
Quantum Approaches to Verifiable Deletion

Justin Raizes

CMU-CS-25-107

May 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Vipul Goyal (Chair)

Aayush Jain
Elaine Shi

Giulio Malavolta (Bocconi University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science.

Copyright © 2025 Justin Raizes

This research was sponsored by JP Morgan, PNC Center for Financial Services, the National Science Foundation under award
number CNS-1916939, the Department of Energy under award number DEFE0031770, and the Defense Advanced Research
Projects Agency under award number HR0011-20-20025.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Quantum Cryptography, Certified Deletion, Obfuscation, Secret Sharing, Signatures, Zero
Knowledge

To those who inspire others to learn.

iv

Abstract

Intriguingly, the laws of physics allow protocols executed by quantum computers to real-
ize security guarantees that are impossible for classical computers. One of these new possibil-
ities is the ability to temporarily send ciphertexts to a user, then later verify that the encoded
message has been destroyed in an information-theoretic sense.

Broadbent and Islam (TQC) introduced this notion, called certified deletion, in the context
of encryption. However, there are many more scenarios in which verifiable deletion is useful.
For example, a software rental company might want to temporarily send their software to a
user, then request that the user destroys the copy at the end of the rental period.

In this thesis, we expand the realm of certified deletion to cryptographic primitives beyond
just encryption. We define and construct the following objects with certified deletion:

• Obfuscation with Certified Deletion allows a company to lend a program to a user,
allowing them to evaluate it as they wish. Then, when the user no longer wish to rent
the program, they can destroy it and prove to the issuer that they are no longer able
to evaluate the program. Obfuscation with certified deletion also enables several new
applications such as certifiably deletable secret keys.

• Secret Sharing with Certified Deletion allows a user to distribute shares of a secret to
several parties. In the event of a data breach, the user can request that the affected party
deletes their shares, rendering them useless for stealing the secret.

• Signatures with Certified Deniability allow a signer to endorse a statement in a single
message. After the receiver has verified the signature, they can destroy it and prove to
the signer that they are no longer able to provide convincing evidence - of any kind - that
the signer endorsed this statement. We also show how to construct the related primitive
of NIZKs with certified deniability.
Certified deniability is a new, more comprehensive paradigm for certified deletion that
rules out additional attacks not explicitly considered by prior definitions.

To build these primitives, we develop new techniques for verifying the deletion of infor-
mation while still allowing access to the information under appropriate conditions.

vi

Acknowledgments

Getting to this point has been a long journey filled with people who supported me along
the way. I am lucky to have so many friends, family, and mentor figures.

Thank you to my advisor, Vipul. You were patient with me as I transitioned into crypto,
introduced me to many members of the crypto community, and helped me find new and
exciting topics to study.

Thank you to the members of my committee, who were there for me at the end of this
path.

Thank you to my friends from UCSC. Yash, Evan, Yitzhar, Alicia, Matthew Gray, Matthew
Rhea, Mace, and many more, you filled my time at UCSC with joy and made me happy to
be there. Your friendship has followed me beyond UCSC and been an amazing support over
these years. A special thank you to Matthew Gray, whose excitement about math and com-
puter science is not only infectious, but also recursive. Our many talks and the classes we
taught together confirmed that embarking on the long road to a Ph.D. was the right choice
for me. Speaking of those classes, thank you to the students who believed that Matthew and
I had enough interesting things to say that it was worth showing up at 8 A.M. to listen to us
rant about computer science.

Thank you to my mentors during my time at UCSC, who helped me find opportunities
to progress along this path. To Darrell, Ethan, and Sesh, who enabled my teaching- and
research-related shenanigans at UCSC. To Tom, who hosted me at Sandia for so many years
and encouraged me to explore new topics freely.

Thank you to the mentors who helped me really kick off my PhD. My productivity before
and after I started working with post-docs is as night and day. So thank you to those post-docs:
Pratik, Chen-Da, and João. Thank you to Giulio for hosting me in Germany after COVID and
helping me get used to working in person again.

Thank you to my many collaborators. You all taught me so much as we worked together.
I have no doubt that my list of publications would not be in its current state without you.

Thank you to the student community, both within crypto and without. My friends at
CMU made my journey much more enjoyable. Thank you to my board game buddies: Sara,
Sol, Isaac, Ray, Josh, and everyone else who showed up to play board games (somewhat)
weekly. Thank you as well to those who didn’t play board games with me, but who I still
looked forward to hanging out with every time. Thank you to Mik, who was an amazing
roommate for almost my entire Ph.D. and was a great friend for its entire span. Anup, Arjun,
and Eitan, you lived with me more briefly but were still amazing friends. Thank you for your
company. Thank you to my officemates Hugo, Long, Justin, Sid, Yonghao, Mingjie, and
our newest addition Runming for making each workday more companionable. The interns
at NTT played a similar role during my internship there, except instead of the gym it was
just one more round of Hanabi (even if we’d just finished the “one” round). Thank you for
injecting some excitement into those summers. Thank you to the many crypto grad students
whose Ph.D.s overlapped with mine. I always looked forward to chatting with you all at
conferences about the latest research trends and brainstorming crazy ideas, even if they didn’t
work out most of the time.

