discrete search spaces can still be explored effectively. For in-
stance, if the discrete search space is large but finite, deep neural networks, such as LLMs
generating tokens for code and text, work well. Also, Bayesian inference for non-continuous
probability distributions (e.g., probabilistic context-free grammars [132]) has been extensively
investigated.
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Appendix A

Supplements to Hybrid AARA

A.1 Full Experiment Results

This appendix contains the full evaluation results of all 10 benchmark programs described in
§7.6.

Table A.1: Estimation gaps of inferred cost bounds forMapAppend benchmark on various input
sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

(10, 10) Opt -0.26 -0.26 -0.26 -0.15 -0.15 -0.15
BayesWC 0.03 0.41 1.64 0.53 1.03 2.27
BayesPC 0.85 1.62 2.61 1.18 1.92 2.91

(100, 100) Opt -0.32 -0.32 -0.32 -0.15 -0.15 -0.15
BayesWC -0.18 0.22 1.17 0.53 1.03 2.27
BayesPC 0.75 1.54 2.53 1.12 1.89 2.89

(1000, 1000) Opt -0.32 -0.32 -0.32 -0.15 -0.15 -0.15
BayesWC -0.22 0.20 1.15 0.53 1.03 2.27
BayesPC 0.74 1.54 2.52 1.11 1.88 2.89
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Figure A.1: MapAppend Data-Driven
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Figure A.2: MapAppend Hybrid
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let incur_cost (hd : int) =
let modulo = 5 in
if (hd mod 100) = 0 then Raml.tick 1.0
else (
if (hd mod modulo) = 1 then
Raml.tick 0.85

else (
if (hd mod modulo) = 2 then
Raml.tick 0.65

else Raml.tick 0.5))

let complex_function (hd : int) =
let _ = incur_cost hd in
if hd < 42 then hd / 2 else hd * 2

let rec map_append (xs : int list) (ys : int list) =
match xs with
| [] → ys
| hd :: tl →

let hd_new = complex_function hd in
hd_new :: (map_append tl ys)

let map_append2 (xs : int list) (ys : int list) = Raml.
stat (map_append xs ys)

(a) Fully data-driven resource analysis.

let step_function (x : int) (xs : int list) (ys : int
list) =

let x_new = complex_function x in (x_new, xs, ys)

let rec map_append (xs : int list)
(ys : int list) =
match xs with
| [] → ys
| hd :: tl →
let hd_new, rec_xs, rec_ys = Raml.stat (

step_function hd tl ys) in
hd_new :: map_append rec_xs rec_ys

(b) Hybrid resource analysis.

Lst. A.1: Source code of MapAppend. The function complex_function is a computation that
Conventional AARA cannot statically analyze. Conventional AARA fails to infer any poly-
nomial cost bounds for the map_append function. (a) Fully data-driven resource analysis. (b)
Hybrid resource analysis. We perform data-driven analysis on step_function.

191



Table A.2: Estimation gaps of inferred cost bounds for BubbleSort benchmark on various input
sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt 0.01 0.01 0.01 ∅ ∅ ∅
BayesWC 0.44 6.29 60.73 ∅ ∅ ∅
BayesPC -0.31 0.02 0.39 ∅ ∅ ∅

100 Opt -0.38 -0.38 -0.38 ∅ ∅ ∅
BayesWC -0.48 0.41 8.34 ∅ ∅ ∅
BayesPC -0.34 -0.10 0.17 ∅ ∅ ∅

1000 Opt -0.38 -0.38 -0.38 ∅ ∅ ∅
BayesWC -0.93 -0.22 5.31 ∅ ∅ ∅
BayesPC -0.35 -0.10 0.15 ∅ ∅ ∅
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Figure A.3: BubbleSort Data-Driven
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let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick 0.5

let rec scan_and_swap (xs : int list) =
match xs with
| [] → ([], false)
| [ x ] → ([ x ], false)
| x1 :: x2 :: tl →

let _ = incur_cost x1 in
if x1 <= x2 then
let recursive_result, is_swapped = scan_and_swap (x2 :: tl) in
(x1 :: recursive_result, is_swapped)

else
let recursive_result, _ = scan_and_swap (x1 :: tl) in
(x2 :: recursive_result, true)

let rec bubble_sort (xs : int list) =
let xs_scanned, is_swapped = scan_and_swap xs in
if is_swapped then bubble_sort xs_scanned else xs_scanned

let bubble_sort2 (xs : int list) = Raml.stat (bubble_sort xs)

Lst. A.2: Source code of BubbleSort for fully data-driven analysis. Conventional AARA cannot
infer any polynomial cost bound as it fails to bound the number of recursive calls.
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Table A.3: Estimation gaps of inferred cost bounds for Concat benchmark on various input
sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

(50, 10) Opt -0.33 -0.33 -0.33 0.03 0.03 0.03
BayesWC 14.05 66.64 744.65 1.74 4.80 19.86
BayesPC 0.37 0.60 0.90 4.46 5.90 7.19

(500, 100) Opt -0.10 -0.10 -0.10 2.07 2.07 2.07
BayesWC 12.54 183.95 3329.73 2.10 13.59 130.41
BayesPC 0.50 1.25 4.50 16.22 32.27 47.71

(5000, 1000) Opt 2.83 2.83 2.83 22.44 22.44 22.44
BayesWC 11.04 931.52 32459.92 2.33 97.00 1309.28
BayesPC 1.06 7.84 42.44 132.48 298.20 456.99
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Figure A.4: Concat Data-Driven
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Figure A.5: Concat Hybrid

let incur_cost (hd : int) =
if (hd mod 5) = 0 then Raml.tick 1.0 else Raml.tick

0.5

let complex_function (hd : int) =
let _ = incur_cost hd in
if hd < 42 then hd / 2 else hd * 2

let rec map_append (xs : int list) (ys : int list) =
match xs with
| [] → ys
| hd :: tl →

let hd_new = complex_function hd in
hd_new :: map_append tl ys

let rec concat (xss : int list list) =
match xss with [] →[] | hd :: tl →map_append hd (

concat tl)

let concat2 (xss : int list list) = Raml.stat (concat
xss)

(a) Fully data-driven resource analysis.

let rec concat (xss : int list list) =
match xss with
| [] → []
| hd :: tl →

let rec_tl = concat tl in
Raml.stat (map_append hd rec_tl)

(b) Hybrid resource analysis.

Lst. A.3: Source code of Concat. The function complex_function is a computation that Con-
ventional AARA cannot statically analyze. Conventional AARA fails to infer any polynomial
cost bounds for the concat function. (a) Fully data-driven resource analysis. (b) Hybrid re-
source analysis. We perform data-driven analysis on map_append.
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Table A.4: Estimation gaps of inferred cost bounds for EvenOddTail benchmark on various
input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt 0.73 0.73 0.73 ∅ ∅ ∅
BayesWC 0.53 1.88 9.15 ∅ ∅ ∅
BayesPC 0.17 0.38 1.00 ∅ ∅ ∅

100 Opt -0.14 -0.14 -0.14 ∅ ∅ ∅
BayesWC -0.08 0.62 3.80 ∅ ∅ ∅
BayesPC 0.10 0.25 0.90 ∅ ∅ ∅

1000 Opt -0.21 -0.21 -0.21 ∅ ∅ ∅
BayesWC -0.62 0.52 3.75 ∅ ∅ ∅
BayesPC 0.11 0.27 0.92 ∅ ∅ ∅
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Figure A.6: EvenOddTail Data-Driven
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exception Invalid_input

let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick 0.5

let rec linear_traversal (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let _ = incur_cost hd in
hd :: linear_traversal tl

let rec is_even (xs : int list) =
match xs with [] →true | [ x ] →false | x1 :: x2 :: tl →is_even tl

let tail (xs : int list) =
match xs with [] →raise Invalid_input | hd :: tl →tl

let rec split (xs : int list) =
match xs with
| [] → []
| [ x ] → raise Invalid_input
| x1 :: x2 :: tl →x1 :: split tl

let rec even_split_odd_tail (xs : int list) : int list =
let xs_traversed = linear_traversal xs in
match xs_traversed with
| [] → []
| hd :: tl →

let xs_is_even = is_even xs_traversed in
if xs_is_even then
let split_result = split xs_traversed in
even_split_odd_tail split_result

else
let tail_result = tail xs_traversed in
even_split_odd_tail tail_result

let even_split_odd_tail2 (xs : int list) : int list =
Raml.stat (even_split_odd_tail xs)

Lst. A.4: Source code of EvenOddTail for fully data-driven resource analysis. Conventional
AARA can only infer a quadratic cost bound for EvenOddTail, but not the true linear cost bound.
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Table A.5: Estimation gaps of inferred cost bounds for InsertionSort2 benchmark on various
input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt -0.37 -0.37 -0.37 -0.15 -0.15 -0.15
BayesWC 0.05 1.17 8.68 0.39 0.72 1.47
BayesPC -0.33 -0.12 0.35 -0.14 0.08 0.84

100 Opt -0.39 -0.39 -0.39 -0.15 -0.15 -0.15
BayesWC -0.23 0.29 3.58 0.39 0.72 1.47
BayesPC -0.39 -0.23 0.26 -0.14 0.08 0.84

1000 Opt -0.40 -0.40 -0.40 -0.15 -0.15 -0.15
BayesWC -0.57 0.14 3.33 0.39 0.72 1.47
BayesPC -0.40 -0.24 0.25 -0.14 0.08 0.84
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Figure A.7: InsertionSort2 Data-Driven
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Figure A.8: InsertionSort2 Hybrid

let incur_cost (hd : int) =
let modulo = 5 in
if (hd mod 200) = 0 then Raml.tick 1.0
else (if (hd mod modulo) = 1 then Raml.tick 0.85

else if (hd mod modulo) = 2 then Raml.tick 0.65
else Raml.tick 0.5)

let rec insert (x : int) (xs : int list) =
match xs with
| [] → [ x ]
| hd :: tl →

let _ = incur_cost hd in
if x <= hd then x :: hd :: tl else hd :: insert x

tl

let rec insertion_sort (xs : int list) =
match xs with [] →[] | hd :: tl →insert hd (

insertion_sort tl)

let rec insertion_sort_second_time (xs : int list) =
match xs with
| [] → []
| hd :: tl → insert hd (insertion_sort_second_time tl)

let insertion_sort_second_time2 (xs : int list) =
Raml.stat (insertion_sort_second_time xs)

let double_insertion_sort (xs : int list) =
let sorted_xs = insertion_sort xs in
Raml.stat (insertion_sort_second_time sorted_xs)

(a) Fully data-driven resource analysis.

let rec insert (x : int) (xs : int list) =
match xs with
| [] → [ x ]
| hd :: tl →

let _ = incur_cost hd in
if x <= hd then x :: hd :: tl else hd :: insert x

tl

let rec insertion_sort (xs : int list) =
match xs with [] →[] | hd :: tl →insert hd (

insertion_sort tl)

let rec insert_second_time (x : int) (xs : int list) =
match xs with
| [] → [ x ]
| hd :: tl →

let _ = incur_cost hd in
if x <= hd then x :: hd :: tl
else hd :: (insert_second_time x tl)

let rec insertion_sort_second_time (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let rec_result = insertion_sort_second_time tl in
Raml.stat (insert_second_time hd rec_result)

let double_insertion_sort (xs : int list) =
let sorted_xs = insertion_sort xs in
insertion_sort_second_time sorted_xs

(b) Hybrid resource analysis.

Lst. A.5: Source code of InsertionSort2. The insertion_sort procedure is called twice in a
row. Our goal is to analyze the cost of the second call to insertion sort, which has a linear
worst-case cost bound because inputs are already sorted. Conventional AARA can only infer
a quadratic bound for the second call to insertion sort (just like the first call to insertion sort),
but not a linear cost bound, because it cannot determine that the inputs to the second insertion
sort are already sorted. (a) Fully data-driven resource analysis. (b) Hybrid resource analysis.
We perform data-driven analysis on the function insert_second_time.

199



Table A.6: Estimation gaps of inferred cost bounds for MedianOfMedians benchmark on vari-
ous input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt -0.42 -0.42 -0.42 -0.39 -0.39 -0.39
BayesWC -0.29 0.60 5.20 19.69 85.53 709.77
BayesPC -0.64 -0.55 -0.34 1.41 1.48 1.52

100 Opt -0.95 -0.95 -0.95 -0.49 -0.49 -0.49
BayesWC -0.95 -0.89 -0.62 8.35 40.30 339.77
BayesPC -0.91 -0.80 -0.54 1.38 1.45 1.50

1000 Opt -0.99 -0.99 -0.99 -0.50 -0.50 -0.50
BayesWC -1.00 -0.99 -0.82 2.48 31.90 328.10
BayesPC -0.94 -0.81 -0.55 1.38 1.45 1.50
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Figure A.9: MedianOfMedians Data-Driven
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Figure A.10: MedianOfMedians Hybrid

exception Invalid_input

let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick

0.5

let rec append (xs : int list) (ys : int list) =
match xs with [] →ys | hd :: tl →hd :: append tl ys

let rec insert (x : int) (list : int list) =
match list with
| [] → [ x ]
| y :: ys → if x <= y then x :: y :: ys else y ::

insert x ys

let rec insertion_sort (list : int list) =
match list with [] →[] | x :: xs →insert x (

insertion_sort xs)

let median_of_list_of_five (xs : int list) =
let sorted_xs = insertion_sort xs in
match sorted_xs with
| [ x1; x2; x3; x4; x5 ] →(x3, [ x1; x2; x4; x5 ])
| _ → raise Invalid_input

let rec partition_into_blocks (xs : int list) =
match xs with
| [] → ([], [])
| x1 :: x2 :: x3 :: x4 :: x5 :: tl →

let median, leftover = median_of_list_of_five [ x1;
x2; x3; x4; x5 ] in

let list_medians, list_leftover =
partition_into_blocks tl in

(median :: list_medians, append leftover
list_leftover)

| _ → raise Invalid_input

let rec partition (pivot : int) (xs : int list) =
match xs with
| [] → ([], [])
| hd :: tl →

let lower_list, upper_list = partition pivot tl in
let _ = incur_cost hd in
if hd <= pivot then (hd :: lower_list, upper_list)
else (lower_list, hd :: upper_list)

let rec lower_list_length_after_partition (pivot : int)
(xs : int list) =

match xs with
| [] → 0
| hd :: tl →

let lower_list_length =
lower_list_length_after_partition pivot tl in

if hd <= pivot then lower_list_length + 1 else
lower_list_length

let rec list_length (xs : int list) =
match xs with [] →0 | hd :: tl →1 + list_length tl

let rec find_minimum_acc (acc : int list) (candidate :
int) (xs : int list) =

match xs with
| [] → (candidate, acc)
| hd :: tl →

if hd < candidate then find_minimum_acc (candidate
:: acc) hd tl

else find_minimum_acc (hd :: acc) candidate tl

let find_minimum (xs : int list) =
match xs with
| [] → raise Invalid_input
| hd :: tl → find_minimum_acc [] hd tl

let rec preprocess_list_acc (minima_acc : int list) (xs
: int list) =

let xs_length = list_length xs in
if xs_length mod 5 = 0 then (minima_acc, xs)
else
let minimum, leftover = find_minimum xs in
preprocess_list_acc (minimum :: minima_acc) leftover

let rec get_nth_element (index : int) (xs : int list) =
match xs with
| [] → raise Invalid_input
| hd :: tl → if index = 0 then hd else get_nth_element

(index - 1) tl

Lst. A.6: Source code of helper functions used in MedianOfMedians (Listing A.7).
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let rec median_of_medians (index : int) (xs : int list)
=

match xs with
| [] → raise Invalid_input
| _ →

let minima, xs_trimmed = preprocess_list_acc [] xs
in

let mod_five = list_length minima in
if index < mod_five then get_nth_element (mod_five

- index - 1) minima
else
let index_trimmed = index - mod_five in
let list_medians, _ = partition_into_blocks

xs_trimmed in
let num_medians = list_length list_medians in
let index_median = num_medians / 2 in
let median_of_medians =
Raml.stat (median_of_medians index_median

list_medians)
in
let lower_list_length =
lower_list_length_after_partition

median_of_medians xs_trimmed
in
if index_trimmed = lower_list_length - 1 then
let _, _ = partition median_of_medians

xs_trimmed in
median_of_medians

else if index_trimmed < lower_list_length - 1
then

let lower_list, _ = partition median_of_medians
xs_trimmed in

Raml.stat (median_of_medians index_trimmed
lower_list)

else
let new_index = index_trimmed -

lower_list_length in
let _, upper_list = partition median_of_medians

xs_trimmed in
Raml.stat (median_of_medians new_index

upper_list)

let median_of_medians2 (index : int) (xs : int list) =
Raml.stat (median_of_medians index xs)

(a) Fully data-driven resource analysis.

let rec median_of_medians (index : int) (xs : int list)
=

match xs with
| [] → raise Invalid_input
| _ →

let minima, xs_trimmed = preprocess_list_acc [] xs
in

let mod_five = list_length minima in
if index < mod_five then get_nth_element (mod_five

- index - 1) minima
else
let index_trimmed = index - mod_five in
let list_medians = partition_into_blocks

xs_trimmed in
let num_medians = list_length list_medians in
let index_median = num_medians / 2 in
let median_of_medians = median_of_medians

index_median list_medians in
let lower_list_length =
lower_list_length_after_partition

median_of_medians xs_trimmed
in
if index_trimmed = lower_list_length - 1 then
let _, _ = Raml.stat (partition

median_of_medians xs_trimmed) in
median_of_medians

else if index_trimmed < lower_list_length - 1
then

let lower_list, _ =
Raml.stat (partition median_of_medians

xs_trimmed)
in
median_of_medians index_trimmed lower_list

else
let new_index = index_trimmed -

lower_list_length in
let _, upper_list =
Raml.stat (partition median_of_medians

xs_trimmed)
in
median_of_medians new_index upper_list

(b) Hybrid resource analysis.

Lst. A.7: Source code of MedianOfMedians. Conventional AARA cannot infer any polyno-
mial bound forMedianOfMedians. (a) Fully data-driven resource analysis. (b) Hybrid resource
analysis. We conduct data-driven analysis on the function partition. Although Conventional
AARA can derive a linear cost bound of the partition function, analyzing it using data-driven
analysis gives a tighter cost bound. This tighter linear bound of the partition function is
required for deriving an overall linear cost bound of MedianOfMedians.
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Table A.7: Estimation gaps of inferred cost bounds forQuickSelect benchmark on various input
sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt -0.42 -0.42 -0.42 -0.39 -0.39 -0.39
BayesWC -0.29 0.60 5.20 19.69 85.53 709.77
BayesPC -0.64 -0.55 -0.34 1.41 1.48 1.52

100 Opt -0.95 -0.95 -0.95 -0.49 -0.49 -0.49
BayesWC -0.95 -0.89 -0.62 8.35 40.30 339.77
BayesPC -0.91 -0.80 -0.54 1.38 1.45 1.50

1000 Opt -0.99 -0.99 -0.99 -0.50 -0.50 -0.50
BayesWC -1.00 -0.99 -0.82 2.48 31.90 328.10
BayesPC -0.94 -0.81 -0.55 1.38 1.45 1.50
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Figure A.11: QuickSelect Data-Driven
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Figure A.12: QuickSelect Hybrid

exception Invalid_input

let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick

0.5

let rec append (xs : int list) (ys : int list) =
match xs with [] →ys | hd :: tl →hd :: append tl ys

let rec partition (pivot : int) (xs : int list) =
match xs with
| [] → ([], [])
| hd :: tl →

let lower_list, upper_list = partition pivot tl in
let _ = incur_cost hd in
if hd <= pivot then (hd :: lower_list, upper_list)
else (lower_list, hd :: upper_list)

let rec list_length (xs : int list) =
match xs with [] →0 | hd :: tl →1 + list_length tl

let rec quickselect (index : int) (xs : int list) =
match xs with
| [] → raise Invalid_input
| [ x ] → if index = 0 then x else raise

Invalid_input
| hd :: tl →

let lower_list, upper_list = partition hd tl in
let lower_list_length = list_length lower_list in
if index < lower_list_length then quickselect index

lower_list
else if index = lower_list_length then hd
else
let new_index = index - lower_list_length - 1 in
quickselect new_index upper_list

let quickselect2 (index : int) (xs : int list) =
Raml.stat (quickselect index xs)

(a) Fully data-driven resource analysis.

let rec quickselect (index : int) (xs : int list) =
match xs with
| [] → raise Invalid_input
| [ x ] → if index = 0 then x else raise

Invalid_input
| hd :: tl →

(* This is a workaround for an issue with the let-
normal form inside

Raml.stat(...) in the implementation *)
let tl = tl in
let lower_list, _ = partition_cost_free hd tl in
let lower_list_length = list_length lower_list in
if index < lower_list_length then
let lower_list, _ = Raml.stat (partition hd tl)

in
quickselect index lower_list

else if index = lower_list_length then
let _, _ = Raml.stat (partition hd tl) in
hd

else
let _, upper_list = Raml.stat (partition hd tl)

in
quickselect (index - lower_list_length - 1)

upper_list

(b) Hybrid resource analysis.

Lst. A.8: Source code of QuickSelect. Conventional AARA cannot analyze this source code
if the comparison function used inside QuickSelect is complex. (a) Fully data-driven resource
analysis. (b) Hybrid resource analysis. We perform data-driven analysis on partition.
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Table A.8: Estimation gaps of inferred cost bounds for QuickSort benchmark on various input
sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt -0.23 -0.23 -0.23 -0.29 -0.29 -0.29
BayesWC 0.37 3.66 32.71 36.48 181.96 1776.52
BayesPC -0.52 -0.47 -0.22 4.12 4.73 4.96

100 Opt -0.90 -0.90 -0.90 -0.39 -0.39 -0.39
BayesWC -0.87 -0.64 1.24 17.83 82.90 667.39
BayesPC -0.88 -0.79 -0.61 3.78 4.41 4.69

1000 Opt -0.96 -0.96 -0.96 -0.40 -0.40 -0.40
BayesWC -0.98 -0.91 -0.09 5.07 60.66 610.58
BayesPC -0.93 -0.83 -0.63 3.75 4.38 4.66
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Figure A.13: QuickSort Data-Driven
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Figure A.14: QuickSort Hybrid

let incur_cost (hd : int) =
if (hd mod 5) = 0 then Raml.tick 1.0 else Raml.tick

0.5

let rec append (xs : int list) (ys : int list) =
match xs with [] →ys | hd :: tl →hd :: append tl ys

let rec partition (pivot : int) (xs : int list) =
match xs with
| [] → ([], [])
| hd :: tl →

let lower_list, upper_list = partition pivot tl in
let _ = incur_cost hd in
if hd <= pivot then (hd :: lower_list, upper_list)
else (lower_list, hd :: upper_list)

let rec quicksort (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let lower_list, upper_list = partition hd tl in
let lower_list_sorted = quicksort lower_list in
let upper_list_sorted = quicksort upper_list in
append lower_list_sorted (hd :: upper_list_sorted)

let quicksort2 (xs : int list) = Raml.stat (quicksort xs
)

(a) Fully data-driven resource analysis.

let rec quicksort (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let lower_list, upper_list = Raml.stat (partition
hd tl) in

let lower_list_sorted = quicksort lower_list in
let upper_list_sorted = quicksort upper_list in
append lower_list_sorted (hd :: upper_list_sorted)

(b) Hybrid resource analysis.

Lst. A.9: Source code of QuickSort. Conventional AARA cannot analyze this source code if the
comparison function used inside QuickSort is complex. (a) Fully data-driven resource analysis.
(b) Hybrid resource analysis. We perform data-driven analysis on partition.
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Table A.9: Estimation gaps of inferred cost bounds for Round benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt 0.26 0.26 0.26 ∅ ∅ ∅
BayesWC 0.27 0.68 2.83 ∅ ∅ ∅
BayesPC 0.49 0.82 2.57 ∅ ∅ ∅

100 Opt 0.40 0.40 0.40 ∅ ∅ ∅
BayesWC 0.40 0.68 2.33 ∅ ∅ ∅
BayesPC 0.55 0.87 2.86 ∅ ∅ ∅

1000 Opt 0.73 0.73 0.73 ∅ ∅ ∅
BayesWC 0.67 1.06 3.11 ∅ ∅ ∅
BayesPC 0.89 1.29 3.75 ∅ ∅ ∅
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Figure A.15: Round Data-Driven
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let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick 0.5

let rec double (xs : int list) =
match xs with [] →[] | hd :: tl →hd :: hd :: double tl

let rec half (xs : int list) =
match xs with [] →[] | [ x ] → [] | x1 :: x2 :: tl →x1 :: half tl

let rec round (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let half_result = half tl in
let recursive_result = round half_result in
hd :: double recursive_result

let rec linear_traversal (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let _ = incur_cost hd in
hd :: linear_traversal tl

let round_followed_by_linear_traversal (xs : int list) =
let round_result = round xs in
linear_traversal round_result

let round2 (xs : int list) =
Raml.stat (round_followed_by_linear_traversal xs)

Lst. A.10: Source code of Round for fully data-driven resource analysis. Conventional AARA
cannot infer any polynomial cost bounds for this code [112, §5.4.3].
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Table A.10: Estimation gaps of inferred cost bounds for ZAlgorithm benchmark on various
input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid

Percentile 5th 50th 95th 5th 50th 95th
Input Size Method

10 Opt -0.68 -0.68 -0.68 -0.08 -0.08 -0.08
BayesWC -0.53 -0.21 1.37 0.00 0.29 2.99
BayesPC -0.48 -0.10 0.33 1.18 1.49 1.78

100 Opt -0.68 -0.68 -0.68 -0.08 -0.08 -0.08
BayesWC -0.65 -0.44 0.56 0.00 0.29 2.99
BayesPC -0.50 -0.13 0.23 1.18 1.49 1.78

1000 Opt -0.68 -0.68 -0.68 -0.08 -0.08 -0.08
BayesWC -0.76 -0.47 0.56 0.00 0.29 2.99
BayesPC -0.50 -0.14 0.22 1.18 1.49 1.78
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Figure A.16: ZAlgorithm Data-Driven

209



0 50 100
Input Size

0

50

100

150

200

250

300

Co
st

Observed Data
Ground Truth
Inferred Bound

(a) Opt

0 50 100
Input Size

0

50

100

150

200

250

300

Co
st

(b) BayesWC

0 50 100
Input Size

0

50

100

150

200

250

300

Co
st

(c) BayesPC

Figure A.17: ZAlgorithm Hybrid

exception Invalid_input

let incur_cost (hd : int) =
let modulo = 5 in
if (hd mod 100) = 0 then Raml.tick 1.0
else (if (hd mod modulo) = 1 then Raml.tick 0.85

else if (hd mod modulo) = 2 then Raml.tick 0.65 else Raml.tick 0.5)

let rec list_length (xs : int list) =
match xs with [] →0 | hd :: tl →1 + list_length tl

let hd_exn (xs : int list) =
match xs with [] →raise Invalid_input | hd :: _ →hd

let min (x1 : int) (x2 : int) = if x1 < x2 then x1 else x2

let rec drop_n_elements (xs : int list) (n : int) =
match xs with
| [] → []
| hd :: tl → if n = 0 then hd :: tl else drop_n_elements tl (n - 1)

let rec longest_common_prefix (xs1 : int list) (xs2 : int list) =
match xs1 with
| [] → 0
| hd1 :: tl1 →(

match xs2 with
| [] → 0
| hd2 :: tl2 →

if hd1 = hd2 then
let _ = incur_cost (hd1 + hd2) in
1 + longest_common_prefix tl1 tl2

else 0 )

Lst. A.11: Source code of helper functions used in ZAlgorithm (Listing A.12).
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let rec z_algorithm_acc (acc : int list) (
original_string : int list)

(current_string : int list) (left : int) (right :
int) =

match current_string with
| [] → acc
| hd :: tl →

let _ = incur_cost hd
in let current_index = list_length acc
in let old_result =
if left = 0 then 0 else hd_exn (drop_n_elements

acc (left - 1))
in let current_result_initial =
if current_index < right then min (right -

current_index) old_result
else 0

in let first_sublist =
drop_n_elements original_string

current_result_initial
in let second_sublist =
drop_n_elements current_string

current_result_initial
in let common_prefix_size =
longest_common_prefix first_sublist

second_sublist
in let current_result = current_result_initial +

common_prefix_size
in let cumulative_result_updated = current_result

:: acc
in if current_index + current_result > right then
z_algorithm_acc cumulative_result_updated

original_string tl
current_index
(current_index + current_result)

else
z_algorithm_acc cumulative_result_updated

original_string tl left right

let rec reverse_acc (acc : int list) (xs : int list) =
match xs with [] →acc | hd :: tl →reverse_acc (hd ::

acc) tl

let z_algorithm (xs : int list) =
match xs with
| [] → []
| hd :: tl →
reverse_acc []
(z_algorithm_acc [ 0 ] xs tl 0 0)

let z_algorithm2 (xs : int list) = Raml.stat (
z_algorithm xs)

(a) Fully data-driven resource analysis.

let rec z_algorithm_acc (acc : int list) (
original_string : int list)

(current_string : int list) (left : int) (right :
int) =

match current_string with
| [] → acc
| hd :: tl →

let _ = incur_cost hd in
let current_index = list_length acc in
let old_result =
if left = 0 then 0 else hd_exn (drop_n_elements

acc (left - 1))
in let current_result_initial =
if current_index < right then min (right -

current_index) old_result
else 0

in let first_sublist =
drop_n_elements original_string

current_result_initial
in let second_sublist =
drop_n_elements current_string

current_result_initial
in let common_prefix_size =
Raml.stat (longest_common_prefix first_sublist

second_sublist)
in let current_result = current_result_initial +

common_prefix_size
in let cumulative_result_updated = current_result

:: acc
in if current_index + current_result > right then
z_algorithm_acc cumulative_result_updated

original_string tl
current_index
(current_index + current_result)

else
z_algorithm_acc cumulative_result_updated
original_string tl left right

let rec reverse_acc (acc : int list) (xs : int list) =
match xs with [] →acc | hd :: tl →reverse_acc (hd ::

acc) tl

let z_algorithm (xs : int list) =
match xs with
| [] → []
| hd :: tl →
reverse_acc []
(z_algorithm_acc [ 0 ] xs tl 0 0)

(b) Hybrid resource analysis.

Lst. A.12: Source code of ZAlgorithm. Conventional AARA can infer a quadratic cost bound,
but not the true linear cost bound. (a) Fully data-driven resource analysis. (b) Hybrid resource
analysis. We perform data-driven analysis on longest_common_prefix.
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Appendix B

Supplements to Resource Decomposition

B.1 Supplementary Materials for Evaluation

This section describes and presents supplementary experiment results of the 14 benchmark
programs that are analyzed using Bayesian data-driven analysis: (i) 13 benchmark programs
for AARA+Bayesian analysis (§8.5); (ii)QuickSortTiML for TiML+Bayesian analysis (§8.7).

B.1.1 Benchmark Programs

The 14 benchmark programs used in §8.5 and §8.7 are described below.
• MergeSort: Run merge sort on an integer list.
• QuickSort: Run quicksort on an integer list. The first element is used as the partition
pivot.

• QuickSortTiML: Run quicksort on a list of natural numbers. The comparison function first
converts input numbers to binary encodings and then traverses them. The first element
is used as the partition pivot.

• BubbleSort: Given an integer list, traverse it and swap any out-of-order pairs of elements.
Repeat this traversal until no more swaps can be made. The worst-case linear recursion
depth is not hard-coded in the implementation. Thus, this is a saturation-based algorithm:
it keeps running until some data structure is saturated (e.g., no swaps can be made).

• HeapSort: Run heapsort on an integer list, using an array-based heap.
• HuffmanCode: Given a list of characters and their frequencies, construct a Huffman tree
that represents the Huffman code. We implement a priority queue by an array-based
heap.

• BalancedBST: Given integer lists 𝑥1 and 𝑥2 ⊆ 𝑥1, first run merge sort on 𝑥1 and then
construct a balanced binary search tree (BST) from the sorted list (in linear time). Then
successively look up the elements of 𝑥2 in the BST.

• UnbalancedBST: Given integers lists 𝑥1 and 𝑥2 ⊆ 𝑥1, create a (possibly unbalanced) BST
for 𝑥1. Then successively look up the elements of 𝑥2 in the BST.
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• RedBlackTree, AVLTree, SplayTree: Given integer lists 𝑥1 and 𝑥2 ⊆ 𝑥1, construct the BST
variant for 𝑥1. Then successively look up the elements of 𝑥2 in the BST.

• Prim: Given a graph represented by an adjacency list (i.e., an array of lists of neighboring
vertices), run Prim’s algorithm to compute a minimum spanning tree (MST). We imple-
ment a priority queue by an array-based heap.

• Dijkstra: Given a graph represented by an adjacency list, run Dijkstra’s algorithm to
compute shortest distances of all vertices from the source, which is the first vertex in the
adjacency list. We implement a priority queue by an array-based heap.

• BellmanFord: Given a graph represented by an adjacency list, run the Bellman-Ford al-
gorithm to compute shortest distances of all vertices from the source.
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B.1.2 Full Experiment Results

Table B.1: Relative errors of inferred bounds for MergeSort with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
210 0.050 0.105 0.268
215 0.024 0.096 0.283
220 0.007 0.090 0.293

Total Cost
210 0.050 0.105 0.268
215 0.024 0.096 0.283
220 0.007 0.090 0.293
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Figure B.1: Posterior distributions of resource guards and total cost in MergeSort.
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Table B.2: Relative errors of inferred bounds for QuickSort with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
210 -0.228 -0.103 0.034
215 -0.230 -0.104 0.033
220 -0.230 -0.104 0.033

Total Cost
210 -0.228 -0.103 0.034
215 -0.230 -0.104 0.033
220 -0.230 -0.104 0.033
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Figure B.2: Posterior distributions of resource guards and total cost in QuickSort.
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Table B.3: Relative errors of inferred bounds for BubbleSort with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
210 -0.012 0.018 0.099
215 -0.012 0.017 0.098
220 -0.012 0.017 0.098

Total Cost
210 -0.012 0.018 0.099
215 -0.012 0.017 0.098
220 -0.012 0.017 0.098
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Figure B.3: Posterior distributions of resource guards and total cost in BubbleSort.
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Table B.4: Relative errors of inferred bounds for HeapSort with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
210 − 1 0.008 0.077 0.264
215 − 1 -0.040 0.051 0.286
220 − 1 -0.067 0.038 0.299

Resource Guard 2
210 − 1 0.052 0.106 0.322
215 − 1 0.009 0.091 0.349
220 − 1 -0.015 0.083 0.367

Total Cost
210 − 1 0.035 0.084 0.214
215 − 1 0.002 0.071 0.247
220 − 1 -0.016 0.064 0.266
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Figure B.4: Posterior distributions of resource guards and total cost in HeapSort.
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Table B.5: Relative errors of inferred bounds forHuffmanCodewith respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
210 − 1 0.008 0.077 0.264
215 − 1 -0.040 0.051 0.286
220 − 1 -0.067 0.038 0.299

Resource Guard 2
210 − 1 0.051 0.104 0.276
215 − 1 0.002 0.087 0.296
220 − 1 -0.026 0.077 0.308

Total Cost
210 − 1 0.047 0.098 0.211
215 − 1 0.010 0.081 0.220
220 − 1 -0.012 0.072 0.229
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Figure B.5: Posterior distributions of resource guards and total cost in HuffmanCode.
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Table B.6: Relative errors of inferred bounds for BalancedBST with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Counter 1
(210 − 1, 29) -0.004 0.019 0.074
(215 − 1, 214) -0.015 0.017 0.083
(220 − 1, 219) -0.021 0.016 0.088

Counter 2
(210 − 1, 29) 0.001 0.040 0.124
(215 − 1, 214) -0.006 0.048 0.153
(220 − 1, 219) -0.010 0.053 0.168

Total Cost
(210 − 1, 29) 0.001 0.022 0.069
(215 − 1, 214) -0.007 0.021 0.079
(220 − 1, 219) -0.012 0.021 0.084
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Figure B.6: Posterior distributions of resource guards and total cost in BalancedBST.
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Table B.7: Relative errors of inferred bounds for UnbalancedBST with respect to the ground-
truth bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210 − 1, 29) -0.288 -0.227 -0.133
(215 − 1, 214) -0.289 -0.228 -0.134
(220 − 1, 219) -0.289 -0.228 -0.134

Resource Guard 2
(210 − 1, 29) -0.294 -0.225 -0.122
(215 − 1, 214) -0.295 -0.226 -0.122
(220 − 1, 219) -0.295 -0.226 -0.122

Total Cost
(210 − 1, 29) -0.273 -0.221 -0.161
(215 − 1, 214) -0.275 -0.222 -0.162
(220 − 1, 219) -0.275 -0.222 -0.162
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Figure B.7: Posterior distributions of resource guards and total cost in UnbalancedBST.
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Table B.8: Relative errors of inferred bounds for RedBlackTreewith respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210 − 1, 29) -0.225 -0.184 -0.069
(215 − 1, 214) -0.237 -0.187 -0.051
(220 − 1, 219) -0.243 -0.188 -0.042

Resource Guard 2
(210 − 1, 29) -0.308 -0.259 -0.188
(215 − 1, 214) -0.313 -0.247 -0.152
(220 − 1, 219) -0.316 -0.241 -0.134

Total Cost
(210 − 1, 29) -0.227 -0.191 -0.095
(215 − 1, 214) -0.237 -0.194 -0.080
(220 − 1, 219) -0.242 -0.195 -0.072
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Figure B.8: Posterior distributions of resource guards and total cost in RedBlackTree.
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Table B.9: Relative errors of inferred bounds for AVLTree with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210 − 1, 29) -0.160 -0.089 0.001
(215 − 1, 214) -0.149 -0.057 0.060
(220 − 1, 219) -0.143 -0.041 0.091

Resource Guard 2
(210 − 1, 29) -0.224 -0.207 -0.046
(215 − 1, 214) -0.203 -0.178 0.041
(220 − 1, 219) -0.192 -0.163 0.087

Total Cost
(210 − 1, 29) -0.160 -0.092 -0.007
(215 − 1, 214) -0.149 -0.060 0.050
(220 − 1, 219) -0.142 -0.043 0.081
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Figure B.9: Posterior distributions of resource guards and total cost in AVLTree.
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Table B.10: Relative errors of inferred bounds for SplayTree with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210 − 1, 29) -0.726 -0.609 -0.514
(215 − 1, 214) -0.728 -0.610 -0.514
(220 − 1, 219) -0.728 -0.610 -0.514

Resource Guard 2
(210 − 1, 29) -0.707 -0.687 -0.658
(215 − 1, 214) -0.710 -0.688 -0.659
(220 − 1, 219) -0.710 -0.688 -0.659

Total Cost
(210 − 1, 29) -0.716 -0.638 -0.566
(215 − 1, 214) -0.719 -0.640 -0.567
(220 − 1, 219) -0.719 -0.640 -0.567
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Figure B.10: Posterior distributions of resource guards and total cost in SplayTree.
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Table B.11: Relative errors of inferred bounds for Primwith respect to the ground-truth bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210, 29) -0.042 -0.017 0.027
(215, 214) -0.026 0.009 0.067
(220, 219) -0.017 0.023 0.089

Resource Guard 2
(210, 29) -0.058 -0.030 0.013
(215, 214) -0.059 -0.011 0.048
(220, 219) -0.061 -0.001 0.067

Resource Guard 3
(210, 29) 0.000 0.006 0.021
(215, 214) -0.000 0.005 0.021
(220, 219) -0.000 0.005 0.021

Total Cost
(210, 29) -0.048 -0.022 0.021
(215, 214) -0.052 -0.005 0.054
(220, 219) -0.053 0.005 0.072
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Figure B.11: Posterior distributions of resource guards and total cost in Prim.
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Table B.12: Relative errors of inferred bounds for Dijkstra with respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210, 29) -0.042 -0.017 0.027
(215, 214) -0.026 0.009 0.067
(220, 219) -0.017 0.023 0.089

Resource Guard 2
(210, 29) -0.045 -0.024 0.028
(215, 214) -0.033 0.000 0.071
(220, 219) -0.027 0.013 0.093

Resource Guard 3
(210, 29) 0.000 0.006 0.021
(215, 214) -0.000 0.005 0.021
(220, 219) -0.000 0.005 0.021

Total Cost
(210, 29) -0.036 -0.015 0.032
(215, 214) -0.026 0.007 0.073
(220, 219) -0.020 0.019 0.096
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Figure B.12: Posterior distributions of resource guards and total cost in Dijkstra.
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Table B.13: Relative errors of inferred bounds for BellmanFordwith respect to the ground-truth
bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Resource Guard 1
(210, 29) -0.003 0.002 0.021
(215, 214) -0.004 0.001 0.020
(220, 219) -0.004 0.001 0.020

Total Cost
(210, 29) -0.003 0.002 0.021
(215, 214) -0.004 0.001 0.020
(220, 219) -0.004 0.001 0.020
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Figure B.13: Posterior distributions of resource guards and total cost in BellmanFord.

227



Table B.14: Relative errors of inferred bounds for QuickSortTiML with respect to the ground-
truth bounds.

Quantity Input Size Relative Errors of Inferred Bounds

5th percentile 50th percentile 95th percentile

Counter 1
(210, 29) 0.001 0.008 0.028
(215, 214) -0.008 0.008 0.039
(220, 219) -0.017 0.009 0.048

Total Cost
(210, 29) 0.001 0.006 0.023
(215, 214) -0.007 0.007 0.034
(220, 219) -0.016 0.008 0.044
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Figure B.14: Posterior distributions of resource guards and total cost in QuickSortTiML.
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B.2 Source Code of Benchmark Programs

This section displays the source code of resource-decomposed and resource-guarded code of all
15 benchmark programs in §8.5.3: (i) 13 benchmarks for AARA+Bayesian analysis for AARA+Bayesian
analysis(§8.5); (ii) Kruskal for AARA+Interactive analysis (§8.6); and (iii) QuickSortTiML for
TiML+Bayesian analysis (§8.7).