Thank you to my family, who was there from the very beginning and who always believed
in me.

viii

Contents

1 Introduction 1
1.1 Results . 2
1.2 Techniques . 3

1.2.1 Part I: Obfuscation . 3
1.2.2 Part II: Secret Sharing . 5
1.2.3 Part III: Signatures and NIZKs with Certified Deniability 6

2 Preliminaries 9
2.1 General Notation . 9
2.2 Cryptographic Notation . 9
2.3 Quantum Computation . 9

I Obfuscation with Certified Deletion 13

3 Results 17

4 Technical Overview 19
4.1 Warm-Up Example . 19
4.2 Coset Framework . 21
4.3 Certified Deletion for Coset States . 22
4.4 Discussion . 24
4.5 Obfuscation and Applications . 25

5 Preliminaries 27
5.1 Indistinguishability Obfuscation and Differing Inputs Obfuscation 27
5.2 Subspace-Hiding Obfuscation . 29
5.3 Functional Encryption . 30

6 Coset State Framework 33
6.1 Coset Representatives . 33
6.2 Coset Representative Properties . 34
6.3 Delayed Preparation of Coset States . 36

7 Certified Deletion for Coset States 39
7.1 Proof with Dual Coset Leakage . 41
7.2 Proof with Primal Coset Leakage . 43

ix

8 Obfuscation with Certified Deletion 47
8.1 Definition . 47
8.2 Construction . 48
8.3 Variant: Nesting . 54
8.4 Variant: Provable Correctness . 55

9 Applications 59
9.1 Encryption with Publicly Verifiable Certified Deletion . 59
9.2 Functional Encryption with Certified Deletion for Ciphertexts 60

9.2.1 Definition . 60
9.2.2 Construction . 61

9.3 Functional Encryption with Key Revocation . 62
9.3.1 Definition . 62
9.3.2 Construction . 64

9.4 Strong Secure Software Leasing . 69

II Secret Sharing with Certified Deletion 73

10 Results 77

11 Technical Overview 79
11.1 No-Signaling Certified Deletion . 79
11.2 Adaptive Certified Deletion . 81
11.3 High Rate Seedless Extractors from Quantum Sources of Entropy 86
11.4 Open Problems . 88

12 Preliminaries 89
12.1 Quantum Computation . 89
12.2 Statistics . 90
12.3 Polynomials and Reed-Solomon Codes . 90
12.4 Secret Sharing . 90

13 High-Rate Seedless Quantum Extractors 93

14 Definitions of Secret Sharing with Certified Deletion 99

15 Secret Sharing with No-Signaling Certified Deletion 103

16 Threshold Secret Sharing with Adaptive Certified Deletion 107
16.1 Construction . 107
16.2 Proof of Security . 110

17 Tighter Parameters for the Threshold Construction 119

III Certified Deniability 123

18 Results 127

x

19 Technical Overview 129
19.1 Definitions: Simulation-Style . 129
19.2 Constructions . 132
19.3 Black-Box Barriers to Plain Model Constructions. 135
19.4 Related Works . 136

20 Preliminaries 139
20.1 Quantum Computation . 139
20.2 Argument Systems . 140
20.3 Revocable Signatures and NIZKs . 142

21 Definitions of Certified Deniability 145
21.1 Signatures . 145
21.2 NIZKs . 148

22 Fiat-Shamir with Certified Deniability 151
22.1 Proof of Certified Deniability . 153

23 Negative Results 159
23.1 Distinguishing Between Unitary Oracles. 159
23.2 Plain Model Black-Box Barrier . 161

xi

xii

Chapter 1

Introduction

It is oft-repeated advice to be careful of what one posts on the internet, because nothing ever disappears
once is it out there. This is certainly true with classical computers. Anyone could have screenshotted,
downloaded, or otherwise copied the information.

However, quantum mechanics offers a way around this limitation. The no-cloning theorem [WZ82]
explicitly disallows copying general quantum states. Broadbent and Islam [BI20a] leveraged this idea to
verifiably delete messages from ciphertexts, which they called “encryption with certified deletion”. In
encryption with certified deletion, a sender encrypts a message in a quantum state |ψm⟩ and sends it to a
receiver. The receiver can later destructively measure |ψm⟩ to produce a certificate. If the certificate is
valid - as determined by the sender - then the receiver cannot recover any information about the message
even if they steal the decryption key.

Beyond just encryption, there are other applications in which verifiable deletion is desirable. For
example, deletable programs could be useful in software rental; the company could send a copy to a user,
then ask the user to delete it at the end of the rental period. As another example, a customer whose data is
split across multiple servers could ask one of them to delete the stored data in the event of a data breach,
preventing attackers from accumulating pieces of it over time. The purpose of this thesis is to shed light
on the question

What else does quantum mechanics allow to be certifiably deleted?

In pursuit of answers, I investigate how to define certified deletion for new cryptographic objects, how
to construct objects satisfying those definitions, and what the limits of certified deletion are. This thesis
includes the following answers:

• It is possible to delete programs. A company may prepare an encoded program and send it to a
user, who may evaluate it as they wish. After the company sees a valid deletion certificate, they
know that the user can no longer evaluate the program.

• It is possible to delete secret shares. A user may split a classical secret into n quantum shares,
where k of the shares may be used to reconstruct the secret. However, verifiably deleted shares
cannot contribute to reconstruction.

• It is possible to delete all evidence of a signature. A sender may sign a message m, so that anyone
may verify they said it. After the sender sees a valid deletion certificate, they know that no one can
provide any evidence that any message was previously signed. Similarly, it is possible to delete all
evidence of a non-interactive zero-knowledge proof.

1

1.1 Results

Obfuscation with Certified Deletion. Classically, obfuscation permits a company to encode a program
P as a new program P̃ with the same behavior, but which does not reveal any of the inner workings of P .
Obfuscation with certified deletion augments this with the ability to destructively measure P̃ , producing
a certificate. If the certificate is valid, then the residual information from P̃ should not be useful for
evaluating the program further.

Theorem 1.1.1 (Informal). Assuming the existence of post-quantum indistinguishability obfuscation and
post-quantum one-way functions, then there exists obfuscation with certified deletions for all (classical)
programs.

As part of the techniques developed for obfuscation with certified deletion, we obtain the first con-
struction of primitives, e.g. encryption, with certified deletion where the verification key used to check
the certificates can be safely made public. We also apply obfuscation with certified deletion to obtain new
primitives with certified deletion. These include a public-key encryption scheme where the secret decryp-
tion key can be certifiably deleted, as well as a stronger version of a software copy-protection notion.

Theorem 1.1.2 (Informal). Assuming the existence of post-quantum indistinguishability obfuscation and
post-quantum one-way functions, a variety of primitives, including obfuscation, functional encryption,
and key revocation, exist with publicly verifiable certified deletion.

Additionally, there exists a strong notion of secure software leasing.

Secret Sharing with Certified Deletion. Classically, threshold secret sharing allows a user to split a
secret s into n shares s1, . . . , sn. Any k shares can be used to reconstruct s, but any set of < k shares
reveals no information about s. Secret sharing with certified deletion augments this with the ability to
destructively measure shares, producing certificates. Although stealing k shares would immediately reveal
the secret in the classical setting, s remains hidden even if more shares are stolen, as long as the number
of stolen shares minus the number of certifiably deleted shares is less than k.

We present two powerful, but incomparable ways of formalizing this: adaptive certified deletion and
no-signaling certified deletion. We show how to construct threshold secret sharing under the adaptive
definition and a more general notion under the no-signaling definition.

Theorem 1.1.3 (Informal). There exists threshold secret sharing with adaptive certified deletion. Fur-
thermore, there exists secret sharing with no-signaling certified deletion for general monotone access
structures.

Signatures/NIZKs with Certified Deniability. Classically, signatures allow a receiver to verify who
sent a specific message. [MPY24] showed how to verifiably destroy a signature so that the receiver
cannot output a valid signature (with respect to the original verification procedure). Certified deniability
strengthens this requirement to ensure that the receiver cannot produce any evidence that they previously
saw a signature, after they produce a valid deletion certificate.

Similarly, non-interactive zero knowledge arguments (NIZKs) with certified deniability allow a prover
to prove the truth of a statement x to a verifier, but after deletion, the verifier cannot convince anyone that
they saw a proof of x.

Theorem 1.1.4 (Informal). There exist NIZKs with certified deniability in the quantum random oracle
model (QROM). Furthermore, if one-way functions exist, then there exist signatures with certified denia-
bility in the QROM.

2

In contrast to prior notions of certified deletion, certified deniability is an application-independent
paradigm with more comprehensive security guarantees. Whereas prior definitions disable specific capa-
bilities upon deletion, certified deniability requires that after an object is deleted, it should be as if the user
never received it.

1.2 Techniques

We begin with a quick review of the first technique used to certifiably delete information - in the original
case, ciphertexts [BI20a, BK23]. The core idea is to encode the data using computational basis qubits,
then mix some additional random Hadamard basis qubits in, which will act as checks. The ciphertext
looks like

Hθ |x⟩ =
⊗
i

Hθi |xi⟩ , Enc

θ, b⊕ ⊕
i:θi=0

xi

 (1.1)

To delete the ciphertext, measureHθ |x⟩ in the Hadamard basis and output the result as the certificate cert.
To verify cert, one can check that each bit certi corresponding to a Hadamard basis position (i.e. θi = 1)
matches xi. Intuitively, since θ is hidden, anyone wanting to produce a valid certificate must measure
almost the whole state Hθ |x⟩ in the Hadamard basis. However, measuring a computational basis state in
the Hadamard basis destroys any information it used to contain.

For each of the later constructions, we develop new techniques that build on this basic idea to acquire
additional properties.

1.2.1 Part I: Obfuscation

Intuitively, after deleting an obfuscated program, the adversary should not be able to evaluate it on new
inputs. After all, clearly we cannot prevent them from remembering evaluations they already did. But we
have no way of “looking inside the adversary’s head” to identify which inputs they have already evaluated
on. How do we define “new” inputs?

To do so, we draw inspiration from the classical notion of differing inputs obfuscation (diO). diO con-
siders two programs P0 and P1 which differ at, say, a single input x∗, i.e. P0(x

∗) ̸= P1(x
∗). Knowledge

of x∗ would be enough to distinguish an obfuscation P̃0 of P0 from an obfuscation P̃1 of P1, since they
have different behavior on x∗. diO guarantees that if x∗ is hard to find, then P̃0 is indistinguishable from
P̃1.