B.2.1 Helper Functions for Resource Guards

exception Invalid_input

let decrement_counter current_original_counters =
let current_counter, original_counter =
current_original_counters

in
match current_counter with
| [] → raise Invalid_input
| _ :: counter_tl →(counter_tl, original_counter)

let increment_counter current_original_counters =
let current_counter, original_counter =
current_original_counters

in
(1 :: current_counter, original_counter)

let initialize_counter current_original_counters =
let _, original_counter = current_original_counters in
(original_counter, original_counter)

let set_counter_to_zero current_original_counters =
let _, original_counter = current_original_counters in
([], original_counter)

Lst. B.1: Helper functions for manipulating one resource guard. These functions are used in the
source code of those benchmarks that use one resource guard (e.g., MergeSort).
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exception Invalid_input

let decrement_counter current_original_counters =
let current_counter, original_counter =
current_original_counters

in
match current_counter with
| [] → raise Invalid_input
| _ :: counter_tl →(counter_tl, original_counter)

let decrement_first_counter
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( decrement_counter current_original_counters1,
current_original_counters2 )

let decrement_second_counter
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( current_original_counters1,
decrement_counter current_original_counters2 )

let increment_counter current_original_counters =
let current_counter, original_counter =
current_original_counters

in
(1 :: current_counter, original_counter)

let increment_first_counter
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( increment_counter current_original_counters1,
current_original_counters2 )

let increment_second_counter
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( current_original_counters1,
increment_counter current_original_counters2 )

let initialize_counter current_original_counters =
let _, original_counter =
current_original_counters

in
(original_counter, original_counter)

let initialize_first_counter
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( initialize_counter current_original_counters1,
current_original_counters2 )

let initialize_second_counter
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( current_original_counters1,
initialize_counter current_original_counters2 )

let set_counter_to_zero current_original_counters =
let _, original_counter =
current_original_counters

in
([], original_counter)

let set_first_counter_to_zero
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( set_counter_to_zero current_original_counters1,
current_original_counters2 )

let set_second_counter_to_zero
two_current_original_counters =

let ( current_original_counters1,
current_original_counters2 ) =

two_current_original_counters
in
( current_original_counters1,
set_counter_to_zero current_original_counters2 )

Lst. B.2: Helper functions for manipulating two resource guards. These functions are used in
the source code of those benchmarks that use two resource guards (e.g., HeapSort).
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exception Invalid_input

let decrement_counter current_original_counters =
let current_counter, original_counter =
current_original_counters

in
match current_counter with
| [] → raise Invalid_input
| _ :: counter_tl →(counter_tl, original_counter)

let decrement_first_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( decrement_counter current_original_counters1,
current_original_counters2,
current_original_counters3 )

let decrement_second_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
decrement_counter current_original_counters2,
current_original_counters3 )

let decrement_third_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
current_original_counters2,
decrement_counter current_original_counters3 )

let increment_counter current_original_counters =
let current_counter, original_counter =
current_original_counters

in
(1 :: current_counter, original_counter)

let increment_first_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( increment_counter current_original_counters1,
current_original_counters2,
current_original_counters3 )

let increment_second_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
increment_counter current_original_counters2,
current_original_counters3 )

let increment_third_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
current_original_counters2,
increment_counter current_original_counters3 )

Lst. B.3: Helper functions for manipulating three resource guards (part 1). These functions are
used in the source code of those benchmarks that use three resource guard (e.g., Prim).
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let initialize_counter current_original_counters =
let _, original_counter =
current_original_counters

in
(original_counter, original_counter)

let initialize_first_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( initialize_counter current_original_counters1,
current_original_counters2,
current_original_counters3 )

let initialize_second_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
initialize_counter current_original_counters2,
current_original_counters3 )

let initialize_third_counter
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
current_original_counters2,
initialize_counter current_original_counters3 )

let set_counter_to_zero current_original_counters =
let _, original_counter =
current_original_counters

in
([], original_counter)

let set_first_counter_to_zero
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( set_counter_to_zero current_original_counters1,
current_original_counters2,
current_original_counters3 )

let set_second_counter_to_zero
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
set_counter_to_zero current_original_counters2,
current_original_counters3 )

let set_third_counter_to_zero
three_current_original_counters =

let ( current_original_counters1,
current_original_counters2,
current_original_counters3 ) =

three_current_original_counters
in
( current_original_counters1,
current_original_counters2,
set_counter_to_zero current_original_counters3 )

Lst. B.4: Helper functions for manipulating three resource guards (part 2).
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B.2.2 MergeSort

let rec merge (xs : int list) (ys : int list) =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| x :: xs_tl →(

match ys with
| [] → xs
| y :: ys_tl →

if x <= y then x :: merge xs_tl ys
else y :: merge xs ys_tl )

let rec split xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], [])
| [ x ] → ([ x ], [])
| x1 :: x2 :: tl →

let lower, upper = split tl in
(x1 :: lower, x2 :: upper)

let rec merge_sort xs =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match xs with
| [] → []
| [ x ] → [ x ]
| _ →

let lower, upper = split xs in
let lower_sorted = merge_sort lower in
let upper_sorted = merge_sort upper in
merge lower_sorted upper_sorted

in
let _ = Raml.mark 0 (-1.0) in
result

let main xs =
let _ = Raml.activate_counter_variable 0 in
let result = merge_sort xs in
let _ = Raml.record_counter_variable 0 in
result

Lst. B.5: Resource-decomposed code of MergeSort. The resource metric of our interest is the
number of function calls. This cost is indicated by the construct Raml.tick throughout the
source code. The construct Raml.mark specifies a resource component: the recursion depth of
the function merge_sort.
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let rec merge (xs : int list) (ys : int list)
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (ys, current_original_counters)
| x :: xs_tl →(

match ys with
| [] → (xs, current_original_counters)
| y :: ys_tl →

if x <= y then
let ( recursive_result,

current_original_counters ) =
merge xs_tl ys current_original_counters

in
( x :: recursive_result,
current_original_counters )

else
let ( recursive_result,

current_original_counters ) =
merge xs ys_tl current_original_counters

in
( y :: recursive_result,
current_original_counters ) )

let rec split xs current_original_counters =
let _ = Raml.tick 1.0 in
match xs with
| [] → (([], []), current_original_counters)
| [ x ] → (([ x ], []), current_original_counters)
| x1 :: x2 :: tl →

let (lower, upper), current_original_counters =
split tl current_original_counters

in
( (x1 :: lower, x2 :: upper),
current_original_counters )

let rec merge_sort xs current_original_counters =
let _ = Raml.tick 1.0 in
let new_counter =
decrement_counter current_original_counters

in
let result, counter_final =
match xs with
| [] → ([], new_counter)
| [ x ] → ([ x ], new_counter)
| _ →

let (lower, upper), counter_split =
split xs new_counter

in
let lower_sorted, counter1 =
merge_sort lower counter_split

in
let upper_sorted, counter2 =
merge_sort upper counter1

in
merge lower_sorted upper_sorted counter2

in
(result, increment_counter counter_final)

(* Polynomial degree for AARA: 2 *)

let main xs current_original_counters =
let initialized_counter =
initialize_counter current_original_counters

in
let result, counter_after_sorting =
merge_sort xs initialized_counter

in
(result, set_counter_to_zero counter_after_sorting)

Lst. B.6: Resource-guarded code of MergeSort. Helper functions for manipulating resource
guards (i.e., decrement_counter and increment_counter) are defined in Listing B.1.
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B.2.3 QuickSort

let rec partition (pivot : int) (xs : int list) =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], [])
| hd :: tl →

let lower, upper = partition pivot tl in
if hd < pivot then (hd :: lower, upper)
else (lower, hd :: upper)

let rec append xs ys =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| hd :: tl → hd :: append tl ys

let rec quicksort xs =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match xs with
| [] → []
| [ x ] → [ x ]
| hd :: tl →

let lower, upper = partition hd tl in
let lower_sorted = quicksort lower in
let upper_sorted = quicksort upper in
append lower_sorted (hd :: upper_sorted)

in
let _ = Raml.mark 0 (-1.0) in
result

let main xs =
let _ = Raml.activate_counter_variable 0 in
let result = quicksort xs in
let _ = Raml.record_counter_variable 0 in
result

Lst. B.7: Resource-decomposed code of QuickSort.
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let rec partition (pivot : int) (xs : int list)
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (([], []), current_original_counters)
| hd :: tl →

let (lower, upper), current_original_counters =
partition pivot tl current_original_counters

in
let _ = Raml.tick 1.0 in
if hd < pivot then
( (hd :: lower, upper),
current_original_counters )

else
( (lower, hd :: upper),
current_original_counters )

let rec append xs ys current_original_counters =
let _ = Raml.tick 1.0 in
match xs with
| [] → (ys, current_original_counters)
| hd :: tl →

let result_recursive, current_original_counters
=

append tl ys current_original_counters
in
( hd :: result_recursive,
current_original_counters )

let rec quicksort xs current_original_counters =
let _ = Raml.tick 1.0 in
let new_counter =
decrement_counter current_original_counters

in
let result, counter_final =
match xs with
| [] → ([], new_counter)
| [ x ] → ([ x ], new_counter)
| hd :: tl →

let (lower, upper), counter1 =
partition hd tl new_counter

in
let lower_sorted, counter2 =
quicksort lower counter1

in
let upper_sorted, counter3 =
quicksort upper counter2

in
append lower_sorted
(hd :: upper_sorted)
counter3

in
(result, increment_counter counter_final)

(* Polynomial degree for AARA: 2 *)

let main xs current_original_counters =
let initialized_counter =
initialize_counter current_original_counters

in
let result, counter_after_sorting =
quicksort xs initialized_counter

in
(result, set_counter_to_zero counter_after_sorting)

Lst. B.8: Resource-guarded code of QuickSort.
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B.2.4 BubbleSort

let rec traverse_and_swap (xs : int list) =
let _ = Raml.tick 1.0 in
match xs with
| [] | [ _ ] →(true, xs)
| x1 :: x2 :: tl →

if x1 <= x2 then
let is_tl_sorted, tl_swapped =
traverse_and_swap (x2 :: tl)

in
(is_tl_sorted, x1 :: tl_swapped)

else
let _, tl_swapped =
traverse_and_swap (x1 :: tl)

in
(false, x2 :: tl_swapped)

let rec bubble_sort xs =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
let is_xs_sorted, xs_swapped =
traverse_and_swap xs

in
if is_xs_sorted then xs_swapped
else bubble_sort xs_swapped

in
let _ = Raml.mark 0 (-1.0) in
result

let main xs =
let _ = Raml.activate_counter_variable 0 in
let result = bubble_sort xs in
let _ = Raml.record_counter_variable 0 in
result

Lst. B.9: Resource-decomposed code of BubbleSort.

let rec traverse_and_swap (xs : int list)
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] | [ _ ] →

((true, xs), current_original_counters)
| x1 :: x2 :: tl →

if x1 <= x2 then
let ( (is_tl_sorted, tl_swapped),

current_original_counters ) =
traverse_and_swap (x2 :: tl)
current_original_counters

in
( (is_tl_sorted, x1 :: tl_swapped),
current_original_counters )

else
let (_, tl_swapped), current_original_counters

=
traverse_and_swap (x1 :: tl)
current_original_counters

in
( (false, x2 :: tl_swapped),
current_original_counters )

let rec bubble_sort xs current_original_counters =
let _ = Raml.tick 1.0 in
let new_counter =
decrement_counter current_original_counters

in
let (is_xs_sorted, xs_swapped), counter_after_swap =
traverse_and_swap xs new_counter

in
let result, counter_final =
if is_xs_sorted then
(xs_swapped, counter_after_swap)

else bubble_sort xs_swapped counter_after_swap
in
(result, increment_counter counter_final)

(* Polynomial degree for AARA: 2 *)

let main xs current_original_counters =
let initialized_counter =
initialize_counter current_original_counters

in
let result, counter_after_sorting =
bubble_sort xs initialized_counter

in
(result, set_counter_to_zero counter_after_sorting)

Lst. B.10: Resource-guarded code of BubbleSort.
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B.2.5 HeapSort
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exception Invalid_input

type binary_heap = int Rarray.t * Rnat.t

let rec heapify_build (heap : int Rarray.t * Rnat.t)
(index : int) =

let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if element_left_index < element_index then
left_index

else index
else index

in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
element_right_index
< element_smallest_index_left

then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then ()
else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_build heap smallest_index_right

in
let _ = Raml.mark 0 (-1.0) in
result

let rec repeatedly_heapify heap index =
let _ = Raml.tick 1.0 in
Rnat.ifz index
(fun () → ())
(fun index_minus_one →
let _ = Raml.activate_counter_variable 0 in
let _ =
heapify_build heap
(Rnat.to_int index_minus_one)

in
let _ = Raml.record_counter_variable 0 in
repeatedly_heapify heap index_minus_one)

let build_min_heap heap =
let _ = Raml.tick 1.0 in
let _, length = heap in
repeatedly_heapify heap length

let rec copy_list_to_array xs array index =
let _ = Raml.tick 1.0 in
match xs with
| [] → ()
| hd :: tl →

let _ =
Rarray.set array (Rnat.of_int index) hd

in
copy_list_to_array tl array (index + 1)

let rec list_nat_length xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → Rnat.zero
| _ :: tl → Rnat.succ (list_nat_length tl)

let create_heap_from_list xs =
let _ = Raml.tick 1.0 in
let nat_length = list_nat_length xs in
let array = Rarray.make nat_length 0 in
let _ = copy_list_to_array xs array 0 in
let _ = build_min_heap (array, nat_length) in
(array, nat_length)

Lst. B.11: Resource-decomposed code of HeapSort (part 1).
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let rec heapify_extract (heap : int Rarray.t * Rnat.t)
(index : int) =

let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if element_left_index < element_index then
left_index

else index
else index

in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
element_right_index
< element_smallest_index_left

then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then ()
else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_extract heap smallest_index_right

in
let _ = Raml.mark 1 (-1.0) in
result

let rec extract_list_from_heap heap =
let _ = Raml.tick 1.0 in
let array, length = heap in
Rnat.ifz length
(fun () → [])
(fun length_minus_one →
let min_element = Rarray.get array Rnat.zero in
let last_element =
Rarray.get array length_minus_one

in
let _ =
Rarray.set array Rnat.zero last_element

in
let _ = Raml.activate_counter_variable 1 in
let _ = heapify_extract heap 0 in
let _ = Raml.record_counter_variable 1 in
let recursive_result =
extract_list_from_heap
(array, length_minus_one)

in
min_element :: recursive_result)

(* Polynomial degree for AARA: 2 *)

let heap_sort xs =
let _ = Raml.tick 1.0 in
let heap = create_heap_from_list xs in
extract_list_from_heap heap

Lst. B.12: Resource-decomposed code of HeapSort (part 2).
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type binary_heap = int Rarray.t * Rnat.t

let rec heapify_build (heap : int Rarray.t * Rnat.t)
(index : int) two_current_original_counters =

let new_counter =
decrement_first_counter
two_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if element_left_index < element_index then
left_index

else index
else index

in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
element_right_index
< element_smallest_index_left

then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then
((), new_counter)

else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_build heap smallest_index_right
new_counter

in
(result, increment_first_counter counter_final)

let rec repeatedly_heapify heap index
two_current_original_counters =

let _ = Raml.tick 1.0 in
Rnat.ifz index
(fun () → ((), two_current_original_counters))
(fun index_minus_one →
let initialized_counter =
initialize_first_counter
two_current_original_counters

in
let _, counter1 =
heapify_build heap
(Rnat.to_int index_minus_one)
initialized_counter

in
let counter2 =
set_first_counter_to_zero counter1

in
repeatedly_heapify heap index_minus_one counter2)

let build_min_heap heap two_current_original_counters
=

let _ = Raml.tick 1.0 in
let _, length = heap in
repeatedly_heapify heap length
two_current_original_counters

let rec copy_list_to_array xs array index =
let _ = Raml.tick 1.0 in
match xs with
| [] → ()
| hd :: tl →

let _ =
Rarray.set array (Rnat.of_int index) hd

in
copy_list_to_array tl array (index + 1)

let rec list_nat_length xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → Rnat.zero
| _ :: tl → Rnat.succ (list_nat_length tl)

let create_heap_from_list xs
two_current_original_counters =

let _ = Raml.tick 1.0 in
let nat_length = list_nat_length xs in
let array = Rarray.make nat_length 0 in
let _ = copy_list_to_array xs array 0 in
let _, counter1 =
build_min_heap
(array, nat_length)
two_current_original_counters

in
((array, nat_length), counter1)

Lst. B.13: Resource-guarded code of HeapSort (part 1).
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let rec heapify_extract (heap : int Rarray.t * Rnat.t)
(index : int) two_current_original_counters =

let new_counter =
decrement_second_counter
two_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if element_left_index < element_index then
left_index

else index
else index

in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
element_right_index
< element_smallest_index_left

then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then
((), new_counter)

else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_extract heap smallest_index_right
new_counter

in
(result, increment_second_counter counter_final)

let rec extract_list_from_heap heap
two_current_original_counters =

let _ = Raml.tick 1.0 in
let array, length = heap in
Rnat.ifz length
(fun () → ([], two_current_original_counters))
(fun length_minus_one →
let min_element = Rarray.get array Rnat.zero in
let last_element =
Rarray.get array length_minus_one

in
let _ =
Rarray.set array Rnat.zero last_element

in
let initialized_counter =
initialize_second_counter
two_current_original_counters

in
let _, counter1 =
heapify_extract heap 0 initialized_counter

in
let counter2 =
set_second_counter_to_zero counter1

in
let recursive_result, counter2 =
extract_list_from_heap
(array, length_minus_one)
counter2

in
(min_element :: recursive_result, counter2))

let heap_sort xs two_current_original_counters =
let _ = Raml.tick 1.0 in
let heap, counter1 =
create_heap_from_list xs
two_current_original_counters

in
extract_list_from_heap heap counter1

Lst. B.14: Resource-guarded code of HeapSort (part 2).
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B.2.6 HuffmanCode

exception Invalid_input

type code_tree =
| LeafCode of int * int
| NodeCode of int * code_tree * code_tree

let code_tree_count v =
let _ = Raml.tick 1.0 in
match v with
| LeafCode (_, count) →count
| NodeCode (count, _, _) →count

let merge_code_trees v1 v2 =
let _ = Raml.tick 1.0 in
let count1, count2 =
(code_tree_count v1, code_tree_count v2)

in
NodeCode (count1 + count2, v1, v2)

type binary_heap = int Rarray.t * Rnat.t

Lst. B.15: Resource-decomposed code of HuffmanCode (part 1).
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let rec heapify_build heap (index : int) =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
code_tree_count element_left_index
< code_tree_count element_index

then left_index
else index

else index
in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
code_tree_count element_right_index
< code_tree_count

element_smallest_index_left
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then ()
else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_build heap smallest_index_right

in
let _ = Raml.mark 0 (-1.0) in
result

let rec repeatedly_heapify heap index =
let _ = Raml.tick 1.0 in
Rnat.ifz index
(fun () → ())
(fun index_minus_one →
let _ = Raml.activate_counter_variable 0 in
let _ =
heapify_build heap
(Rnat.to_int index_minus_one)

in
let _ = Raml.record_counter_variable 0 in
repeatedly_heapify heap index_minus_one)

let build_min_heap heap =
let _ = Raml.tick 1.0 in
let _, length = heap in
repeatedly_heapify heap length

let rec copy_list_to_array xs array index =
let _ = Raml.tick 1.0 in
match xs with
| [] → ()
| (character, count) :: tl →

let _ =
Rarray.set array
(Rnat.of_int index)
(LeafCode (character, count))

in
copy_list_to_array tl array (index + 1)

let rec list_nat_length xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → Rnat.zero
| _ :: tl → Rnat.succ (list_nat_length tl)

let create_heap_from_list xs =
let _ = Raml.tick 1.0 in
let nat_length = list_nat_length xs in
let array =
Rarray.make nat_length (LeafCode (-1, -1))

in
let _ = copy_list_to_array xs array 0 in
let _ = build_min_heap (array, nat_length) in
(array, nat_length)

let get_min heap =
let _ = Raml.tick 1.0 in
let array, _ = heap in
Rarray.get array Rnat.zero

Lst. B.16: Resource-decomposed code of HuffmanCode (part 2).
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let rec heapify_extract heap (index : int) =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
code_tree_count element_left_index
< code_tree_count element_index

then left_index
else index

else index
in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
code_tree_count element_right_index
< code_tree_count

element_smallest_index_left
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then ()
else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_extract heap smallest_index_right

in
let _ = Raml.mark 1 (-1.0) in
result

let heapify_index_zero heap =
let _ = Raml.activate_counter_variable 1 in
let result = heapify_extract heap 0 in
let _ = Raml.record_counter_variable 1 in
result

let rec recursively_construct_huffman_code heap =
let _ = Raml.tick 1.0 in
let array, length = heap in
Rnat.ifz length
(fun () → raise Invalid_input)
(fun length_minus_one →
let v1 = get_min heap in
Rnat.ifz length_minus_one
(fun () → v1)
(fun _ →
let last_element =
Rarray.get array length_minus_one

in
let _ =
Rarray.set array Rnat.zero last_element

in
let heap1 = (array, length_minus_one) in
let _ = heapify_index_zero heap1 in
let v2 = get_min heap1 in
let merged_code_tree =
merge_code_trees v1 v2

in
let _ =
Rarray.set array Rnat.zero
merged_code_tree

in
let _ = heapify_index_zero heap1 in
recursively_construct_huffman_code heap1))

let huffman_code xs =
let _ = Raml.tick 1.0 in
let heap = create_heap_from_list xs in
recursively_construct_huffman_code heap