Any hard-to-find input x∗ can be considered a “new” input. So we can consider P0’s behavior on x∗

to be deleted if P̃0 looks like P̃1, even given x∗. Thus we arrive at the following definition:

1. Initialize the adversary with P̃b.

2. Receive a certificate cert from the adversary.

3. If cert is valid, send the adversary the differing input x∗.

4. The adversary outputs a guess b′ for b.

Obfuscation with certified deletion requires that the adversary must guess b essentially at random: Pr[b =
b′] = 1/2 + negl(λ). In the full result, we allow the adversary to gain unbounded computational power in
step 3, which allows them to find x∗ themselves.

3

Missing Link: Repeated Partial Access. The requirements for obfuscation are significantly different
from encryption. Encryption is an “all-or-nothing” primitive. Either the user has the key, in which case
it can decrypt the message, or else it knows nothing about the message. In contrast, obfuscation requires
repeated access to partial information: the ability to evaluate the program.

Prior to our work, no such technique existed. A crucial requirement for partial access is that only
the prescribed information be required. After all, if an adversary could learn arbitrary functions of the
encoded data, then nothing is hidden at all. To ensure that the decoded information matches the original in
the BB84 state-based approach of [BI20a, BK23], one would need to ensure that the computational basis
states match the original encoding. In other words, decide for any vector v whether vi = xi for each i
where θi = 0. Unfortunately, repeated access to such an oracle immediately leaks the computational basis
positions of x [Lut10].

Technique: Certified Deletion for Coset States. We overcome this issue by showing how to use coset
states for certified deletion. A coset state |Sx,z⟩ is an even superposition over elements of a coset S + x
of a subspace S, with some additional phase information attached:

|Sx,z⟩ ∝
∑
s∈S

(−1)s·z |s+ x⟩

Measuring |Sx,z⟩ in the Hadamard basis yields a vector in S⊥ + z. So, we can follow the same strategy
of encoding the data in the computational basis while being able to verify measurements in the Hadmard
basis for deletion. To encode a bit b, sample a random coset state along with a vector r and output1

|Sx,z⟩ , r, b⊕ (x · r)

Notably, coset states remain unlearnable even when obfuscated programs which decide membership
in S + x and S⊥ + z are publicly provided [CLLZ21a]. We extend this result to show that coset states
can be certifiably deleted even in the presence of some side information Z(S, S + x, S⊥ + z) which only
partially hides S + x and S⊥ + z.

One might hope that Z could contain obfuscated membership programs for S + x and S⊥ + z,
similarly to [CLLZ21a]’s result. Although this does have some deletion properties, ultimately we wish
to obtain security against an adversary who against unbounded computational power after deletion. If Z
only computationally hid S + x, then the adversary could directly extract S and x from it after deletion,
revealing the encoded bit.

To solve this problem, we use instead allow Z to use a random super-coset T + x̃ ⊃ S+x. By setting
T to be exponentially small than the overall space, but exponentially larger than S, we obtain two useful
properties. First, since T is much smaller than Fλ

2 , it is hard to find a vector in T + x̃\S + x. So testing
v ∈ T + x̃ is essentially as good as testing v ∈ S+x. Second, since T is much larger than S, T + x̃ hides
enough information about x than x · r is uniformly random, even given T + x̃ and r. Then we are able to
show that if Z(S, T + x̃, S⊥ + z) is computationally simulateable using only (S, T + x̃, R⊥ + z̃) for a
random super-coset R⊥ + z̃ ⊃ S⊥ + z̃, then the encoded bit is information-theoretically deleted.

Constructing Obfuscation With Certified Deletion. Armed with a technique for repeated partial ac-
cess followed by deletion, we construct obfuscation with certified deletion. First, encrypt (with certified

1Technically, x should be a canonical representative for the coset S + x so that the encoding uniquely specifies b. See Part I
for full details.

4

deletion) the program P using the coset state scheme. This ciphertext can be decrypted using a compu-
tational basis measurement of the ciphertext. Then, obfuscate a classical program that has the secret key
hardcoded. The program takes as input a measurement result v and an input a. It checks that v is likely to
be valid measurement result of the ciphertext, i.e. that v ∈ T + x̃. As mentioned previously, this is almost
as good as checking that v ∈ S + x. If so, it obtains P by decrypting v with the hard-coded secret key,
then evaluates and outputs P (a).

The obfuscated classical program can be considered as the side-information Z , so we can prove secu-
rity using the previously discussed technique for deleting coset states. For a more detailed overview, see
Chapter 4.

1.2.2 Part II: Secret Sharing

Secret sharing relies on the assumption that no adversary can steal k shares, which would be enough to
reconstruct the secret. Intuitively, if an adversary steals a deleted share - or pretends to delete one it has
already stolen - then it should still need to steal an additional k shares to recover the secret.

We formalize this intuition by considering an adversary which steals shares one at a time, subject to
the constraint that they never control k shares which have not yet been deleted. This adversary should not
be able to distinguish a secret sharing of s from a secret sharing of s′, even if they eventually steal all of
the shares.2

Challenge: Preventing Gradual Accumulation of Information. The primary challenge for deleting
secret shares is to prevent the gradual accumulation of information as the adversary acquires more shares.
In the adversarial model, the adversary may continually steal new shares after producing valid certificates
for shares it already stole. If part of each share were not deletable, e.g. because it was classical, then
those parts would accumulate over time. Eventually, they might allow the adversary to violate security by
recovering the secret.

Indeed, in Part II we show a natural construction based on the BB84-based approach of [BK23] which
has some deletion properties, but still completely reveals the secret after enough shares are stolen and
deleted. The core issue with the BB84-based construction is that knowledge of the basis θ is necessary to
decode the message. This classical information must be somehow hidden in a way that can be deleted, or
else the adversary can eventually steal it. Unfortunately, hiding θ so that it can be deleted share-by-share
seems to already require secret sharing with certified deletion.

Technique: Basis-Independent Decoding. We observe that the use of error-correcting codes can help
in reconstructing from the BB84-based encoding scheme without using the basis θ. Concretely, consider
encoding a message m as an error-correcting codeword c = [c1, . . . , ct]. We can write the individual
symbols as computational basis states |ci⟩. Next, we replace some of these computational basis states
with random Fourier basis states and keep the description of the replacements as the verification key:

Encoding = |c1⟩ ⊗ |c2⟩ ⊗ QFT |r1⟩ ⊗ |c4⟩ ⊗ QFT |r2⟩ ⊗ . . .
vk = ∗ ∗ r1 ∗ r2 . . .

(1.2)

A computational basis measurement of this state consists of many parts ci of the codeword mixed with
a few random errors in the replaced positions. If the number of replacements is within the error-correction
capability of the code, the message m can be recovered. On the other hand, individually measuring

2We call this adaptive certified deletion. We also define an incomparable, “no-signaling” definition in Part II and construct a
scheme satisfying it. This overview focuses on the more technically involved construction for adaptive security.

5

each position in the Fourier basis destroys the codeword if it was a computational basis position, or can
be checked by comparing it to the verification key if it was a Fourier basis position. For certain error
correcting codes, if the encoding is divided up into appropriate chunks which are individually deleted
(since the whole state together reveals m), we can hope that this destroys m.

Although we prove certified deletion only for our specific construction, we believe this technique is
also secure for a more general setting. Informally, we use three properties to show security: (1) any set
of symbols below the reconstruction threshold look uniformly random, (2) individual symbols ci can be
reverse-sampled from the other symbols, and (3) the reverse-sampling procedure forms a “good” random-
ness extractor (see the next paragraph).

Technique: High-Rate Seedless Randomness Extraction. As part of proving certified deletion in the
polynomial error-correcting code, we need to introduce a new way to extract large amounts of entropy
from deleted shares. Previous works also used a seedless extractor in their analysis, but use a large entropy
source to extract just a single bit of randomness. For secret sharing, we need a more efficient solution.

Roughly, in the analysis we will generate a minimal set of shares, then reverse sample the rest to
ensure consistency. After deleting a share, that share has high entropy in the adversary’s view. If the
reverse sampling procedure makes good use of that entropy, then the next share that the adversary steals
will look uniformly random. Since the adversary may delete and steal shares in a 1-to-1 manner, the
extractor/reverse sampler needs to produce (almost) a full share of randomness using the entropy from a
single deleted share.

We show that polynomial interpolation over finite fields is a good randomness extractor for deleted
shares, and that it produces almost the same amount of entropy as the input. Polynomial interpolation is
precisely the reverse sampling procedure for Reed-Solomon codes.

As a further optimization, this result applies to extension fields, e.g. F2n . The quantum Fourier
transform over F2n is simply applying a Hadamard gate to each qubit of the element. This enables us to
remove entanglement in our construction by encoding individual qubits in either the computational basis
or the Hadamard basis.

Constructing Secret Sharing with Certified Deletion. Our construction uses the observation that
Shamir’s polynomial secret sharing also has good error-correcting properties. We instantiate the outline
above by sampling a random polynomial f such that f(0) = s is the secret. Then shares consist of some
number of evaluations of f mixed with a smaller number of Fourier basis states. By carefully tuning the
parameters, we ensure that any k shares are together enough to correct the errors induced by the Fourier
positions, but any k − 1 shares look uniformly random.

See Chapter 11 for a more detailed overview.

1.2.3 Part III: Signatures and NIZKs with Certified Deniability

Certified deniability is a new, application-independent paradigm for deletion. Intuitively, it realizes the
comprehensive notion that

Once the adversary deletes the cryptographic object, it looks as if they never received it in
the first place.

We formalize this for signatures by requiring that there is a simulator which does not receive any signa-
tures, but which can simulate the final view of an adversary who does receive a signature then deletes it.

6

In the quantum random oracle model (QROM), the simulator is further restricted to not be able to choose
the random oracle, similar to the classical notion of deniability [Pas03].3

Deniability versus Deletion. In certified deniability, we propose a fundamentally new paradigm from
prior works on certified deletion. Previously, certified deletion was defined by identifying specific abilities
the adversary obtains from the encoded data – for example, the ability to evaluate an obfuscated program
– then specifically disallowing that ability after the encoded information (e.g. the program) is certifiably
deleted. Unfortunately, tailoring certified deletion to each application in this way can miss strategies that
are not explicitly disallowed, but still give an undesirable result. For example [MPY24]’s construction
of revocable signatures disallows an adversary who receives a signature from outputting both a valid
certificate and a valid signature. One might hope that this prevents the adversary Bob from proving that
the signer Alice signed something after deleting her signature. However, we show in Part III that Bob
could still provide irrefutable evidence of what Alice signed, even after producing a valid certificate.