Lst. B.17: Resource-decomposed code of HuffmanCode (part 3).
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type code_tree =
| LeafCode of int * int
| NodeCode of int * code_tree * code_tree

let code_tree_count v =
let _ = Raml.tick 1.0 in
match v with
| LeafCode (_, count) →count
| NodeCode (count, _, _) →count

let merge_code_trees v1 v2 =
let _ = Raml.tick 1.0 in
let count1, count2 =
(code_tree_count v1, code_tree_count v2)

in
NodeCode (count1 + count2, v1, v2)

type binary_heap = int Rarray.t * Rnat.t

Lst. B.18: Resource-guarded code of HuffmanCode (part 1).
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let rec heapify_build heap (index : int)
two_current_original_counters =

let new_counter =
decrement_first_counter
two_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
code_tree_count element_left_index
< code_tree_count element_index

then left_index
else index

else index
in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
code_tree_count element_right_index
< code_tree_count

element_smallest_index_left
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then
((), new_counter)

else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_build heap smallest_index_right
new_counter

in
(result, increment_first_counter counter_final)

let rec repeatedly_heapify heap index
two_current_original_counters =

let _ = Raml.tick 1.0 in
Rnat.ifz index
(fun () → ((), two_current_original_counters))
(fun index_minus_one →
let initialized_counter =
initialize_first_counter
two_current_original_counters

in
let _, counter1 =
heapify_build heap
(Rnat.to_int index_minus_one)
initialized_counter

in
let counter2 =
set_first_counter_to_zero counter1

in
repeatedly_heapify heap index_minus_one counter2)

let build_min_heap heap two_current_original_counters
=

let _ = Raml.tick 1.0 in
let _, length = heap in
repeatedly_heapify heap length
two_current_original_counters

let rec copy_list_to_array xs array index =
let _ = Raml.tick 1.0 in
match xs with
| [] → ()
| (character, count) :: tl →

let _ =
Rarray.set array
(Rnat.of_int index)
(LeafCode (character, count))

in
copy_list_to_array tl array (index + 1)

let rec list_nat_length xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → Rnat.zero
| _ :: tl → Rnat.succ (list_nat_length tl)

let create_heap_from_list xs
two_current_original_counters =

let _ = Raml.tick 1.0 in
let nat_length = list_nat_length xs in
let array =
Rarray.make nat_length (LeafCode (-1, -1))

in
let _ = copy_list_to_array xs array 0 in
let _, counter1 =
build_min_heap
(array, nat_length)
two_current_original_counters

in
((array, nat_length), counter1)

let get_min heap =
let _ = Raml.tick 1.0 in
let array, _ = heap in
Rarray.get array Rnat.zero

Lst. B.19: Resource-guarded code of HuffmanCode (part 2).
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let rec heapify_extract heap (index : int)
two_current_original_counters =

let new_counter =
decrement_second_counter
two_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length = heap in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
code_tree_count element_left_index
< code_tree_count element_index

then left_index
else index

else index
in
let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
code_tree_count element_right_index
< code_tree_count

element_smallest_index_left
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then
((), new_counter)

else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
heapify_extract heap smallest_index_right
new_counter

in
(result, increment_second_counter counter_final)

let heapify_index_zero heap
two_current_original_counters =

let initialized_counter =
initialize_second_counter
two_current_original_counters

in
let result, counter1 =
heapify_extract heap 0 initialized_counter

in
(result, set_second_counter_to_zero counter1)

let rec recursively_construct_huffman_code heap
two_current_original_counters =

let _ = Raml.tick 1.0 in
let array, length = heap in
Rnat.ifz length
(fun () → raise Invalid_input)
(fun length_minus_one →
let v1 = get_min heap in
Rnat.ifz length_minus_one
(fun () →
(v1, two_current_original_counters))

(fun _ →
let last_element =
Rarray.get array length_minus_one

in
let _ =
Rarray.set array Rnat.zero last_element

in
let heap1 = (array, length_minus_one) in
let _, counter1 =
heapify_index_zero heap1
two_current_original_counters

in
let v2 = get_min heap1 in
let merged_code_tree =
merge_code_trees v1 v2

in
let _ =
Rarray.set array Rnat.zero
merged_code_tree

in
let _, counter2 =
heapify_index_zero heap1 counter1

in
recursively_construct_huffman_code heap1
counter2))

(* Polynomial degree for AARA: 2 *)

let huffman_code xs two_current_original_counters =
let _ = Raml.tick 1.0 in
let heap, counter1 =
create_heap_from_list xs
two_current_original_counters

in
recursively_construct_huffman_code heap counter1

Lst. B.20: Resource-guarded code of HuffmanCode (part 3).
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B.2.7 BalancedBST and UnbalancedBST
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exception Invalid_input

let rec merge (xs : int list) (ys : int list) =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| x :: xs_tl →(

match ys with
| [] → xs
| y :: ys_tl →

if x <= y then x :: merge xs_tl ys
else y :: merge xs ys_tl )

let rec split xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], [])
| [ x ] → ([ x ], [])
| x1 :: x2 :: tl →

let lower, upper = split tl in
(x1 :: lower, x2 :: upper)

let rec merge_sort xs =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match xs with
| [] → []
| [ x ] → [ x ]
| _ →

let lower, upper = split xs in
let lower_sorted = merge_sort lower in
let upper_sorted = merge_sort upper in
merge lower_sorted upper_sorted

in
let _ = Raml.mark 0 (-1.0) in
result

type binary_tree =
| Leaf
| Node of int * binary_tree * binary_tree

type nat = Zero | Succ of nat

let rec divide_nat_by_two n =
(* let _ = Raml.tick 1.0 in *)
match n with
| Zero → (Zero, Zero)
| Succ n → (

match n with
| Zero → (Succ Zero, Zero)
| Succ n →

let n1, n2 = divide_nat_by_two n in
(Succ n1, Succ n2) )

let rec balanced_binary_tree_from_sorted_list_helper n
xs =

let _ = Raml.tick 1.0 in
match n with
| Zero → (Leaf, xs)
| Succ Zero → (

match xs with
| [] → raise Invalid_input
| hd :: tl → (Node (hd, Leaf, Leaf), tl) )

| Succ n_minus_one →(
let n1, n2 = divide_nat_by_two n_minus_one in
let t1, xs1 =
balanced_binary_tree_from_sorted_list_helper
n1 xs

in
match xs1 with
| [] → raise Invalid_input
| y :: ys →

let t2, xs2 =
balanced_binary_tree_from_sorted_list_helper
n2 ys

in
(Node (y, t1, t2), xs2) )

let rec list_length_nat xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → Zero
| _ :: tl → Succ (list_length_nat tl)

let balanced_binary_tree_from_sorted_list xs =
let _ = Raml.tick 1.0 in
let n = list_length_nat xs in
let t, _ =
balanced_binary_tree_from_sorted_list_helper n xs

in
t

let rec binary_search_tree_insert v tree =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → Node (v, Leaf, Leaf)
| Node (x, left, right) →

if x = v then tree
else if v < x then
let left_inserted =
binary_search_tree_insert v left

in
Node (x, left_inserted, right)

else
let right_inserted =
binary_search_tree_insert v right

in
Node (x, left, right_inserted)

in
let _ = Raml.mark 0 (-1.0) in
result

Lst. B.21: Resource-decomposed code of BalancedBST and UnbalancedBST (part 1). The
function divide_nat_by_two, which divides a natural number (encoded using an inductive
data type), does not incur costs. This is because we assume that integer division takes con-
stant time. If we inserted Raml.tick 1.0 in the function divide_nat_by_two to count
its number of function calls, it would result in a quadratic cost bound for the function
balanced_binary_tree_from_sorted_list_helper, which creates a balanced binary search
tree from a sorted list of integers. Instead, we would like the construction of a balanced binary
search tree to have a linear cost bound.
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let rec binary_search_tree_lookup v tree =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → false
| Node (x, left, right) →

if x = v then true
else if v < x then
binary_search_tree_lookup v left

else binary_search_tree_lookup v right
in
let _ = Raml.mark 1 (-1.0) in
result

let rec binary_search_tree_repeated_insert xs acc =
let _ = Raml.tick 1.0 in
match xs with
| [] → acc
| hd :: tl →

let _ = Raml.activate_counter_variable 0 in
let acc_updated =
binary_search_tree_insert hd acc

in
let _ = Raml.record_counter_variable 0 in
binary_search_tree_repeated_insert tl
acc_updated

let rec binary_search_tree_repeated_lookup xs tree =
let _ = Raml.tick 1.0 in
match xs with
| [] → []
| hd :: tl →

let _ = Raml.activate_counter_variable 1 in
let is_found =
binary_search_tree_lookup hd tree

in
let _ = Raml.record_counter_variable 1 in
let recursive_result =
binary_search_tree_repeated_lookup tl tree

in
is_found :: recursive_result

let unbalanced_binary_search_tree_main xs1 xs2 =
let _ = Raml.tick 1.0 in
let tree =
binary_search_tree_repeated_insert xs1 Leaf

in
binary_search_tree_repeated_lookup xs2 tree

let balanced_binary_search_tree_main xs1 xs2 =
let _ = Raml.tick 1.0 in
let _ = Raml.activate_counter_variable 0 in
let xs_sorted = merge_sort xs1 in
let _ = Raml.record_counter_variable 0 in
let tree =
balanced_binary_tree_from_sorted_list xs_sorted

in
binary_search_tree_repeated_lookup xs2 tree

Lst. B.22: Resource-decomposed code of BalancedBST and UnbalancedBST (part 2).
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let rec merge (xs : int list) (ys : int list) =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| x :: xs_tl →(

match ys with
| [] → xs
| y :: ys_tl →

if x <= y then x :: merge xs_tl ys
else y :: merge xs ys_tl )

let rec split xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], [])
| [ x ] → ([ x ], [])
| x1 :: x2 :: tl →

let lower, upper = split tl in
(x1 :: lower, x2 :: upper)

let rec merge_sort xs current_original_counters =
let new_counter =
decrement_first_counter current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], new_counter)
| [ x ] → ([ x ], new_counter)
| _ →

let lower, upper = split xs in
let lower_sorted, counter1 =
merge_sort lower new_counter

in
let upper_sorted, counter2 =
merge_sort upper counter1

in
(merge lower_sorted upper_sorted, counter2)

in
(result, increment_first_counter counter_final)

(* Binary search tree *)

type binary_tree =
| Leaf
| Node of int * binary_tree * binary_tree

type nat = Zero | Succ of nat

let rec divide_nat_by_two n =
(* let _ = Raml.tick 1.0 in *)
match n with
| Zero → (Zero, Zero)
| Succ n → (

match n with
| Zero → (Succ Zero, Zero)
| Succ n →

let n1, n2 = divide_nat_by_two n in
(Succ n1, Succ n2) )

let rec balanced_binary_tree_from_sorted_list_helper n
xs =

let _ = Raml.tick 1.0 in
match n with
| Zero → (Leaf, xs)
| Succ Zero → (

match xs with
| [] → raise Invalid_input
| hd :: tl → (Node (hd, Leaf, Leaf), tl) )

| Succ n_minus_one →(
let n1, n2 = divide_nat_by_two n_minus_one in
let t1, xs1 =
balanced_binary_tree_from_sorted_list_helper
n1 xs

in
match xs1 with
| [] → raise Invalid_input
| y :: ys →

let t2, xs2 =
balanced_binary_tree_from_sorted_list_helper
n2 ys

in
(Node (y, t1, t2), xs2) )

let rec list_length_nat xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → Zero
| _ :: tl → Succ (list_length_nat tl)

let balanced_binary_tree_from_sorted_list xs =
let _ = Raml.tick 1.0 in
let n = list_length_nat xs in
let t, _ =
balanced_binary_tree_from_sorted_list_helper n xs

in
t

let rec binary_search_tree_insert v tree
current_original_counters =

let _ = Raml.tick 1.0 in
let new_counter =
decrement_first_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (Node (v, Leaf, Leaf), new_counter)
| Node (x, left, right) →

if x = v then (tree, new_counter)
else if v < x then
let left_inserted, counter1 =
binary_search_tree_insert v left
new_counter

in
(Node (x, left_inserted, right), counter1)

else
let right_inserted, counter1 =
binary_search_tree_insert v right
new_counter

in
(Node (x, left, right_inserted), counter1)

in
(result, increment_first_counter counter_final)

Lst. B.23: Resource-guarded code of BalancedBST and UnbalancedBST (part 1).
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let rec binary_search_tree_lookup v tree
current_original_counters =

let _ = Raml.tick 1.0 in
let new_counter =
decrement_second_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (false, new_counter)
| Node (x, left, right) →

if x = v then (true, new_counter)
else if v < x then
binary_search_tree_lookup v left new_counter

else
binary_search_tree_lookup v right
new_counter

in
(result, increment_second_counter counter_final)

let rec binary_search_tree_repeated_insert xs acc
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (acc, current_original_counters)
| hd :: tl →

let initialized_counter =
initialize_first_counter
current_original_counters

in
let acc_updated, counter1 =
binary_search_tree_insert hd acc
initialized_counter

in
let counter2 =
set_first_counter_to_zero counter1

in
binary_search_tree_repeated_insert tl
acc_updated counter2

(a) Part 3.

let rec binary_search_tree_repeated_lookup xs tree
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → ([], current_original_counters)
| hd :: tl →

let initialized_counter =
initialize_second_counter
current_original_counters

in
let is_found, counter1 =
binary_search_tree_lookup hd tree
initialized_counter

in
let counter2 =
set_second_counter_to_zero counter1

in
let recursive_result, counter3 =
binary_search_tree_repeated_lookup tl tree
counter2

in
(is_found :: recursive_result, counter3)

(* Polynomial degree for AARA: 2 *)

let unbalanced_binary_search_tree_main xs1 xs2
current_original_counters =

let _ = Raml.tick 1.0 in
let tree, counter1 =
binary_search_tree_repeated_insert xs1 Leaf
current_original_counters

in
binary_search_tree_repeated_lookup xs2 tree counter1

(* Polynomial degree for AARA: 2 *)

let balanced_binary_search_tree_main xs1 xs2
current_original_counters =

let _ = Raml.tick 1.0 in
let counter1 =
initialize_first_counter current_original_counters

in
let xs_sorted, counter2 = merge_sort xs1 counter1 in
let counter3 = set_first_counter_to_zero counter2 in
let tree =
balanced_binary_tree_from_sorted_list xs_sorted

in
binary_search_tree_repeated_lookup xs2 tree counter3

(b) Part 4.

Lst. B.24: Resource-guarded code of BalancedBST and UnbalancedBST (part 2).
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B.2.8 RedBlackTree
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exception Invalid_input

type color = Red | Black

type red_black_tree =
| Leaf
| Node of

color * int * red_black_tree * red_black_tree

let rec red_black_tree_lookup v tree =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → false
| Node (_, x, left, right) →

if x = v then true
else if v < x then
red_black_tree_lookup v left

else red_black_tree_lookup v right
in
let _ = Raml.mark 1 (-1.0) in
result

let balance color v t1 t2 =
let _ = Raml.tick 1.0 in
match (color, v, t1, t2) with
| Black, z, Node (Red, y, Node (Red, x, a, b), c), d
| Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
| Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
| Black, x, a, Node (Red, y, b, Node (Red, z, c, d))
→
Node
( Red,
y,
Node (Black, x, a, b),
Node (Black, z, c, d) )

| a, b, c, d →Node (a, b, c, d)

let rec red_black_tree_insert_helper x tree =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → Node (Red, x, Leaf, Leaf)
| Node (color, y, a, b) →

if x < y then
balance color y
(red_black_tree_insert_helper x a)
b

else if x > y then
balance color y a
(red_black_tree_insert_helper x b)

else tree
in
let _ = Raml.mark 0 (-1.0) in
result

let red_black_tree_insert x tree =
let _ = Raml.tick 1.0 in
let _ = Raml.activate_counter_variable 0 in
let insert_result =
red_black_tree_insert_helper x tree

in
let _ = Raml.record_counter_variable 0 in
match insert_result with
| Node (_, y, a, b) →Node (Black, y, a, b)
| Leaf → raise Invalid_input

let rec red_black_tree_repeated_insert xs acc =
let _ = Raml.tick 1.0 in
match xs with
| [] → acc
| hd :: tl →

let acc_updated =
red_black_tree_insert hd acc

in
red_black_tree_repeated_insert tl acc_updated

let rec red_black_tree_repeated_lookup xs tree =
let _ = Raml.tick 1.0 in
match xs with
| [] → []
| hd :: tl →

let _ = Raml.activate_counter_variable 1 in
let is_found = red_black_tree_lookup hd tree in
let _ = Raml.record_counter_variable 1 in
let recursive_result =
red_black_tree_repeated_lookup tl tree

in
is_found :: recursive_result

let red_black_tree_main xs1 xs2 =
let _ = Raml.tick 1.0 in
let tree =
red_black_tree_repeated_insert xs1 Leaf

in
red_black_tree_repeated_lookup xs2 tree

Lst. B.25: Resource-decomposed code of RedBlackTree.
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type color = Red | Black

type red_black_tree =
| Leaf
| Node of

color * int * red_black_tree * red_black_tree

let rec red_black_tree_lookup v tree
current_original_counters =

let _ = Raml.tick 1.0 in
let new_counter =
decrement_second_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (false, new_counter)
| Node (_, x, left, right) →

if x = v then (true, new_counter)
else if v < x then
red_black_tree_lookup v left new_counter

else red_black_tree_lookup v right new_counter
in
(result, increment_second_counter counter_final)

let balance color v t1 t2 current_original_counters =
let _ = Raml.tick 1.0 in
match (color, v, t1, t2) with
| Black, z, Node (Red, y, Node (Red, x, a, b), c), d
| Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
| Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
| Black, x, a, Node (Red, y, b, Node (Red, z, c, d))
→
( Node

( Red,
y,
Node (Black, x, a, b),
Node (Black, z, c, d) ),

current_original_counters )
| a, b, c, d →

(Node (a, b, c, d), current_original_counters)

let rec red_black_tree_insert_helper x tree
current_original_counters =

let _ = Raml.tick 1.0 in
let new_counter =
decrement_first_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (Node (Red, x, Leaf, Leaf), new_counter)
| Node (color, y, a, b) →

let _ = Raml.tick 1.0 in
if x < y then
let result_recursive, counter1 =
red_black_tree_insert_helper x a
new_counter

in
balance color y result_recursive b counter1

else if x > y then
let result_recursive, counter1 =
red_black_tree_insert_helper x b
new_counter

in
balance color y a result_recursive counter1

else (tree, new_counter)
in
(result, increment_first_counter counter_final)

let red_black_tree_insert x tree
current_original_counters =

let _ = Raml.tick 1.0 in
let initialized_counter =
initialize_first_counter current_original_counters

in
let insert_result, counter1 =
red_black_tree_insert_helper x tree
initialized_counter

in
let counter2 = set_first_counter_to_zero counter1 in
match insert_result with
| Node (_, y, a, b) →

(Node (Black, y, a, b), counter2)
| Leaf → raise Invalid_input

let rec red_black_tree_repeated_insert xs acc
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (acc, current_original_counters)
| hd :: tl →

let acc_updated, counter1 =
red_black_tree_insert hd acc
current_original_counters

in
red_black_tree_repeated_insert tl acc_updated
counter1

let rec red_black_tree_repeated_lookup xs tree
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → ([], current_original_counters)
| hd :: tl →

let initialized_counter =
initialize_second_counter
current_original_counters

in
let is_found, counter1 =
red_black_tree_lookup hd tree
initialized_counter

in
let counter2 =
set_second_counter_to_zero counter1

in
let recursive_result, counter3 =
red_black_tree_repeated_lookup tl tree
counter2

in
(is_found :: recursive_result, counter3)

(* Polynomial degree for AARA: 2 *)

let red_black_tree_main xs1 xs2
current_original_counters =

let _ = Raml.tick 1.0 in
let tree, counter1 =
red_black_tree_repeated_insert xs1 Leaf
current_original_counters

in
red_black_tree_repeated_lookup xs2 tree counter1

Lst. B.26: Resource-guarded code of RedBlackTree.

256



B.2.9 AVLTree
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exception Invalid_input

type avl_tree =
| Leaf
| Node of int * int * avl_tree * avl_tree

let rec avl_tree_lookup v tree =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → false
| Node (x, _, l, r) →

if x = v then true
else if v < x then avl_tree_lookup v l
else avl_tree_lookup v r

in
let _ = Raml.mark 1 (-1.0) in
result

let depth tree =
let _ = Raml.tick 1.0 in
match tree with Node (_, d, _, _) →d | Leaf →0

let value tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, _, _) →x
| Leaf → raise Invalid_input

let max (x : int) (y : int) =
let _ = Raml.tick 1.0 in
if x >= y then x else y

let balanceLL tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, Node (xl, _, ll, rl), r) →

let rmax = max (depth rl) (depth r) + 1 in
let cmax = max rmax (depth ll) + 1 in
Node (xl, cmax, ll, Node (x, rmax, rl, r))

| _ → raise Invalid_input

let balanceLR tree =
let _ = Raml.tick 1.0 in
match tree with
| Node

(x, _, Node (y, _, ll, Node (z, _, lrl, lrr)), r)
→
let lmax = max (depth ll) (depth lrl) + 1 in
let rmax = max (depth lrr) (depth r) + 1 in
let cmax = max lmax rmax + 1 in
Node
( z,
cmax,
Node (y, lmax, ll, lrl),
Node (x, rmax, lrr, r) )

| _ → raise Invalid_input

let balanceRR tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, l, Node (xr, _, lr, rr)) →

let lmax = max (depth l) (depth lr) + 1 in
let cmax = max lmax (depth rr) + 1 in
Node (xr, cmax, Node (x, lmax, l, lr), rr)

| _ → raise Invalid_input

let balanceRL tree =
let _ = Raml.tick 1.0 in
match tree with
| Node

(x, _, l, Node (y, _, Node (z, _, rll, rlr), rr))
→
let lmax = max (depth l) (depth rll) + 1 in
let rmax = max (depth rlr) (depth rr) + 1 in
let cmax = max lmax rmax + 1 in
Node
( z,
cmax,
Node (x, lmax, l, rll),
Node (y, rmax, rlr, rr) )

| _ → raise Invalid_input

let rec avl_tree_insert v tree =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Node (x, _, l, r) →

if x = v then tree
else if v < x then
let insL = avl_tree_insert v l in
let dl = depth insL in
let dr = depth r in
let bal = dl - dr in
if bal < 2 || bal > 2 then
Node (x, max dr dl + 1, insL, r)

else if v < value l then
balanceLL (Node (x, dl + 1, insL, r))

else if v > value l then
balanceLR (Node (x, dl + 1, insL, r))

else tree
else
let insR = avl_tree_insert v r in
let dr = depth insR in
let dl = depth l in
let bal = dl - dr in
if bal < -2 || bal > -2 then
Node (x, max dr dl + 1, l, insR)

else if v > value r then
balanceRR (Node (x, dr + 1, l, insR))

else if v < value r then
balanceRL (Node (x, dr + 1, l, insR))

else tree
| Leaf → Node (v, 1, Leaf, Leaf)

in
let _ = Raml.mark 0 (-1.0) in
result

Lst. B.27: Resource-decomposed code of AVLTree (part 1).
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let rec min tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, Leaf, _) →x
| Node (_, _, l, _) →min l
| Leaf → raise Invalid_input

let left_subtree tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (_, _, l, _) →l
| Leaf → raise Invalid_input

let right_subtree tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (_, _, _, r) →r
| Leaf → raise Invalid_input

let rec avl_tree_repeated_insert xs acc =
let _ = Raml.tick 1.0 in
match xs with
| [] → acc
| hd :: tl →

let _ = Raml.activate_counter_variable 0 in
let acc_updated = avl_tree_insert hd acc in
let _ = Raml.record_counter_variable 0 in
avl_tree_repeated_insert tl acc_updated

let rec avl_tree_repeated_lookup xs tree =
let _ = Raml.tick 1.0 in
match xs with
| [] → []
| hd :: tl →

let _ = Raml.activate_counter_variable 1 in
let is_found = avl_tree_lookup hd tree in
let _ = Raml.record_counter_variable 1 in
let recursive_result =
avl_tree_repeated_lookup tl tree

in
is_found :: recursive_result

let avl_tree_main xs1 xs2 =
let _ = Raml.tick 1.0 in
let tree = avl_tree_repeated_insert xs1 Leaf in
avl_tree_repeated_lookup xs2 tree

Lst. B.28: Resource-decomposed code of AVLTree (part 2).
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type avl_tree =
| Leaf
| Node of int * int * avl_tree * avl_tree

let rec avl_tree_lookup v tree
current_original_counters =

let _ = Raml.tick 1.0 in
let new_counter =
decrement_second_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (false, new_counter)
| Node (x, _, l, r) →

if x = v then (true, new_counter)
else if v < x then
avl_tree_lookup v l new_counter

else avl_tree_lookup v r new_counter
in
(result, increment_second_counter counter_final)

let depth tree =
let _ = Raml.tick 1.0 in
match tree with Node (_, d, _, _) →d | Leaf →0

let value tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, _, _) →x
| Leaf → raise Invalid_input

let max (x : int) (y : int) =
let _ = Raml.tick 1.0 in
if x >= y then x else y

let balanceLL tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, Node (xl, _, ll, rl), r) →

let rmax = max (depth rl) (depth r) + 1 in
let cmax = max rmax (depth ll) + 1 in
Node (xl, cmax, ll, Node (x, rmax, rl, r))

| _ → raise Invalid_input

let balanceLR tree =
let _ = Raml.tick 1.0 in
match tree with
| Node

(x, _, Node (y, _, ll, Node (z, _, lrl, lrr)), r)
→
let lmax = max (depth ll) (depth lrl) + 1 in
let rmax = max (depth lrr) (depth r) + 1 in
let cmax = max lmax rmax + 1 in
Node
( z,
cmax,
Node (y, lmax, ll, lrl),
Node (x, rmax, lrr, r) )

| _ → raise Invalid_input

let balanceRR tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, l, Node (xr, _, lr, rr)) →

let lmax = max (depth l) (depth lr) + 1 in
let cmax = max lmax (depth rr) + 1 in
Node (xr, cmax, Node (x, lmax, l, lr), rr)

| _ → raise Invalid_input

let balanceRL tree =
let _ = Raml.tick 1.0 in
match tree with
| Node

(x, _, l, Node (y, _, Node (z, _, rll, rlr), rr))
→
let lmax = max (depth l) (depth rll) + 1 in
let rmax = max (depth rlr) (depth rr) + 1 in
let cmax = max lmax rmax + 1 in
Node
( z,
cmax,
Node (x, lmax, l, rll),
Node (y, rmax, rlr, rr) )

| _ → raise Invalid_input

let rec avl_tree_insert v tree
current_original_counters =

let _ = Raml.tick 1.0 in
let new_counter =
decrement_first_counter current_original_counters

in
let result, counter_final =
match tree with
| Node (x, _, l, r) →

if x = v then (tree, new_counter)
else if v < x then
let insL, counter1 =
avl_tree_insert v l new_counter

in
let dl = depth insL in
let dr = depth r in
let bal = dl - dr in
if bal < 2 || bal > 2 then
( Node (x, max dr dl + 1, insL, r),
counter1 )

else if v < value l then
( balanceLL (Node (x, dl + 1, insL, r)),
counter1 )

else if v > value l then
( balanceLR (Node (x, dl + 1, insL, r)),
counter1 )

else (tree, counter1)
else
let insR, counter1 =
avl_tree_insert v r new_counter

in
let dr = depth insR in
let dl = depth l in
let bal = dl - dr in
if bal < -2 || bal > -2 then
( Node (x, max dr dl + 1, l, insR),
counter1 )

else if v > value r then
( balanceRR (Node (x, dr + 1, l, insR)),
counter1 )

else if v < value r then
( balanceRL (Node (x, dr + 1, l, insR)),
counter1 )

else (tree, counter1)
| Leaf → (Node (v, 1, Leaf, Leaf), new_counter)

in
(result, increment_first_counter counter_final)

Lst. B.29: Resource-guarded code of AVLTree (part 1).
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let rec min tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (x, _, Leaf, _) →x
| Node (_, _, l, _) →min l
| Leaf → raise Invalid_input

let left_subtree tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (_, _, l, _) →l
| Leaf → raise Invalid_input

let right_subtree tree =
let _ = Raml.tick 1.0 in
match tree with
| Node (_, _, _, r) →r
| Leaf → raise Invalid_input

let rec avl_tree_repeated_insert xs acc
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (acc, current_original_counters)
| hd :: tl →

let initialized_counter =
initialize_first_counter
current_original_counters

in
let acc_updated, counter1 =
avl_tree_insert hd acc initialized_counter

in
avl_tree_repeated_insert tl acc_updated counter1

let rec avl_tree_repeated_lookup xs tree
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → ([], current_original_counters)
| hd :: tl →

let initialized_counter =
initialize_second_counter
current_original_counters

in
let is_found, counter1 =
avl_tree_lookup hd tree initialized_counter

in
let recursive_result, counter2 =
avl_tree_repeated_lookup tl tree counter1

in
(is_found :: recursive_result, counter2)

(* Polynomial degree for AARA: 2 *)

let avl_tree_main xs1 xs2 current_original_counters =
let _ = Raml.tick 1.0 in
let tree, counter1 =
avl_tree_repeated_insert xs1 Leaf
current_original_counters

in
avl_tree_repeated_lookup xs2 tree counter1

Lst. B.30: Resource-guarded code of AVLTree (part 2).
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B.2.10 SplayTree

exception Invalid_input

type splay_tree =
| Leaf
| Node of int * splay_tree * splay_tree

let extract_value_and_subtrees tree =
let _ = Raml.tick 1.0 in
match tree with
| Leaf → raise Invalid_input
| Node (x, left, right) →(x, left, right)

let rec splay_insert x tree =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → Leaf
| Node (y, l, r) →(

if y = x then tree
else if x < y then
match l with
| Leaf → tree
| Node (z, ll, rr) →(

if x = z then
Node (z, ll, Node (y, rr, r))

else if x < z then
match ll with
| Leaf → Node (z, ll, Node (y, rr, r))
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_insert x ll)

in
Node
( newV,
newL,
Node (z, newR, Node (y, rr, r))

)
else
match rr with
| Leaf → Node (z, ll, Node (y, rr, r))
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_insert x rr)

in
Node
( newV,
Node (z, ll, newL),
Node (y, newR, r) ) )

else
match r with
| Leaf → tree
| Node (z, ll, rr) →(

if x = z then
Node (z, Node (y, l, ll), rr)

else if x < z then
match ll with
| Leaf → Node (z, Node (y, l, ll), rr)
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_insert x ll)

in
Node
( newV,
Node (y, l, newL),
Node (z, newR, rr) )

else
match rr with
| Leaf → Node (z, Node (y, l, ll), rr)
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_insert x rr)

in
Node
( newV,
Node (z, Node (y, l, ll), newL),
newR ) ) )

in
let _ = Raml.mark 0 (-1.0) in
result

let splay_tree_insert x tree =
let _ = Raml.tick 1.0 in
match tree with
| Leaf → Node (x, Leaf, Leaf)
| _ →

let _ = Raml.activate_counter_variable 0 in
let tree_splayed = splay_insert x tree in
let _ = Raml.record_counter_variable 0 in
let y, l, r =
extract_value_and_subtrees tree_splayed

in
if x = y then Node (y, l, r)
else if x < y then Node (x, l, Node (y, Leaf, r))
else Node (x, Node (y, l, Leaf), r)

Lst. B.31: Resource-decomposed code of SplayTree (part 1).
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let rec splay_lookup x tree =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
match tree with
| Leaf → Leaf
| Node (y, l, r) →(

if y = x then tree
else if x < y then
match l with
| Leaf → tree
| Node (z, ll, rr) →(

if x = z then
Node (z, ll, Node (y, rr, r))

else if x < z then
match ll with
| Leaf → Node (z, ll, Node (y, rr, r))
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_lookup x ll)

in
Node
( newV,
newL,
Node (z, newR, Node (y, rr, r))

)
else
match rr with
| Leaf → Node (z, ll, Node (y, rr, r))
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_lookup x rr)

in
Node
( newV,
Node (z, ll, newL),
Node (y, newR, r) ) )

else
match r with
| Leaf → tree
| Node (z, ll, rr) →(

if x = z then
Node (z, Node (y, l, ll), rr)

else if x < z then
match ll with
| Leaf → Node (z, Node (y, l, ll), rr)
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_lookup x ll)

in
Node
( newV,
Node (y, l, newL),
Node (z, newR, rr) )

else
match rr with
| Leaf → Node (z, Node (y, l, ll), rr)
| _ →

let newV, newL, newR =
extract_value_and_subtrees
(splay_lookup x rr)

in
Node
( newV,
Node (z, Node (y, l, ll), newL),
newR ) ) )

in
let _ = Raml.mark 1 (-1.0) in
result

let splay_tree_lookup v tree =
let _ = Raml.tick 1.0 in
let result =
let _ = Raml.activate_counter_variable 1 in
let tree_splayed = splay_lookup v tree in
let _ = Raml.record_counter_variable 1 in
let is_found =
match tree_splayed with
| Leaf → false
| Node (x, _, _) →

if x = v then true else false
in
(is_found, tree_splayed)

in
result

let rec splay_tree_repeated_insert xs acc =
let _ = Raml.tick 1.0 in
match xs with
| [] → acc
| hd :: tl →

let acc_updated = splay_tree_insert hd acc in
splay_tree_repeated_insert tl acc_updated

let rec splay_tree_repeated_lookup xs tree =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], tree)
| hd :: tl →

let is_found, tree_updated =
splay_tree_lookup hd tree

in
let recursive_result, tree_final =
splay_tree_repeated_lookup tl tree_updated

in
(is_found :: recursive_result, tree_final)

let splay_tree_main xs1 xs2 =
let _ = Raml.tick 1.0 in
let tree = splay_tree_repeated_insert xs1 Leaf in
splay_tree_repeated_lookup xs2 tree

Lst. B.32: Resource-decomposed code of SplayTree (part 2).
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type splay_tree =
| Leaf
| Node of int * splay_tree * splay_tree

let extract_value_and_subtrees tree =
let _ = Raml.tick 1.0 in
match tree with
| Leaf → raise Invalid_input
| Node (x, left, right) →(x, left, right)

let rec splay_insert x tree current_original_counters
=

let _ = Raml.tick 1.0 in
let new_counter =
decrement_first_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (Leaf, new_counter)
| Node (y, l, r) →(

if y = x then (tree, new_counter)
else if x < y then
match l with
| Leaf → (tree, new_counter)
| Node (z, ll, rr) →(

if x = z then
( Node (z, ll, Node (y, rr, r)),
new_counter )

else if x < z then
match ll with
| Leaf →

( Node (z, ll, Node (y, rr, r)),
new_counter )

| _ →
let ll_splayed, counter1 =
splay_insert x ll new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
ll_splayed

in
( Node

( newV,
newL,
Node
(z, newR, Node (y, rr, r))

),
counter1 )

else
match rr with
| Leaf →

( Node (z, ll, Node (y, rr, r)),
new_counter )

| _ →
let rr_splayed, counter1 =
splay_insert x rr new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
rr_splayed

in
( Node

( newV,
Node (z, ll, newL),
Node (y, newR, r) ),

counter1 ) )

else
match r with
| Leaf → (tree, new_counter)
| Node (z, ll, rr) →(

if x = z then
( Node (z, Node (y, l, ll), rr),
new_counter )

else if x < z then
match ll with
| Leaf →

( Node (z, Node (y, l, ll), rr),
new_counter )

| _ →
let ll_splayed, counter1 =
splay_insert x ll new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
ll_splayed

in
( Node

( newV,
Node (y, l, newL),
Node (z, newR, rr) ),

counter1 )
else
match rr with
| Leaf →

( Node (z, Node (y, l, ll), rr),
new_counter )

| _ →
let rr_splayed, counter1 =
splay_insert x rr new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
rr_splayed

in
( Node

( newV,
Node
(z, Node (y, l, ll), newL),

newR ),
counter1 ) ) )

in
(result, increment_first_counter counter_final)

let splay_tree_insert x tree current_original_counters
=

let _ = Raml.tick 1.0 in
match tree with
| Leaf →

(Node (x, Leaf, Leaf), current_original_counters)
| _ →

let initialized_counter =
initialize_first_counter
current_original_counters

in
let tree_splayed, counter1 =
splay_insert x tree initialized_counter

in
let counter2 =
set_first_counter_to_zero counter1

in
let y, l, r =
extract_value_and_subtrees tree_splayed

in
if x = y then (Node (y, l, r), counter2)
else if x < y then
(Node (x, l, Node (y, Leaf, r)), counter2)

else (Node (x, Node (y, l, Leaf), r), counter2)

Lst. B.33: Resource-guarded code of SplayTree (part 1)
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let rec splay_lookup x tree current_original_counters
=

let _ = Raml.tick 1.0 in
let new_counter =
decrement_second_counter current_original_counters

in
let result, counter_final =
match tree with
| Leaf → (Leaf, new_counter)
| Node (y, l, r) →(

if y = x then (tree, new_counter)
else if x < y then
match l with
| Leaf → (tree, new_counter)
| Node (z, ll, rr) →(

if x = z then
( Node (z, ll, Node (y, rr, r)),
new_counter )

else if x < z then
match ll with
| Leaf →

( Node (z, ll, Node (y, rr, r)),
new_counter )

| _ →
let ll_splayed, counter1 =
splay_lookup x ll new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
ll_splayed

in
( Node

( newV,
newL,
Node
(z, newR, Node (y, rr, r))

),
counter1 )

else
match rr with
| Leaf →

( Node (z, ll, Node (y, rr, r)),
new_counter )

| _ →
let rr_splayed, counter1 =
splay_lookup x rr new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
rr_splayed

in
( Node

( newV,
Node (z, ll, newL),
Node (y, newR, r) ),

counter1 ) )

else
match r with
| Leaf → (tree, new_counter)
| Node (z, ll, rr) →(

if x = z then
( Node (z, Node (y, l, ll), rr),
new_counter )

else if x < z then
match ll with
| Leaf →

( Node (z, Node (y, l, ll), rr),
new_counter )

| _ →
let ll_splayed, counter1 =
splay_lookup x ll new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
ll_splayed

in
( Node

( newV,
Node (y, l, newL),
Node (z, newR, rr) ),

counter1 )
else
match rr with
| Leaf →

( Node (z, Node (y, l, ll), rr),
new_counter )

| _ →
let rr_splayed, counter1 =
splay_lookup x rr new_counter

in
let newV, newL, newR =
extract_value_and_subtrees
rr_splayed

in
( Node

( newV,
Node
(z, Node (y, l, ll), newL),

newR ),
counter1 ) ) )

in
(result, increment_second_counter counter_final)

let splay_tree_lookup v tree current_original_counters
=

let _ = Raml.tick 1.0 in
let initialized_counter =
initialize_second_counter
current_original_counters

in
let tree_splayed, counter1 =
splay_lookup v tree initialized_counter

in
let counter2 =
set_second_counter_to_zero counter1

in
let is_found =
match tree_splayed with
| Leaf → false
| Node (x, _, _) →if x = v then true else false

in
((is_found, tree_splayed), counter2)

Lst. B.34: Resource-guarded code of SplayTree (part 2).
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let rec splay_tree_repeated_insert xs acc
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (acc, current_original_counters)
| hd :: tl →

let acc_updated, counter1 =
splay_tree_insert hd acc
current_original_counters

in
splay_tree_repeated_insert tl acc_updated
counter1

let rec splay_tree_repeated_lookup xs tree
current_original_counters =

let _ = Raml.tick 1.0 in
match xs with
| [] → (([], tree), current_original_counters)
| hd :: tl →

let (is_found, tree_updated), counter1 =
splay_tree_lookup hd tree
current_original_counters

in
let (recursive_result, tree_final), counter2 =
splay_tree_repeated_lookup tl tree_updated
counter1

in
( (is_found :: recursive_result, tree_final),
counter2 )

(* Polynomial degree for AARA: 2 *)

let splay_tree_main xs1 xs2 current_original_counters
=

let _ = Raml.tick 1.0 in
let tree, counter1 =
splay_tree_repeated_insert xs1 Leaf
current_original_counters

in
splay_tree_repeated_lookup xs2 tree counter1

Lst. B.35: Resource-guarded code of SplayTree (part 3).
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B.2.11 Prim
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exception Invalid_input

type distance = Infinity | Some of float

let is_shorter_distance distance1 distance2 =
let _ = Raml.tick 1.0 in
match (distance1, distance2) with
| Some d1, Some d2 →d1 < d2
| Some _, Infinity →true
| _, _ → false

type vertex_dist_pair =
| Vertex_dist of int * distance

let vertex_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (v, _) →v

let distance_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (_, d) →d

type binary_heap =
vertex_dist_pair Rarray.t * Rnat.t * int Rarray.t

let rec heapify heap (index : int) =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length, map_vertices_to_indices =
heap

in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
is_shorter_distance
(distance_pair element_left_index)
(distance_pair element_index)

then left_index
else index

else index
in

let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
is_shorter_distance
(distance_pair element_right_index)
(distance_pair

element_smallest_index_left)
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then ()
else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let (Vertex_dist (v_index, _)) =
element_at_index

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let (Vertex_dist (v_smallest_index, _)) =
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_index)
smallest_index_right

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_smallest_index)
index

in
heapify heap smallest_index_right

in
let _ = Raml.mark 0 (-1.0) in
result

let get_min heap =
let _ = Raml.tick 1.0 in
let array, _, _ = heap in
Rarray.get array Rnat.zero

Lst. B.36: Resource-decomposed code of Prim (part 1).
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let delete_min heap =
let _ = Raml.tick 1.0 in
let array, length, map_vertices_to_indices = heap in
Rnat.ifz length
(fun () → raise Invalid_input)
(fun length_minus_one →
let first_element =
Rarray.get array Rnat.zero

in
let (Vertex_dist (v_min, _)) = first_element in
let last_element =
Rarray.get array length_minus_one

in
let (Vertex_dist (v_last, _)) = last_element in
let _ =
Rarray.set array Rnat.zero last_element