In contrast, certified deniability ensures that anything that could be learned using a deleted signature
could be learned without it. This immediately rules out evidence collection attacks due to signature
unforgeability, as well as other attacks that are not explicitly considered by the definition.

We emphasize that the simulator-based definition does not specifically use any properties of signatures.
In principle, certified deniability could be applied to any cryptographic primitive with little modification.

Challenge: Non-Programmability. The main barrier to achieving certified deniability in the QROM is
the restriction that the simulator cannot choose the random oracle. Traditionally, achieving simulation for
one-round protocols, such as in non-interactive zero-knowledge arguments, requires choosing the random
oracle’s behavior at certain inputs. Classically, any simulator which internally used a different random
oracle H ′ would produce a view that does not line up with the real random oracle H , rendering it imme-
diately distinguishable from a real adversary’s view. In fact, Pass [Pas03] uses this observation to show
that non-interactive zero knowledge is impossible classically, even in the random oracle model. A similar
proof works for deniable signatures in the classical setting.

Technique: Forgetful Local Reprogramming. We use uniquely quantum phenomena to bypass Pass’s
impossibility. Intuitively, we will use ideas previously developed for certified deletion to force the adver-
sary to “forget” the points x where it evaluated the random oracle on. For example, we could prepare a
subspace state and coherently evaluate the random oracle H to obtain∑

x∈S
|x⟩ ⊗ |H(x)⟩

If the adversary returns the whole state, it must have forgotten every x ∈ S. Therefore it must also forget
the behavior of the random oracle on x. So even if the simulator internally uses a false random oracle
H ′ with H ′(x) ̸= H(x) (over x ∈ S) to run the adversary on

∑
x∈S |x⟩ ⊗ |H ′(x)⟩, the adversary’s final

output looks as though it actually accessed the correct oracle H , since they are forced to forget how the
oracle behaved on x ∈ S.

Constructing Signatures and NIZKs. To construct signatures with certified deniability, we sign the
message in superposition using the randomness H(x) under a carefully chosen signature scheme:∑

x∈S
|x⟩ ⊗ |Signk(m;H(x))⟩

3See Chapter 19 for a more detailed justification of this restriction.

7

Fiat-Shamir signatures have the useful property that they can be simulated, without a real signature, if one
controls the random oracle H . So the simulator can apply the forgetful local reprogramming technique
to locally simulate a signature

∑
x∈S |x⟩ ⊗ |Signk(m;H ′(x))⟩ using a chosen H ′, while ensuring that its

usage of H ′ instead of H goes undetected in the final view.
NIZKs with certified deniability can also be constructed using essentially the same idea. See Chap-

ter 19 for a more detailed overview.

8

Chapter 2

Preliminaries

We begin with a few preliminary definitions that will be useful across all of the works presented. Individual
parts will also have their own preliminary sections that cover topics directly relevant to them. Unless
otherwise noted, all hardness assumptions are against quantum adversaries.

2.1 General Notation

F denotes a generic field. F2 = {0, 1} denotes the binary field. Vectors x are denoted by bold font. ei
denotes the i’th standard basis vector which is 1 at index i and 0 elsewhere.

2.2 Cryptographic Notation

The security parameter is λ. Occasionally we will use n to represent a general parameter; it may be as-
signed as λ, but this is not necessary. A function µ(λ) : N→ [0, 1] is negligible if µ(λ) = o(1/p(λ)) for
all polynomials p. negl(λ) denotes a generic negligible function. Two distributionsD0 andD1 are compu-
tationally indistinguishable, denoted asD0 ≈c D1, if for all quantum polynomial time (QPT) algorithms
Adv, Adv cannot distinguish between samples from D0 and D1 with better than negl(λ) advantage:

|Pr[Adv(d0) : d0 ← D0]− Pr[Adv(d1) : d1 ← D1]| = negl(λ)

D0 and D1 are statistically indistinguishable, denoted as D0 ≈s D1 if this holds against algorithms
running in arbitrary time and space (referred to as “unbounded” algorithms). When we wish for a finer-
grained treatment, we say that D0 and D1 are computationally ϵ-indistinguishable, denoted by D0 ≈ϵ

c

D1, if the advantage is instead bounded by ϵ.
A distribution D(·) is semantically hiding if for every m0 and m1, D(m0) ≈c D(m1).

2.3 Quantum Computation

General Quantum Computation. A register X is associated with a Hilbert space H and contains
quantum states. An n-qubit quantum state exists in the Hilbert space H = (C2)⊗n. A pure state |ψ⟩ ∈
(C2)⊗n can be represented as a linear combination of the standard basis vectors {|x⟩ : x ∈ {0, 1}n} with
unit length. A mixed state ρ represents a probability distribution over pure states; it can be represented
as the density matrix

∑
i |ψi⟩ ⟨ψi|. Here, ⟨ψ| = |ψ⟩†. More generally, we will also consider qdits, which

9

are quantum states over a larger alphabet. For any set S, an S-qudit lies in the Hilbert space C|S| with
standard basis {|x⟩ : x ∈ S}. |x⟩X denotes a quantum state |x⟩ stored in register X .