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_min)
(-1)

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_last)
0

in
let _ = Raml.activate_counter_variable 0 in
let _ = heapify heap 0 in
let _ = Raml.record_counter_variable 0 in
( array,
length_minus_one,
map_vertices_to_indices ))

let rec decrease_key_helper heap index =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
let array, _, map_vertices_to_indices = heap in
if index = 0 then ()
else
let element_index =
Rarray.get array (Rnat.of_int index)

in
let parent_index = (index - 1) / 2 in
let parent_element =
Rarray.get array (Rnat.of_int parent_index)

in

if
is_shorter_distance
(distance_pair element_index)
(distance_pair parent_element)

then
let (Vertex_dist (v, _)) = element_index in
let (Vertex_dist (v_parent, _)) =
parent_element

in
let _ =
Rarray.set array
(Rnat.of_int index)
parent_element

in
let _ =
Rarray.set array
(Rnat.of_int parent_index)
element_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v) parent_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_parent)
index

in
decrease_key_helper heap parent_index

else ()
in
let _ = Raml.mark 1 (-1.0) in
result

let decrease_key heap vertex new_dist =
let _ = Raml.tick 1.0 in
let array, _, map_vertices_to_indices = heap in
let array_index =
Rarray.get map_vertices_to_indices
(Rnat.of_int vertex)

in
if array_index = -1 then ()
else
let (Vertex_dist (_, dist)) =
Rarray.get array (Rnat.of_int array_index)

in
if is_shorter_distance new_dist dist then
let _ =
Rarray.set array
(Rnat.of_int array_index)
(Vertex_dist (vertex, new_dist))

in
let _ = Raml.activate_counter_variable 1 in
let result =
decrease_key_helper heap array_index

in
let _ = Raml.record_counter_variable 1 in
result

else ()

Lst. B.37: Resource-decomposed code of Prim (part 2).
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let rec initialize_array array index_nat =
let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rarray.set array index_minus_one
(Vertex_dist

(Rnat.to_int index_minus_one, Infinity))
in
initialize_array array index_minus_one)

let rec initialize_map_vertices_to_indices array
index_nat =

let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rarray.set array index_minus_one
(Rnat.to_int index_minus_one)

in
initialize_map_vertices_to_indices array
index_minus_one)

let construct_initial_heap adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = Rarray.length adjacency_list in
let array =
Rarray.make num_vertices
(Vertex_dist (-1, Infinity))

in
let _ = initialize_array array num_vertices in
let map_vertices_to_indices =
Rarray.make num_vertices (-1)

in
let _ =
initialize_map_vertices_to_indices
map_vertices_to_indices num_vertices

in
(array, num_vertices, map_vertices_to_indices)

let extract_neighbors adjacency_list (vertex : int) =
let _ = Raml.tick 1.0 in
let list_neighbors =
Rarray.get adjacency_list (Rnat.of_int vertex)

in
list_neighbors

let rec update_dist_all_neighbors heap list_neighbors
=

let _ = Raml.mark 2 1.0 in
let _ = Raml.tick 1.0 in
let result =
match list_neighbors with
| [] → ()
| (vertex, dist) :: tl →

let _ =
decrease_key heap vertex (Some dist)

in
update_dist_all_neighbors heap tl

in
let _ = Raml.mark 2 (-1.0) in
result

let rec repeatedly_get_min_node adjacency_list heap
acc =

let _ = Raml.tick 1.0 in
let _, length, _ = heap in
if Rnat.to_int length = 0 then acc
else
let min_node = get_min heap in
let heap_updated = delete_min heap in
let (Vertex_dist (vertex, dist)) = min_node in
let list_neighbors =
extract_neighbors adjacency_list vertex

in
let _ = Raml.activate_counter_variable 2 in
let _ =
update_dist_all_neighbors heap list_neighbors

in
let _ = Raml.record_counter_variable 2 in
let acc_updated = (vertex, dist) :: acc in
repeatedly_get_min_node adjacency_list
heap_updated acc_updated

let prim_algorithm adjacency_list =
let _ = Raml.tick 1.0 in
let heap = construct_initial_heap adjacency_list in
repeatedly_get_min_node adjacency_list heap []

Lst. B.38: Resource-decomposed code of Prim (part 3).
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type distance = Infinity | Some of float

let is_shorter_distance distance1 distance2 =
let _ = Raml.tick 1.0 in
match (distance1, distance2) with
| Some d1, Some d2 →d1 < d2
| Some _, Infinity →true
| _, _ → false

type vertex_dist_pair =
| Vertex_dist of int * distance

let vertex_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (v, _) →v

let distance_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (_, d) →d

type binary_heap =
vertex_dist_pair Rarray.t * Rnat.t * int Rarray.t

let rec heapify heap (index : int)
three_current_original_counters =

let new_counter =
decrement_first_counter
three_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length, map_vertices_to_indices =
heap

in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
is_shorter_distance
(distance_pair element_left_index)
(distance_pair element_index)

then left_index
else index

else index
in

let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
is_shorter_distance
(distance_pair element_right_index)
(distance_pair

element_smallest_index_left)
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then
((), new_counter)

else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let (Vertex_dist (v_index, _)) =
element_at_index

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let (Vertex_dist (v_smallest_index, _)) =
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_index)
smallest_index_right

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_smallest_index)
index

in
heapify heap smallest_index_right new_counter

in
(result, increment_first_counter counter_final)

let get_min heap =
let _ = Raml.tick 1.0 in
let array, _, _ = heap in
Rarray.get array Rnat.zero

Lst. B.39: Resource-guarded code of Prim (part 1).
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let delete_min heap three_current_original_counters =
let _ = Raml.tick 1.0 in
let array, length, map_vertices_to_indices = heap in
Rnat.ifz length
(fun () → raise Invalid_input)
(fun length_minus_one →
let first_element =
Rarray.get array Rnat.zero

in
let (Vertex_dist (v_min, _)) = first_element in
let last_element =
Rarray.get array length_minus_one

in
let (Vertex_dist (v_last, _)) = last_element in
let _ =
Rarray.set array Rnat.zero last_element

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_min)
(-1)

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_last)
0

in
let initialized_counter =
initialize_first_counter
three_current_original_counters

in
let _, counter_final =
heapify heap 0 initialized_counter

in
( ( array,

length_minus_one,
map_vertices_to_indices ),

set_first_counter_to_zero counter_final ))

let rec decrease_key_helper heap index
three_current_original_counters =

let new_counter =
decrement_second_counter
three_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let array, _, map_vertices_to_indices = heap in
if index = 0 then ((), new_counter)
else
let element_index =
Rarray.get array (Rnat.of_int index)

in
let parent_index = (index - 1) / 2 in
let parent_element =
Rarray.get array (Rnat.of_int parent_index)

in

if
is_shorter_distance
(distance_pair element_index)
(distance_pair parent_element)

then
let (Vertex_dist (v, _)) = element_index in
let (Vertex_dist (v_parent, _)) =
parent_element

in
let _ =
Rarray.set array
(Rnat.of_int index)
parent_element

in
let _ =
Rarray.set array
(Rnat.of_int parent_index)
element_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v) parent_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_parent)
index

in
decrease_key_helper heap parent_index
new_counter

else ((), new_counter)
in
(result, increment_second_counter counter_final)

let decrease_key heap vertex new_dist
three_current_original_counters =

let _ = Raml.tick 1.0 in
let array, _, map_vertices_to_indices = heap in
let array_index =
Rarray.get map_vertices_to_indices
(Rnat.of_int vertex)

in
if array_index = -1 then
((), three_current_original_counters)

else
let (Vertex_dist (_, dist)) =
Rarray.get array (Rnat.of_int array_index)

in
if is_shorter_distance new_dist dist then
let _ =
Rarray.set array
(Rnat.of_int array_index)
(Vertex_dist (vertex, new_dist))

in
let initialized_counter =
initialize_second_counter
three_current_original_counters

in
let result, counter_final =
decrease_key_helper heap array_index
initialized_counter

in
( result,
set_second_counter_to_zero counter_final )

else ((), three_current_original_counters)

Lst. B.40: Resource-guarded code of Prim (part 2).
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let rec initialize_array array index_nat =
let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rarray.set array index_minus_one
(Vertex_dist

(Rnat.to_int index_minus_one, Infinity))
in
initialize_array array index_minus_one)

let rec initialize_map_vertices_to_indices array
index_nat =

let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rarray.set array index_minus_one
(Rnat.to_int index_minus_one)

in
initialize_map_vertices_to_indices array
index_minus_one)

let construct_initial_heap adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = Rarray.length adjacency_list in
let array =
Rarray.make num_vertices
(Vertex_dist (-1, Infinity))

in
let _ = initialize_array array num_vertices in
let map_vertices_to_indices =
Rarray.make num_vertices (-1)

in
let _ =
initialize_map_vertices_to_indices
map_vertices_to_indices num_vertices

in
(array, num_vertices, map_vertices_to_indices)

let extract_neighbors adjacency_list (vertex : int) =
let _ = Raml.tick 1.0 in
let list_neighbors =
Rarray.get adjacency_list (Rnat.of_int vertex)

in
list_neighbors

let rec update_dist_all_neighbors heap list_neighbors
three_current_original_counters =

let new_counter =
decrement_third_counter
three_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
match list_neighbors with
| [] → ((), new_counter)
| (vertex, dist) :: tl →

let _, counter1 =
decrease_key heap vertex (Some dist)
new_counter

in
update_dist_all_neighbors heap tl counter1

in
(result, increment_third_counter counter_final)

let rec repeatedly_get_min_node adjacency_list heap
acc three_current_original_counters =

let _ = Raml.tick 1.0 in
let _, length, _ = heap in
if Rnat.to_int length = 0 then
(acc, three_current_original_counters)

else
let min_node = get_min heap in
let heap_updated, counter1 =
delete_min heap three_current_original_counters

in
let (Vertex_dist (vertex, dist)) = min_node in
let list_neighbors =
extract_neighbors adjacency_list vertex

in
let initialized_counter =
initialize_third_counter counter1

in
let _, counter2 =
update_dist_all_neighbors heap list_neighbors
initialized_counter

in
let counter3 =
set_third_counter_to_zero counter2

in
let acc_updated = (vertex, dist) :: acc in
repeatedly_get_min_node adjacency_list
heap_updated acc_updated counter3

(* Polynomial degree for AARA: 3 *)

let prim_algorithm adjacency_list
three_current_original_counters =

let _ = Raml.tick 1.0 in
let heap = construct_initial_heap adjacency_list in
repeatedly_get_min_node adjacency_list heap []
three_current_original_counters

Lst. B.41: Resource-guarded code of Prim (part 3).
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B.2.12 Dijkstra
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exception Invalid_input

type distance = Infinity | Some of float

let add_distances shortest_distance weight =
let _ = Raml.tick 1.0 in
match shortest_distance with
| Infinity → Infinity
| Some d → Some (d +. weight)

let is_shorter_distance distance1 distance2 =
let _ = Raml.tick 1.0 in
match (distance1, distance2) with
| Some d1, Some d2 →d1 < d2
| Some _, Infinity →true
| _, _ → false

type vertex_dist_pair =
| Vertex_dist of int * distance

let vertex_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (v, _) →v

let distance_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (_, d) →d

type binary_heap =
vertex_dist_pair Rarray.t * Rnat.t * int Rarray.t

let rec heapify heap (index : int) =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length, map_vertices_to_indices =
heap

in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
is_shorter_distance
(distance_pair element_left_index)
(distance_pair element_index)

then left_index
else index

else index
in

let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
is_shorter_distance
(distance_pair element_right_index)
(distance_pair

element_smallest_index_left)
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then ()
else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let (Vertex_dist (v_index, _)) =
element_at_index

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let (Vertex_dist (v_smallest_index, _)) =
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_index)
smallest_index_right

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_smallest_index)
index

in
heapify heap smallest_index_right

in
let _ = Raml.mark 0 (-1.0) in
result

let get_min heap =
let _ = Raml.tick 1.0 in
let array, _, _ = heap in
Rarray.get array Rnat.zero

Lst. B.42: Resource-decomposed code of Dijkstra (part 1).
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let delete_min heap =
let _ = Raml.tick 1.0 in
let array, length, map_vertices_to_indices = heap in
Rnat.ifz length
(fun () → raise Invalid_input)
(fun length_minus_one →
let first_element =
Rarray.get array Rnat.zero

in
let (Vertex_dist (v_min, _)) = first_element in
let last_element =
Rarray.get array length_minus_one

in
let (Vertex_dist (v_last, _)) = last_element in
let _ =
Rarray.set array Rnat.zero last_element

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_min)
(-1)

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_last)
0

in
let _ = Raml.activate_counter_variable 0 in
let _ = heapify heap 0 in
let _ = Raml.record_counter_variable 0 in
( array,
length_minus_one,
map_vertices_to_indices ))

let rec decrease_key_helper heap index =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
let array, _, map_vertices_to_indices = heap in
if index = 0 then ()
else
let element_index =
Rarray.get array (Rnat.of_int index)

in
let parent_index = (index - 1) / 2 in
let parent_element =
Rarray.get array (Rnat.of_int parent_index)

in
if
is_shorter_distance
(distance_pair element_index)
(distance_pair parent_element)

then
let (Vertex_dist (v, _)) = element_index in
let (Vertex_dist (v_parent, _)) =
parent_element

in
let _ =
Rarray.set array
(Rnat.of_int index)
parent_element

in

let _ =
Rarray.set array
(Rnat.of_int parent_index)
element_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v) parent_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_parent)
index

in
decrease_key_helper heap parent_index

else ()
in
let _ = Raml.mark 1 (-1.0) in
result

let decrease_key heap vertex new_dist =
let _ = Raml.tick 1.0 in
let array, _, map_vertices_to_indices = heap in
let array_index =
Rarray.get map_vertices_to_indices
(Rnat.of_int vertex)

in
if array_index = -1 then ()
else
let (Vertex_dist (_, dist)) =
Rarray.get array (Rnat.of_int array_index)

in
if is_shorter_distance new_dist dist then
let _ =
Rarray.set array
(Rnat.of_int array_index)
(Vertex_dist (vertex, new_dist))

in
let _ = Raml.activate_counter_variable 1 in
let result =
decrease_key_helper heap array_index

in
let _ = Raml.record_counter_variable 1 in
result

else ()

let rec initialize_array array index_nat =
let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rnat.ifz index_minus_one
(fun () →
Rarray.set array index_minus_one
(Vertex_dist

(Rnat.to_int index_minus_one, Some 0.)))
(fun _ →
Rarray.set array index_minus_one
(Vertex_dist

( Rnat.to_int index_minus_one,
Infinity )))

in
initialize_array array index_minus_one)

Lst. B.43: Resource-decomposed code of Dijkstra (part 2).
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let rec initialize_map_vertices_to_indices array
index_nat =

let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rarray.set array index_minus_one
(Rnat.to_int index_minus_one)

in
initialize_map_vertices_to_indices array
index_minus_one)

let construct_initial_heap adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = Rarray.length adjacency_list in
let array =
Rarray.make num_vertices
(Vertex_dist (-1, Infinity))

in
let _ = initialize_array array num_vertices in
let map_vertices_to_indices =
Rarray.make num_vertices (-1)

in
let _ =
initialize_map_vertices_to_indices
map_vertices_to_indices num_vertices

in
(array, num_vertices, map_vertices_to_indices)

let extract_neighbors adjacency_list (vertex : int) =
let _ = Raml.tick 1.0 in
let list_neighbors =
Rarray.get adjacency_list (Rnat.of_int vertex)

in
list_neighbors

let rec update_dist_all_neighbors heap list_neighbors
base_dist =

let _ = Raml.mark 2 1.0 in
let _ = Raml.tick 1.0 in
let result =
match list_neighbors with
| [] → ()
| (vertex, dist) :: tl →

let _ =
decrease_key heap vertex
(add_distances base_dist dist)

in
update_dist_all_neighbors heap tl base_dist

in
let _ = Raml.mark 2 (-1.0) in
result

let rec repeatedly_get_min_node adjacency_list heap
acc =

let _ = Raml.tick 1.0 in
let _, length, _ = heap in
if Rnat.to_int length = 0 then acc
else
let min_node = get_min heap in
let heap_updated = delete_min heap in
let (Vertex_dist (vertex, dist)) = min_node in
let list_neighbors =
extract_neighbors adjacency_list vertex

in
let _ = Raml.activate_counter_variable 2 in
let _ =
update_dist_all_neighbors heap list_neighbors
dist

in
let _ = Raml.record_counter_variable 2 in
let acc_updated = (vertex, dist) :: acc in
repeatedly_get_min_node adjacency_list
heap_updated acc_updated

let dijkstra_algorithm adjacency_list =
let _ = Raml.tick 1.0 in
let heap = construct_initial_heap adjacency_list in
repeatedly_get_min_node adjacency_list heap []

Lst. B.44: Resource-decomposed code of Dijkstra (part 3).
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type distance = Infinity | Some of float

let add_distances shortest_distance weight =
let _ = Raml.tick 1.0 in
match shortest_distance with
| Infinity → Infinity
| Some d → Some (d +. weight)

let is_shorter_distance distance1 distance2 =
let _ = Raml.tick 1.0 in
match (distance1, distance2) with
| Some d1, Some d2 →d1 < d2
| Some _, Infinity →true
| _, _ → false

type vertex_dist_pair =
| Vertex_dist of int * distance

let vertex_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (v, _) →v

let distance_pair p =
let _ = Raml.tick 1.0 in
match p with Vertex_dist (_, d) →d

type binary_heap =
vertex_dist_pair Rarray.t * Rnat.t * int Rarray.t

let rec heapify heap (index : int)
three_current_original_counters =

let new_counter =
decrement_first_counter
three_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let left_index = (index * 2) + 1
and right_index = (index * 2) + 2 in
let array, length, map_vertices_to_indices =
heap

in
let smallest_index_left =
if left_index < Rnat.to_int length then
let element_index =
Rarray.get array (Rnat.of_int index)

in
let element_left_index =
Rarray.get array (Rnat.of_int left_index)

in
if
is_shorter_distance
(distance_pair element_left_index)
(distance_pair element_index)

then left_index
else index

else index
in

let smallest_index_right =
if right_index < Rnat.to_int length then
let element_smallest_index_left =
Rarray.get array
(Rnat.of_int smallest_index_left)

in
let element_right_index =
Rarray.get array (Rnat.of_int right_index)

in
if
is_shorter_distance
(distance_pair element_right_index)
(distance_pair

element_smallest_index_left)
then right_index
else smallest_index_left

else smallest_index_left
in
if smallest_index_right = index then
((), new_counter)

else
let element_at_index =
Rarray.get array (Rnat.of_int index)

in
let (Vertex_dist (v_index, _)) =
element_at_index

in
let element_at_smallest_index =
Rarray.get array
(Rnat.of_int smallest_index_right)

in
let (Vertex_dist (v_smallest_index, _)) =
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int index)
element_at_smallest_index

in
let _ =
Rarray.set array
(Rnat.of_int smallest_index_right)
element_at_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_index)
smallest_index_right

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_smallest_index)
index

in
heapify heap smallest_index_right new_counter

in
(result, increment_first_counter counter_final)

let get_min heap =
let _ = Raml.tick 1.0 in
let array, _, _ = heap in
Rarray.get array Rnat.zero

Lst. B.45: Resource-guarded code of Dijkstra (part 1).
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let delete_min heap three_current_original_counters =
let _ = Raml.tick 1.0 in
let array, length, map_vertices_to_indices = heap in
Rnat.ifz length
(fun () → raise Invalid_input)
(fun length_minus_one →
let first_element =
Rarray.get array Rnat.zero

in
let (Vertex_dist (v_min, _)) = first_element in
let last_element =
Rarray.get array length_minus_one

in
let (Vertex_dist (v_last, _)) = last_element in
let _ =
Rarray.set array Rnat.zero last_element

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_min)
(-1)

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_last)
0

in
let initialized_counter =
initialize_first_counter
three_current_original_counters

in
let _, counter_final =
heapify heap 0 initialized_counter

in
( ( array,

length_minus_one,
map_vertices_to_indices ),

set_first_counter_to_zero counter_final ))

let rec decrease_key_helper heap index
three_current_original_counters =

let new_counter =
decrement_second_counter
three_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let array, _, map_vertices_to_indices = heap in
if index = 0 then ((), new_counter)
else
let element_index =
Rarray.get array (Rnat.of_int index)

in
let parent_index = (index - 1) / 2 in
let parent_element =
Rarray.get array (Rnat.of_int parent_index)

in
if
is_shorter_distance
(distance_pair element_index)
(distance_pair parent_element)

then
let (Vertex_dist (v, _)) = element_index in
let (Vertex_dist (v_parent, _)) =
parent_element

in
let _ =
Rarray.set array
(Rnat.of_int index)
parent_element

in

let _ =
Rarray.set array
(Rnat.of_int parent_index)
element_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v) parent_index

in
let _ =
Rarray.set map_vertices_to_indices
(Rnat.of_int v_parent)
index

in
decrease_key_helper heap parent_index
new_counter

else ((), new_counter)
in
(result, increment_second_counter counter_final)

let decrease_key heap vertex new_dist
three_current_original_counters =

let _ = Raml.tick 1.0 in
let array, _, map_vertices_to_indices = heap in
let array_index =
Rarray.get map_vertices_to_indices
(Rnat.of_int vertex)

in
if array_index = -1 then
((), three_current_original_counters)

else
let (Vertex_dist (_, dist)) =
Rarray.get array (Rnat.of_int array_index)

in
if is_shorter_distance new_dist dist then
let _ =
Rarray.set array
(Rnat.of_int array_index)
(Vertex_dist (vertex, new_dist))

in
let initialized_counter =
initialize_second_counter
three_current_original_counters

in
let result, counter_final =
decrease_key_helper heap array_index
initialized_counter

in
( result,
set_second_counter_to_zero counter_final )

else ((), three_current_original_counters)

let rec initialize_array array index_nat =
let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rnat.ifz index_minus_one
(fun () →
Rarray.set array index_minus_one
(Vertex_dist

(Rnat.to_int index_minus_one, Some 0.)))
(fun _ →
Rarray.set array index_minus_one
(Vertex_dist

( Rnat.to_int index_minus_one,
Infinity )))

in
initialize_array array index_minus_one)

Lst. B.46: Resource-guarded code of Dijkstra (part 2).
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let rec initialize_map_vertices_to_indices array
index_nat =

let _ = Raml.tick 1.0 in
Rnat.ifz index_nat
(fun () → ())
(fun index_minus_one →
let _ =
Rarray.set array index_minus_one
(Rnat.to_int index_minus_one)

in
initialize_map_vertices_to_indices array
index_minus_one)

let construct_initial_heap adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = Rarray.length adjacency_list in
let array =
Rarray.make num_vertices
(Vertex_dist (-1, Infinity))

in
let _ = initialize_array array num_vertices in
let map_vertices_to_indices =
Rarray.make num_vertices (-1)

in
let _ =
initialize_map_vertices_to_indices
map_vertices_to_indices num_vertices

in
(array, num_vertices, map_vertices_to_indices)

let extract_neighbors adjacency_list (vertex : int) =
let _ = Raml.tick 1.0 in
let list_neighbors =
Rarray.get adjacency_list (Rnat.of_int vertex)

in
list_neighbors

let rec update_dist_all_neighbors heap list_neighbors
base_dist three_current_original_counters =

let new_counter =
decrement_third_counter
three_current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
match list_neighbors with
| [] → ((), new_counter)
| (vertex, dist) :: tl →

let _, counter1 =
decrease_key heap vertex
(add_distances base_dist dist)
new_counter

in
update_dist_all_neighbors heap tl base_dist
counter1

in
(result, increment_third_counter counter_final)

let rec repeatedly_get_min_node adjacency_list heap
acc three_current_original_counters =

let _ = Raml.tick 1.0 in
let _, length, _ = heap in
if Rnat.to_int length = 0 then acc
else
let min_node = get_min heap in
let heap_updated, counter1 =
delete_min heap three_current_original_counters

in
let (Vertex_dist (vertex, dist)) = min_node in
let list_neighbors =
extract_neighbors adjacency_list vertex

in
let initialized_counter =
initialize_third_counter counter1

in
let _, counter2 =
update_dist_all_neighbors heap list_neighbors
dist initialized_counter

in
let counter3 =
set_third_counter_to_zero counter2

in
let acc_updated = (vertex, dist) :: acc in
repeatedly_get_min_node adjacency_list
heap_updated acc_updated counter3

(* Polynomial degree for AARA: 3 *)

let dijkstra_algorithm adjacency_list
three_current_original_counters =

let _ = Raml.tick 1.0 in
let heap = construct_initial_heap adjacency_list in
repeatedly_get_min_node adjacency_list heap []
three_current_original_counters

Lst. B.47: Resource-guarded code of Dijkstra (part 3).
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B.2.13 BellmanFord

exception Invalid_input

type distance = Infinity | Some of float

let add_distances shortest_distance weight =
let _ = Raml.tick 1.0 in
match shortest_distance with
| Infinity → Infinity
| Some d → Some (d +. weight)

let is_shorter_distance distance1 distance2 =
let _ = Raml.tick 1.0 in
match (distance1, distance2) with
| Some d1, Some d2 →d1 < d2
| Some _, Infinity →true
| _, _ → false

let rec list_nat_length list =
let _ = Raml.tick 1.0 in
match list with
| [] → Rnat.zero
| _ :: tl → Rnat.succ (list_nat_length tl)

let initialize_array_dist adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = list_nat_length adjacency_list in
let array_dist =
Rarray.make num_vertices Infinity

in
let _ = Rarray.set array_dist Rnat.zero (Some 0.) in
array_dist

Lst. B.48: Resource-decomposed code of BellmanFord (part 1).
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let update_array_dist_single_vertex array_dist vertex
new_dist =

let _ = Raml.tick 1.0 in
let old_dist =
Rarray.get array_dist (Rnat.of_int vertex)

in
if is_shorter_distance new_dist old_dist then
let _ =
Rarray.set array_dist
(Rnat.of_int vertex)
new_dist

in
true

else false

let rec update_array_dist_all_neighbors_helper
array_dist shortest_dist list_neighbors =

let _ = Raml.tick 1.0 in
match list_neighbors with
| [] → false
| (v, d) :: tl →

let new_dist = add_distances shortest_dist d in
let is_modified1 =
update_array_dist_single_vertex array_dist v
new_dist

in
let is_modified2 =
update_array_dist_all_neighbors_helper
array_dist shortest_dist tl

in
is_modified1 || is_modified2

let update_array_dist_all_neighbors array_dist vertex
list_neighbors =

let _ = Raml.tick 1.0 in
let shortest_dist =
Rarray.get array_dist (Rnat.of_int vertex)

in
update_array_dist_all_neighbors_helper array_dist
shortest_dist list_neighbors

let rec update_array_dist_all_edges array_dist
adjacency_list =

let _ = Raml.tick 1.0 in
match adjacency_list with
| [] → false
| (v, list_neighbors) :: tl →

let is_modified1 =
update_array_dist_all_neighbors array_dist v
list_neighbors

in
let is_modified2 =
update_array_dist_all_edges array_dist tl

in
is_modified1 || is_modified2

let rec recursively_update_array_dist array_dist
adjacency_list budget =

let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let result =
let is_modified =
update_array_dist_all_edges array_dist
adjacency_list

in
if is_modified && budget > 1 then
recursively_update_array_dist array_dist
adjacency_list (budget - 1)

else ()
in
let _ = Raml.mark 0 (-1.0) in
result

let rec extract_output_from_array_dist array_dist
index =

let _ = Raml.tick 1.0 in
Rnat.ifz index
(fun () → [])
(fun index_minus_one →
let recursive_result =
extract_output_from_array_dist array_dist
index_minus_one

in
let dist =
Rarray.get array_dist index_minus_one

in
(Rnat.to_int index_minus_one, dist)
:: recursive_result)

let bellman_ford_algorithm adjacency_list =
let _ = Raml.tick 1.0 in
let array_dist =
initialize_array_dist adjacency_list

in
let _ = Raml.activate_counter_variable 0 in
let _ =
recursively_update_array_dist array_dist
adjacency_list
(Rnat.to_int (Rarray.length array_dist) - 1)

in
let _ = Raml.record_counter_variable 0 in
extract_output_from_array_dist array_dist
(Rarray.length array_dist)

Lst. B.49: Resource-decomposed code of BellmanFord (part 2).
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type distance = Infinity | Some of float

let add_distances shortest_distance weight =
let _ = Raml.tick 1.0 in
match shortest_distance with
| Infinity → Infinity
| Some d → Some (d +. weight)

let is_shorter_distance distance1 distance2 =
let _ = Raml.tick 1.0 in
match (distance1, distance2) with
| Some d1, Some d2 →d1 < d2
| Some _, Infinity →true
| _, _ → false

let rec list_nat_length list =
let _ = Raml.tick 1.0 in
match list with
| [] → Rnat.zero
| _ :: tl → Rnat.succ (list_nat_length tl)

let initialize_array_dist adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = list_nat_length adjacency_list in
let array_dist =
Rarray.make num_vertices Infinity

in
let _ = Rarray.set array_dist Rnat.zero (Some 0.) in
array_dist

let update_array_dist_single_vertex array_dist
(vertex : int) new_dist =

let _ = Raml.tick 1.0 in
let old_dist =
Rarray.get array_dist (Rnat.of_int vertex)

in
if is_shorter_distance new_dist old_dist then
let _ =
Rarray.set array_dist
(Rnat.of_int vertex)
new_dist

in
true

else false

let rec update_array_dist_all_neighbors_helper
array_dist shortest_dist list_neighbors =

let _ = Raml.tick 1.0 in
match list_neighbors with
| [] → false
| (v, d) :: tl →

let new_dist = add_distances shortest_dist d in
let is_modified1 =
update_array_dist_single_vertex array_dist v
new_dist

in
let is_modified2 =
update_array_dist_all_neighbors_helper
array_dist shortest_dist tl

in
is_modified1 || is_modified2

let update_array_dist_all_neighbors array_dist vertex
list_neighbors =

let _ = Raml.tick 1.0 in
let shortest_dist =
Rarray.get array_dist (Rnat.of_int vertex)

in
update_array_dist_all_neighbors_helper array_dist
shortest_dist list_neighbors

let rec update_array_dist_all_edges array_dist
adjacency_list =

let _ = Raml.tick 1.0 in
match adjacency_list with
| [] → false
| (v, list_neighbors) :: tl →

let is_modified1 =
update_array_dist_all_neighbors array_dist v
list_neighbors

in
let is_modified2 =
update_array_dist_all_edges array_dist tl

in
is_modified1 || is_modified2

let rec recursively_update_array_dist array_dist
adjacency_list budget current_original_counters =

let new_counter =
decrement_counter current_original_counters

in
let result, counter_final =
let _ = Raml.tick 1.0 in
let is_modified =
update_array_dist_all_edges array_dist
adjacency_list

in
if is_modified && budget > 1 then
recursively_update_array_dist array_dist
adjacency_list (budget - 1) new_counter

else ((), new_counter)
in
(result, increment_counter counter_final)

let rec extract_output_from_array_dist array_dist
index =

let _ = Raml.tick 1.0 in
Rnat.ifz index
(fun () → [])
(fun index_minus_one →
let recursive_result =
extract_output_from_array_dist array_dist
index_minus_one

in
let dist =
Rarray.get array_dist index_minus_one

in
(Rnat.to_int index_minus_one, dist)
:: recursive_result)

(* Polynomial degree for AARA: 3 *)

let bellman_ford_algorithm adjacency_list
current_original_counters =

let _ = Raml.tick 1.0 in
let array_dist =
initialize_array_dist adjacency_list

in
let initialized_counter =
initialize_counter current_original_counters

in
let _, counter1 =
recursively_update_array_dist array_dist
adjacency_list
(Rnat.to_int (Rarray.length array_dist) - 1)
initialized_counter

in
let counter2 = set_counter_to_zero counter1 in
( extract_output_from_array_dist array_dist

(Rarray.length array_dist),
counter2 )

Lst. B.50: Resource-guarded code of BellmanFord.
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B.2.14 Kruskal

exception Invalid_input

type rank = Rank of int

type vertex = Vertex of int

type elem = Link of vertex | Root of rank * vertex

let make (v : int) : elem =
let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
Root (Rank 0, Vertex v)

let rec find (x : vertex)
(array_vertices : elem Rarray.t) =

let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let (Vertex v_int) = x in
let v_element =
Rarray.get array_vertices (Rnat.of_int v_int)

in
match v_element with
| Root (_, v) →v
| Link (Vertex v_parent_int) →

let rep =
find (Vertex v_parent_int) array_vertices

in
let _ =
Rarray.set array_vertices
(Rnat.of_int v_int)
(Link rep)

in
rep

let eq (x : vertex) (y : vertex)
(array_vertices : elem Rarray.t) : bool =

let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let (Vertex x_rep_int) = find x array_vertices in
let (Vertex y_rep_int) = find y array_vertices in
x_rep_int = y_rep_int

let link (x : vertex) (y : vertex)
(array_vertices : elem Rarray.t) : vertex =

let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let (Vertex x_int) = x in
let (Vertex y_int) = y in
if x_int = y_int then x

else
let x_element =
Rarray.get array_vertices (Rnat.of_int x_int)

in
let y_element =
Rarray.get array_vertices (Rnat.of_int y_int)

in
match (x_element, y_element) with
| Root (Rank rx, vx), Root (Rank ry, _) →

if rx < ry then
let _ =
Rarray.set array_vertices
(Rnat.of_int x_int)
(Link y)

in
y

else if rx > ry then
let _ =
Rarray.set array_vertices
(Rnat.of_int y_int)
(Link x)

in
x

else
let _ =
Rarray.set array_vertices
(Rnat.of_int y_int)
(Link x)

in
let _ =
Rarray.set array_vertices
(Rnat.of_int x_int)
(Root (Rank (rx + 1), vx))

in
x

| _, _ → raise Invalid_input

let union (x : vertex) (y : vertex)
(array_vertices : elem Rarray.t) : vertex =

let _ = Raml.mark 0 1.0 in
let _ = Raml.tick 1.0 in
let x_rep = find x array_vertices in
let y_rep = find y array_vertices in
link x_rep y_rep array_vertices

let rec append_list_edges vertex xs ys =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| (neighbor, weight) :: tl →

(vertex, neighbor, weight)
:: append_list_edges vertex tl ys

Lst. B.51: Resource-decomposed code of Kruskal (part 1).
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let rec concat_list_edges adjacency_list =
let _ = Raml.tick 1.0 in
match adjacency_list with
| [] → []
| (vertex, hg_neighbor_list) :: tl →

let tl_list_edges = concat_list_edges tl in
append_list_edges vertex hg_neighbor_list
tl_list_edges

let rec split xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], [])
| [ x ] → ([ x ], [])
| x1 :: x2 :: tl →

let lower, upper = split tl in
(x1 :: lower, x2 :: upper)

let rec merge xs ys =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| (xv1, xv2, xw) :: xs_tl →(

match ys with
| [] → ys
| (yv1, yv2, yw) :: ys_tl →

if (xw : float) <= (yw : float) then
(xv1, xv2, xw) :: merge xs_tl ys

else (yv1, yv2, yw) :: merge xs ys_tl )

let rec merge_sort list_edges =
let _ = Raml.mark 1 1.0 in
let _ = Raml.tick 1.0 in
let result =
match list_edges with
| [] → []
| [ x ] → [ x ]
| _ →

let lower, upper = split list_edges in
let lower_sorted = merge_sort lower in
let upper_sorted = merge_sort upper in
merge lower_sorted upper_sorted

in
let _ = Raml.mark 1 (-1.0) in
result

let rec list_length xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → 0
| _ :: tl → 1 + list_length tl

let rec initialize_union_find_help adjacency_list
array_vertices =

let _ = Raml.tick 1.0 in
match adjacency_list with
| [] → ()
| (v, _) :: tl →

let v_elem = make v in
let _ =
Rarray.set array_vertices (Rnat.of_int v)
v_elem

in
initialize_union_find_help tl array_vertices

let initialize_union_find adjacency_list =
let _ = Raml.tick 1.0 in
let num_vertices = list_length adjacency_list in
let array_vertices =
Rarray.make
(Rnat.of_int num_vertices)
(Link (Vertex 0))

in
let _ =
initialize_union_find_help adjacency_list
array_vertices

in
array_vertices

let rec traverse_sorted_list_edges list_edges
array_vertices acc =

let _ = Raml.tick 1.0 in
match list_edges with
| [] → acc
| (v1, v2, w) :: tl →

if eq (Vertex v1) (Vertex v2) array_vertices
then
traverse_sorted_list_edges tl array_vertices
acc

else
let _ =
union (Vertex v1) (Vertex v2) array_vertices

in
traverse_sorted_list_edges tl array_vertices
((v1, v2, w) :: acc)

let kruskal_algorithm adjacency_list =
let _ = Raml.activate_counter_variable 0 in
let _ = Raml.tick 1.0 in
let list_edges = concat_list_edges adjacency_list in
let _ = Raml.activate_counter_variable 1 in
let sorted_list_edges = merge_sort list_edges in
let _ = Raml.record_counter_variable 1 in
let array_vertices =
initialize_union_find adjacency_list

in
let selected_edges =
traverse_sorted_list_edges sorted_list_edges
array_vertices []

in
let _ = Raml.record_counter_variable 0 in
selected_edges

Lst. B.52: Resource-decomposed code of Kruskal (part 2).
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type rank = Rank of int

type vertex = Vertex of int

type elem = Link of vertex | Root of rank * vertex

let make (v : int) current_original_counters =
let new_counter =
decrement_first_counter current_original_counters

in
let _ = Raml.tick 1.0 in
let result = Root (Rank 0, Vertex v) in
(result, new_counter)

let rec find (x : vertex)
(array_vertices : elem Rarray.t)
current_original_counters =

let new_counter =
decrement_first_counter current_original_counters

in
let _ = Raml.tick 1.0 in
let (Vertex v_int) = x in
let v_element =
Rarray.get array_vertices (Rnat.of_int v_int)

in
match v_element with
| Root (_, v) →(v, new_counter)
| Link (Vertex v_parent_int) →

let rep, final_counter =
find (Vertex v_parent_int) array_vertices
new_counter

in
let _ =
Rarray.set array_vertices
(Rnat.of_int v_int)
(Link rep)

in
(rep, final_counter)

let eq (x : vertex) (y : vertex)
(array_vertices : elem Rarray.t)
current_original_counters =

let new_counter =
decrement_first_counter current_original_counters

in
let _ = Raml.tick 1.0 in
let Vertex x_rep_int, counter1 =
find x array_vertices new_counter

in
let Vertex y_rep_int, counter2 =
find y array_vertices counter1

in
let result = x_rep_int = y_rep_int in
(result, counter2)

let link (x : vertex) (y : vertex)
(array_vertices : elem Rarray.t)
current_original_counters =

let new_counter =
decrement_first_counter current_original_counters

in
let _ = Raml.tick 1.0 in
let (Vertex x_int) = x in
let (Vertex y_int) = y in
if x_int = y_int then (x, new_counter)

else
let x_element =
Rarray.get array_vertices (Rnat.of_int x_int)

in
let y_element =
Rarray.get array_vertices (Rnat.of_int y_int)

in
match (x_element, y_element) with
| Root (Rank rx, vx), Root (Rank ry, _) →

if rx < ry then
let _ =
Rarray.set array_vertices
(Rnat.of_int x_int)
(Link y)

in
(y, new_counter)

else if rx > ry then
let _ =
Rarray.set array_vertices
(Rnat.of_int y_int)
(Link x)

in
(x, new_counter)

else
let _ =
Rarray.set array_vertices
(Rnat.of_int y_int)
(Link x)

in
let _ =
Rarray.set array_vertices
(Rnat.of_int x_int)
(Root (Rank (rx + 1), vx))

in
(x, new_counter)

| _, _ → raise Invalid_input

let union (x : vertex) (y : vertex)
(array_vertices : elem Rarray.t)
current_original_counters =

let new_counter =
decrement_first_counter current_original_counters

in
let _ = Raml.tick 1.0 in
let x_rep, counter1 =
find x array_vertices new_counter

in
let y_rep, counter2 =
find y array_vertices counter1

in
link x_rep y_rep array_vertices counter2

let rec append_list_edges vertex xs ys =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| (neighbor, weight) :: tl →

(vertex, neighbor, weight)
:: append_list_edges vertex tl ys

let rec concat_list_edges adjacency_list =
let _ = Raml.tick 1.0 in
match adjacency_list with
| [] → []
| (vertex, hg_neighbor_list) :: tl →

let tl_list_edges = concat_list_edges tl in
append_list_edges vertex hg_neighbor_list
tl_list_edges