A quantum operation F is a completely-positive trace-preserving (CPTP) map from a register X to
a register Y . We denote that an operation U is applied to register X by UX . When applying the operation
UX ⊗ IY , which acts as the identity on register Y , we often omit the identity operator and just write UX .
The most common type of operation is a unitary operation, which is an operation U : X → X such that
UU † = I is the identity operation. Unitaries can therefore be inverted by applying U †.

Another common operation is a measurement. A projector Π : X → X is a quantum operation such
that ΠΠ = Π. A projective measurement (PVM) is a set of mutually orthogonal projectors {Πx : x ∈ S}
such that

∑
x∈S Πx = I . S is the set of measurement outcomes and Πx is associated with result x. The

probability of obtaining outcome x ∈ S when measuring a state ρ is Tr[ΠxρΠx].
The fidelity of two pure states |ψ⟩ and |ϕ⟩ is | ⟨ψ|ϕ⟩ |2. It represents the similarity between |ψ⟩ and

|ϕ⟩. Trace distance is a notion of distance between two quantum states ρ and σ.

TD[ρ, σ] :=
1

2
Tr

(√
(ρ− σ)†(ρ− σ)

)
The trace distance upper bounds the probability of any (unbounded) algorithm distinguishing between ρ
and σ. In the case of pure states |ψ⟩ and |ϕ⟩, the trace distance can be represented in terms of the fidelity:

TD[|ψ⟩ , |ϕ⟩] =
√
1− | ⟨ψ|ϕ⟩ |2

Quantum states may also be represented in other bases. Common bases for a single qubit are the
computational basis {|0⟩ , |1⟩} and the Hadamard basis {|+⟩ , |−⟩}, where

|+⟩ = 1√
2
(|0⟩+ |1⟩) , |−⟩ = 1√

2
(|0⟩ − |1⟩)

The Hadamard transformation H maps between the computational and Hadamard basis: H |0⟩ = |+⟩
and H |1⟩ = |−⟩.

The Pauli operators are a set of 3 unitariesX , Y , and Z, whereX maps |b⟩ 7→ |1− b⟩ for b ∈ {0, 1},
Z maps H |b⟩ 7→ H |1− b⟩ for b ∈ {0, 1}, and Y = iXZ.

A non-uniform quantum polynomial-time (QPT) algorithm consists of an unitary U which can be
implemented in polynomial time and a register A containing a non-uniform quantum state. On input a
quantum state contained in register X , it outputs U(X ⊗ A). In the case where the input contained in X
depends in some way on the auxiliary state contained in A, the contents of X and A may be entangled.

Lemma 2.3.1 (Gentle Measurement Lemma [Win99, CMSZ22]). Let ρ be a quantum state in some Hilbert
space, and let {Π, I − Π} be a projective measurement that acts on that Hilbert space. Also, let (ρ,Π)
satisfy: Tr(Πρ) ≥ 1− δ.

Next, let ρ′ be the state that results from applying {Π, I −Π} to ρ and post-selecting on obtaining the
first outcome:

ρ′ =
ΠρΠ

Tr(Πρ)

Then TD(ρ, ρ′) ≤ 2
√
δ.

10

Subspace States. For any subspace A ⊂ Fn
2 , the subspace state |A⟩ for A is

|A⟩ :∝
∑
a∈A
|a⟩

A useful fact about subspace states is that applying a Hadamard transform to |A⟩ results in a subspace
state over the dual A⊥ = {x ∈ Fn

2 : x · a = 0 ∀a ∈ A}:

H⊗n |A⟩ = |A⊥⟩ ∝
∑
x∈A⊥

|x⟩

Aaronson and Christiano [AC12a] show that the projector onto |A⟩ can be implemented using queries
to membership oracles OA and OA⊥ that decide the query’s membership in A (respectively, A⊥).

Lemma 2.3.2 ([AC12a]). LetA ⊂ Fn
2 be a subspace. Let ΠA =

∑
a∈A |a⟩ ⟨a| and ΠA⊥ =

∑
a∈A⊥ |a⟩ ⟨a|

be projectors onto the space spanned by elements of A and A⊥, respectively. Then

H⊗nΠA⊥H⊗nΠA = |A⟩ ⟨A|

Ben-David and Sattath show that given a random subspace state of appropriate dimension, it is hard
to find a vector v1 ∈ A\{0} together with a vector v2 ∈ A⊥\{0}, even when given oracle access OA and
OA⊥ .

Lemma 2.3.3 ([BS23]). Let A ⊂ {0, 1}λ be a random subspace of dimension λ/2 and let ϵ > 0 be
such that 1/ϵ = o(2λ/2). Given one copy of |A⟩ and oracle access to OA and OA⊥ , any adversary who
produces v1 ∈ A\{0} together with v2 ∈ A⊥\{0} with probability ϵ requires Ω(

√
ϵ2λ/2) queries.