Lst. B.53: Resource-guarded code of Kruskal (part 1).
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let rec split xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → ([], [])
| [ x ] → ([ x ], [])
| x1 :: x2 :: tl →

let lower, upper = split tl in
(x1 :: lower, x2 :: upper)

let rec merge xs ys =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| (xv1, xv2, xw) :: xs_tl →(

match ys with
| [] → ys
| (yv1, yv2, yw) :: ys_tl →

if (xw : float) <= (yw : float) then
(xv1, xv2, xw) :: merge xs_tl ys

else (yv1, yv2, yw) :: merge xs ys_tl )

let rec merge_sort list_edges
current_original_counters =

let new_counter =
decrement_second_counter current_original_counters

in
let _ = Raml.tick 1.0 in
let result, final_counter =
match list_edges with
| [] → ([], new_counter)
| [ x ] → ([ x ], new_counter)
| _ →

let lower, upper = split list_edges in
let lower_sorted, counter1 =
merge_sort lower new_counter

in
let upper_sorted, counter2 =
merge_sort upper counter1

in
(merge lower_sorted upper_sorted, counter2)

in
(result, increment_second_counter final_counter)

let rec list_length xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → 0
| _ :: tl → 1 + list_length tl

let rec initialize_union_find_help adjacency_list
array_vertices current_original_counters =

let _ = Raml.tick 1.0 in
match adjacency_list with
| [] → ((), current_original_counters)
| (v, _) :: tl →

let v_elem, final_counter =
make v current_original_counters

in
let _ =
Rarray.set array_vertices (Rnat.of_int v)
v_elem

in
initialize_union_find_help tl array_vertices
final_counter

let initialize_union_find adjacency_list
current_original_counters =

let _ = Raml.tick 1.0 in
let num_vertices = list_length adjacency_list in
let array_vertices =
Rarray.make
(Rnat.of_int num_vertices)
(Link (Vertex 0))

in
let _, final_counter =
initialize_union_find_help adjacency_list
array_vertices current_original_counters

in
(array_vertices, final_counter)

let rec traverse_sorted_list_edges list_edges
array_vertices acc current_original_counters =

let _ = Raml.tick 1.0 in
match list_edges with
| [] → (acc, current_original_counters)
| (v1, v2, w) :: tl →

let eq_result, counter1 =
eq (Vertex v1) (Vertex v2) array_vertices
current_original_counters

in
if eq_result then
traverse_sorted_list_edges tl array_vertices
acc counter1

else
let _, counter2 =
union (Vertex v1) (Vertex v2) array_vertices
counter1

in
traverse_sorted_list_edges tl array_vertices
((v1, v2, w) :: acc)
counter2

(* Polynomial degree for AARA: 3 *)

let kruskal_algorithm adjacency_list
current_original_counters =

let initialized_counter1 =
initialize_first_counter current_original_counters

in
let initialized_counter2 =
initialize_second_counter initialized_counter1

in
let _ = Raml.tick 1.0 in
let list_edges = concat_list_edges adjacency_list in
let sorted_list_edges, counter1 =
merge_sort list_edges initialized_counter2

in
let array_vertices, counter2 =
initialize_union_find adjacency_list counter1

in
let selected_edges, _ =
traverse_sorted_list_edges sorted_list_edges
array_vertices [] counter2

in
selected_edges

Lst. B.54: Resource-guarded code of Kruskal (part 2).
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B.2.15 QuickSortTiML

open Core

type ’a pList = PList of ’a list * ’a list

let convert_int_to_bit_vector x =
(* let _ = Raml.tick 1.0 in *)
let rec convert_int_acc x acc =
if x = 0 then acc
else if x = 1 then 1 :: acc
else convert_int_acc (x / 2) ((x mod 2) :: acc)

in
convert_int_acc x []

(* Compare two bit vectors representing natural
numbers. The result of comparison between x and y
is (i) -1 if x < y; (ii) 0 if x = y; and (iii) 1
if x > y. *)

let compare_bit_vectors_maximum_length xs ys =
let rec compare_bits_helper xs ys acc =
let _ = Raml.tick 1.0 in
let _ = Raml.mark 0 1.0 in
match (xs, ys) with
| [], [] → acc
| [], _ :: tl →compare_bits_helper [] tl (-1)
| _ :: tl, [] →compare_bits_helper tl [] 1
| hd1 :: tl1, hd2 :: tl2 →

if hd1 = hd2 then
compare_bits_helper tl1 tl2 acc

else if hd1 < hd2 then
compare_bits_helper tl1 tl2 (-1)

else compare_bits_helper tl1 tl2 1
in
let xs_reversed = List.rev xs in
let ys_reversed = List.rev ys in
compare_bits_helper xs_reversed ys_reversed 0

let le_complex (x, y) =
let _ = Raml.tick 1.0 in
let x_bit_vector = convert_int_to_bit_vector x in
let y_bit_vector = convert_int_to_bit_vector y in
let _ = Raml.activate_counter_variable 0 in
let comparison_result =
compare_bit_vectors_maximum_length x_bit_vector
y_bit_vector

in
let _ = Raml.record_counter_variable 0 in
if comparison_result < 1 then true else false

let rec partition (xs, pivot) =
let _ = Raml.tick 1.0 in
match xs with
| [] → PList ([], [])
| hd :: tl → (

match partition (tl, pivot) with
| PList (left, right) →

if le_complex (hd, pivot) then
PList (hd :: left, right)

else PList (left, hd :: right))

let rec append (xs, ys) =
let _ = Raml.tick 1.0 in
match xs with
| [] → ys
| hd :: tl → hd :: append (tl, ys)

let rec quicksort xs =
let _ = Raml.tick 1.0 in
match xs with
| [] → []
| hd :: tl → (

match partition (tl, hd) with
| PList (left, right) →

let left_sorted = quicksort left in
let right_sorted = quicksort right in
append (left_sorted, hd :: right_sorted))

Lst. B.55: Resource-decomposed code of QuickSortTiML. The function le_complex compares
two natural numbers by first converting them to bit vectors and then traversing them. The cost
of calling le_complex is given by the number of calling this function. It disregards the cost of
calling helper functions: convert_int_to_bit_vector and List.rev (provided by the Core
library).
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(* Basic types and function for the benchmark quicksort_timl *)

structure Basic = struct

datatype bool = true | false

(* length-indexed list *)
datatype list ’a : {Nat} =

Nil of list ’a {0}
| Cons {n : Nat} of ’a * list ’a {n} →list ’a {n + 1}

fun le_complex [’a] {r: Nat} (x: ’a, y: ’a, resource_guard : list unit {r})
return bool using $r =
builtin

end

Lst. B.56: Basic types and function used in the resource-guarded code of QuickSortTiMLwritten
in TiML [222].
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(* Quick sort *)

structure QSort = struct

open Basic

datatype plist ’a : {Nat} =
PList {p q : Nat} of list ’a {p} * list ’a {q} →plist ’a {p + q}

idx T_partition = fn m n => $n + ($m + 1.0) * $n
fun partition [’a] {r len : Nat} (xs : list ’a {len}, pivot : ’a, resource_guard: list unit {r})

return plist ’a {len} using T_partition r len =
case xs of

[] => PList ([], [])
| hd :: tl =>

case partition (tl, pivot, resource_guard) of
PList (left, right) =>
if le_complex (hd, pivot, resource_guard) then

PList (hd :: left, right)
else

PList (left, hd :: right)

idx T_append = fn n => 1.0 * $n
fun append [’a] {len1 len2 : Nat} (xs : list ’a {len1}, ys : list ’a {len2})

return list ’a {len1 + len2} using T_append len1 =
case xs of

[] => ys
| hd :: tl => hd :: append (tl, ys)

idx T_quicksort = fn m n => $n * ($n + 1.0) * ($m + 2.0) + 2.0 * $n
fun quicksort [’a] {r len : Nat} (xs : list ’a {len}, resource_guard: list unit {r})

return list ’a {len} using T_quicksort r len =
case xs of

[] => []
| hd :: tl =>
(* need time annotation here to forget the two local index variables which are the lengths of
the two partitions. It is very hard for the typechecker to figure out how to replace these
two lengths with the total length of the input list *)

case partition (tl, hd, resource_guard)
return using $len * ($len + 1.0) * ($r + 2.0) + 2.0 * $len - 2.0 * $len * ($r + 1.0) of
PList (left, right) =>
let

val sorted_left = quicksort (left, resource_guard)
val sorted_right = quicksort (right, resource_guard)

in
append (sorted_left, hd :: sorted_right)

end

end

Lst. B.57: Resource-guarded code of QuickSortTiML written in TiML [222]. By default, TiML
concerns the resource metric of the number of function calls. The resource-decomposed pro-
gram (Listing B.55) and this resource-guarded program are written in different programming
languages: RaML, which extends OCaml, and TiML, which extends Standard ML. Nonetheless,
as the two languages are syntactically similar to each other, it is easy to see that they both
implement quicksort in an identical manner. Furthermore, the resource-decomposed program
is annotated with the construct Raml.tick such that it has the same resource metric as the
resource-guarded program.
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Appendix C

Supplements to Generator Optimization

C.1 Full Experiment Results

Table C.1: Relative errors of program inputs’ costs generated in QuickSort.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9289 -0.0392 -0.0392
50th -0.9232 -0.0196 -0.0196
95th -0.9124 -0.0033 -0.0033

300
5th -0.9489 -0.0424 -0.0424
50th -0.9447 -0.0209 -0.0209
95th -0.9386 -0.0069 -0.0069

400
5th -0.9591 -0.0390 -0.0390
50th -0.9562 -0.0210 -0.0210
95th -0.9511 -0.0065 -0.0065
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Figure C.1: Generated runtime-cost data and inferred cost bounds in QuickSort.
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Table C.2: Relative errors of program inputs’ costs generated in QuickSortRev.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9293 -0.0451 -0.0451
50th -0.9222 -0.0196 -0.0196
95th -0.9077 -0.0033 -0.0033

300
5th -0.9481 -0.0418 -0.0418
50th -0.9444 -0.0204 -0.0204
95th -0.9383 -0.0069 -0.0069

400
5th -0.9593 -0.0388 -0.0388
50th -0.9561 -0.0213 -0.0213
95th -0.9494 -0.0081 -0.0081
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Figure C.2: Generated runtime-cost data and inferred cost bounds in QuickSortRev.
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Table C.3: Relative errors of program inputs’ costs generated in QuickSortStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9295 -0.5047 -0.5083
50th -0.9232 -0.4950 -0.4950
95th -0.9126 -0.4854 -0.4861

300
5th -0.9492 -0.5096 -0.5088
50th -0.9452 -0.4999 -0.4999
95th -0.9389 -0.4920 -0.4923

400
5th -0.9596 -0.5117 -0.5117
50th -0.9567 -0.5024 -0.5024
95th -0.9516 -0.4963 -0.4959
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Figure C.3: Generated runtime-cost data and inferred cost bounds in QuickSortStr.
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Table C.4: Relative errors of program inputs’ costs generated in QuickSortRevStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9298 -0.5083 -0.5088
50th -0.9227 -0.4950 -0.4950
95th -0.9114 -0.4866 -0.4852

300
5th -0.9487 -0.5097 -0.5067
50th -0.9447 -0.4999 -0.4997
95th -0.9388 -0.4921 -0.4919

400
5th -0.9596 -0.5099 -0.5126
50th -0.9565 -0.5027 -0.5017
95th -0.9501 -0.4941 -0.4954
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Figure C.4: Generated runtime-cost data and inferred cost bounds in QuickSortRevStr.
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Table C.5: Relative errors of program inputs’ costs generated in InsertionSort.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.5294 -0.4828 -0.5254
50th -0.4905 -0.4131 -0.4950
95th -0.4572 -0.3541 -0.4564

300
5th -0.5228 -0.4866 -0.5282
50th -0.4977 -0.4187 -0.4980
95th -0.4625 -0.3627 -0.4629

400
5th -0.5251 -0.4929 -0.5229
50th -0.4958 -0.4455 -0.4928
95th -0.4666 -0.3730 -0.4748
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Figure C.5: Generated runtime-cost data and inferred cost bounds in InsertionSort.
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Table C.6: Relative errors of program inputs’ costs generated in Lpairs.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.5980 -0.0452 -0.0452
50th -0.5075 -0.0251 -0.0251
95th -0.4271 -0.0050 -0.0050

300
5th -0.5652 -0.0368 -0.0368
50th -0.4983 -0.0167 -0.0167
95th -0.4378 -0.0033 -0.0033

400
5th -0.5594 -0.0326 -0.0326
50th -0.5038 -0.0175 -0.0175
95th -0.4586 -0.0025 -0.0025
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Figure C.6: Generated runtime-cost data and inferred cost bounds in Lpairs.
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Table C.7: Relative errors of program inputs’ costs generated in LpairsAlt.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.5879 -0.0653 -0.0653
50th -0.5176 -0.0251 -0.0251
95th -0.4171 -0.0050 -0.0050

300
5th -0.5585 -0.0702 -0.0702
50th -0.5050 -0.0301 -0.0301
95th -0.4445 -0.0033 -0.0033

400
5th -0.5589 -0.0526 -0.0526
50th -0.4987 -0.0326 -0.0326
95th -0.4386 -0.0025 -0.0025

0 100 200 300
Input Size

0

50

100

150

200

250

300

Co
st

Random List

0 100 200 300
Input Size

Sorted List

0 100 200 300
Input Size

Reversely Sorted List

0 100 200 300
Input Size

List of Identical Elements

0 100 200 300
Input Size

Cycle of Period 4

0 100 200 300
Input Size

Genetic Algorithm
Generated Program Input and Cost Inferred Bound Ground Truth

Figure C.7: Generated runtime-cost data and inferred cost bounds in LpairsAlt.
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Table C.8: Relative errors of program inputs’ costs generated in Opairs.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.2634 -0.2319 -0.2655
50th -0.2465 -0.1417 -0.2462
95th -0.2268 -0.0019 -0.2286

300
5th -0.2636 -0.2495 -0.2621
50th -0.2459 -0.1742 -0.2462
95th -0.2332 -0.0650 -0.2337

400
5th -0.2629 -0.2702 -0.2614
50th -0.2482 -0.1860 -0.2466
95th -0.2335 -0.0936 -0.2346
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Figure C.8: Generated runtime-cost data and inferred cost bounds in Opairs.
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Table C.9: Relative errors of program inputs’ costs generated in QuickSelect.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9806 -0.9899 -0.9899
50th -0.9782 -0.6782 -0.6375
95th -0.9759 -0.0099 -0.0292

300
5th -0.9876 -0.9932 -0.9932
50th -0.9854 -0.7053 -0.6350
95th -0.9841 -0.1918 -0.0445

400
5th -0.9904 -0.9949 -0.9948
50th -0.9893 -0.7364 -0.6950
95th -0.9886 -0.2254 -0.2755
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Figure C.9: Generated runtime-cost data and inferred cost bounds in QuickSelect.
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Table C.10: Relative errors of program inputs’ costs generated in QuickSelectStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9806 -0.9899 -0.8718
50th -0.9783 -0.9895 -0.4849
95th -0.9761 -0.0198 -0.0099

300
5th -0.9874 -0.9933 -0.9036
50th -0.9854 -0.9931 -0.5817
95th -0.9840 -0.2930 -0.0198

400
5th -0.9904 -0.9950 -0.9359
50th -0.9893 -0.9947 -0.6753
95th -0.9885 -0.1958 -0.1799
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Figure C.10: Generated runtime-cost data and inferred cost bounds in QuickSelectStr.
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Table C.11: Relative errors of program inputs’ costs generated in LinearSearch.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.5755 0.0000 0.0000
50th 0.0000 0.0000 0.0000
95th 0.0000 0.0000 0.0000

300
5th -0.7050 0.0000 0.0000
50th 0.0000 0.0000 0.0000
95th 0.0000 0.0000 0.0000

400
5th -0.7250 0.0000 0.0000
50th 0.0000 0.0000 0.0000
95th 0.0000 0.0000 0.0000

0 200
Input Size

0

100

200

300

Co
st

Random List and Integer

0 200
Input Size

Genetic Algorithm

Generated Program Input and Cost
Inferred Bound
Ground Truth

Figure C.11: Generated runtime-cost data and inferred cost bounds in LinearSearch.
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Table C.12: Relative errors of program inputs’ costs generated in QuickSortPairs.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9285 -0.0721 -0.0721
50th -0.9228 -0.0418 -0.0418
95th -0.9139 -0.0106 -0.0106

300
5th -0.9485 -0.0747 -0.0747
50th -0.9447 -0.0418 -0.0418
95th -0.9384 -0.0160 -0.0160

400
5th -0.9590 -0.0687 -0.0687
50th -0.9560 -0.0471 -0.0471
95th -0.9503 -0.0261 -0.0261
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Figure C.12: Generated runtime-cost data and inferred cost bounds in QuickSortPairs.
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Table C.13: Relative errors of program inputs’ costs generated in QuickSortPairsStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9285 -0.5227 -0.5227
50th -0.9228 -0.5030 -0.5030
95th -0.9139 -0.4907 -0.4907

300
5th -0.9485 -0.5253 -0.5253
50th -0.9447 -0.5072 -0.5072
95th -0.9384 -0.4955 -0.4955

400
5th -0.9590 -0.5232 -0.5232
50th -0.9560 -0.5121 -0.5121
95th -0.9503 -0.5036 -0.5028
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Figure C.13: Generated runtime-cost data and inferred cost bounds in QuickSortPairsStr.
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Table C.14: Relative errors of program inputs’ costs generated in SplitSort.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9945 -0.0879 -0.0879
50th -0.9943 -0.0495 -0.0495
95th -0.9939 -0.0138 -0.0138

300
5th -0.9961 -0.0826 -0.0826
50th -0.9960 -0.0483 -0.0483
95th -0.9958 -0.0211 -0.0211

400
5th -0.9969 -0.0756 -0.0756
50th -0.9968 -0.0513 -0.0513
95th -0.9966 -0.0284 -0.0284
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Figure C.14: Generated runtime-cost data and inferred cost bounds in SplitSort.
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Table C.15: Relative errors of program inputs’ costs generated in SplitSortStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9945 -0.5363 -0.5363
50th -0.9943 -0.5168 -0.5168
95th -0.9939 -0.5024 -0.5024

300
5th -0.9961 -0.5323 -0.5323
50th -0.9960 -0.5177 -0.5177
95th -0.9958 -0.5020 -0.5020

400
5th -0.9969 -0.5316 -0.5316
50th -0.9968 -0.5207 -0.5207
95th -0.9966 -0.5088 -0.5088
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Figure C.15: Generated runtime-cost data and inferred cost bounds in SplitSortStr.
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Table C.16: Relative errors of program inputs’ costs generated in Queue.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.1452 -0.0250 -0.0218
50th -0.1152 -0.0134 -0.0117
95th -0.0901 -0.0050 -0.0050

300
5th -0.1525 -0.0211 -0.0211
50th -0.1201 -0.0133 -0.0133
95th -0.0945 -0.0044 -0.0066

400
5th -0.1537 -0.0200 -0.0201
50th -0.1293 -0.0125 -0.0121
95th -0.0974 -0.0067 -0.0067
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Figure C.16: Generated runtime-cost data and inferred cost bounds in Queue.

306



Table C.17: Relative errors of program inputs’ costs generated in Compare.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

200
5th -0.9950 -0.9852 -0.9950
50th -0.9950 -0.8850 -0.9900
95th -0.9950 -0.3790 -0.9750

300
5th -0.9967 -0.9868 -0.9967
50th -0.9967 -0.9267 -0.9967
95th -0.9967 -0.7050 -0.9833

400
5th -0.9975 -0.9900 -0.9975
50th -0.9975 -0.9450 -0.9975
95th -0.9975 -0.7299 -0.9900
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Figure C.17: Generated runtime-cost data and inferred cost bounds in Compare.
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Table C.18: Relative errors of program inputs’ costs generated in QuickSortLists.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

(30, 30)
5th -0.9713 -0.6491 -0.6543
50th -0.9683 -0.4727 -0.4731
95th -0.9639 -0.2819 -0.2944

(40, 40)
5th -0.9826 -0.7219 -0.7411
50th -0.9804 -0.6036 -0.6022
95th -0.9782 -0.4702 -0.4542

(50, 50)
5th -0.9878 -0.7661 -0.7759
50th -0.9865 -0.6953 -0.6961
95th -0.9848 -0.5693 -0.5599
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Figure C.18: Generated runtime-cost data and inferred cost bounds in QuickSortLists.

308



Table C.19: Relative errors of program inputs’ costs generated in QuickSortListsStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

(30, 30)
5th -0.9713 -0.6613 -0.6630
50th -0.9683 -0.4837 -0.5070
95th -0.9639 -0.3072 -0.3189

(40, 40)
5th -0.9826 -0.7398 -0.7240
50th -0.9804 -0.6033 -0.6007
95th -0.9782 -0.4804 -0.4760

(50, 50)
5th -0.9878 -0.7864 -0.7806
50th -0.9865 -0.6960 -0.7010
95th -0.9848 -0.5852 -0.5512
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Figure C.19: Generated runtime-cost data and inferred cost bounds in QuickSortListsStr.
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Table C.20: Relative errors of program inputs’ costs generated in SortAll.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

(30, 30)
5th -0.6854 -0.0221 -0.0437
50th -0.6768 -0.0152 -0.0304
95th -0.6693 -0.0075 -0.0225

(40, 40)
5th -0.7401 -0.0231 -0.0385
50th -0.7352 -0.0168 -0.0289
95th -0.7288 -0.0106 -0.0217

(50, 50)
5th -0.7782 -0.0227 -0.0355
50th -0.7746 -0.0171 -0.0286
95th -0.7698 -0.0118 -0.0226
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Figure C.20: Generated runtime-cost data and inferred cost bounds in SortAll.
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Table C.21: Relative errors of program inputs’ costs generated in SortAllStr.

Input Size Percentile Relative Errors of Generated Costs

Random-Input Generator Genetic Algorithm Random Enumeration

(30, 30)
5th -0.6861 -0.4490 -0.1780
50th -0.6773 -0.4422 -0.1091
95th -0.6697 -0.4353 -0.0652

(40, 40)
5th -0.7402 -0.4623 -0.1935
50th -0.7356 -0.4567 -0.1513
95th -0.7293 -0.4533 -0.1088

(50, 50)
5th -0.7786 -0.4703 -0.2486
50th -0.7749 -0.4672 -0.1893
95th -0.7700 -0.4629 -0.1492
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Figure C.21: Generated runtime-cost data and inferred cost bounds in SortAllStr.
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