It is also useful to consider coset states, which are formed by applying Pauli X and Z operations to
subspace states:

|Sx,z⟩ := XxZz |S⟩ ∝
∑
s∈S

(−1)s·z |s+ x⟩

They can also be thought of as superpositions over a coset S + x in the computational basis and S⊥ + z
in the Hadamard basis. In fact, applying the Hadmard transform to a coset state gives the dual coset state:

H⊗n |Sx,z⟩ = |S⊥z,x⟩

11

12

Part I

Obfuscation with Certified Deletion

13

In this part, we show how to verifiably delete programs. As mentioned previously, the ability to delete
programs could be very useful for preventing piracy in program rentals. Ideally, we would like to design a
protocol where a developer Alice could lease her software to a client Bob by shipping a copy to him. Bob
can evaluate the software freely on any input he wants, while Alice charges him monthly for a subscription
fee. Once Bob is done using the software, he can produce a deletion certificate which guarantees that he
deleted his local copy of the program. At this point, Alice can rest assured that Bob is no longer in
possession of the software, and she can stop charging him. In case of a dispute, the deletion certificate
will unequivocally determine which of the two parties misbehaved.

We refer to this notion as obfuscation with certified deletion. Although a-priori it is not clear that this
notion has anything to do with program obfuscation, we argue that the two are in fact intimately connected.
After all, if Bob was able to learn Alice’s software from its description, then there would really be no way
to erase Bob’s knowledge after the fact.

15

16

Chapter 3

Results

As our main result, we define and construct obfuscation with certified deletion. We take inspiration from
the classical notion of differing inputs obfuscation (diO) [BGI+01] to define differing inputs obfuscation
with certified deletion (diO-CD). Loosely speaking, diO-CD satisfies the standard notion of differing in-
puts obfuscation, in addition to the following certified deletion property: Let Π0 and Π1 two programs
that differ on one input y∗ (or a polynomial number of hard to find inputs), then it is hard to distinguish
an obfuscation of Π0 from an obfuscation of Π1, even given a differing input y∗, provided that the distin-
guisher outputs the deletion certificate first. Intuitively, this formalizes the guarantee that, after deleting a
program, one can no longer evaluate it on any input (more discussion on this later).

Theorem 3.0.1 ((Informal)). Assuming indistinguishability obfuscation and injective one-way functions,
there exists diO-CD for all differing inputs circuits families with a polynomial number of differing inputs.

As our main technical tool, we develop a technique for deleting coset states [VZ21, CLLZ21a].
Crucially, our technique allows for repeated access to partial information about the data, followed by
information-theoretic deletion of whatever is left.

To demonstrate the usefulness of our newly developed tools, we show how they enable new appli-
cations in quantum cryptography, and in some cases they allow us to make progress on important open
problems:

• Secure Software Leasing. As an immediate corollary of differing inputs obfuscation with certified
deletion, we obtain a strong notion of secure software leasing for every differing inputs circuits
family. Whereas the standard notion guarantees that the honest evaluation procedure fails for pirated
copies of software, this strong notion guarantees security against arbitrary evaluation procedures.

• Functional encryption. We obtain two flavors of functional encryption with certified deletion: (i)
one where ciphertexts can be certifiably deleted, and (ii) one where secret keys can be certifiably
deleted (also known as key revocation or secure key leasing). The former assumes sub-exponential
diO-CD and one-way functions. The latter follows from combining diO-CD with post-quantum
public-key encryption and injective one-way functions. Functional encryption with key revocation
is the only result from this section with a computational certified deletion guarantee. This is inherent
in the primitive, as key revocation only emulates the case where a secret key was never received.

• Public verification. We develop a generic compiler that results in a variety of primitives with
publicly verifiable certified deletion, assuming post-quantum indistinguishability obfuscation.

17

18

Chapter 4

Technical Overview

4.1 Warm-Up Example

We illustrate the challenges and the techniques that we introduce in this work via a toy example. Namely,
we will start from the, by now standard, notion of encryption with certified deletion and highlight the bar-
riers that one encounters when trying to reveal some partial information about the plaintext. Specifically,
we will try to build obfuscation with certified deletion starting from the latter.

Public-key encryption with certified deletion. We recall the basic notion of public-key encryption
with certified deletion, and describe a recent construction due to [BK23] based on Wiesner encodings /
BB84 states [Wie83, BB84]. For describing these states, we use the notation |x⟩θ, where x ∈ {0, 1}n is
a string of bits, and θ ∈ {0, 1}n is a string of basis choices. Let Enc be the encryption algorithm for a
post-quantum public-key encryption scheme. Then to encrypt a bit b, sample x, θ ← {0, 1}n, and release

|x⟩θ ,Enc

θ, b⊕ ⊕
i:θi=0

xi

 .

To delete, measure |x⟩θ in the Hadamard basis to obtain a string x′. This verifies as a valid deletion
certificate if x′i = xi for all i : θi = 1. [BK23] show that since Enc is semantically secure and thus hides
the choice of θ, any computationally-bounded adversary that produces a valid deletion certificate must
have (essentially) measured most of the qubits in the Hadamard basis, erasing enough information about
{xi}i:θi=0 to claim that b is now statistically hidden.

Obfuscation and malleability. One nice property of the above scheme is that it can be decrypted classi-
cally after measuring |x⟩θ in the computational basis. This suggests a natural construction for obfuscation
with certified deletion. First, encrypt (with certified deletion) the description of the circuit C. Then, ob-
fuscate the classical program that does the following: given a circuit input, the secret key, and a classical
measurement outcome obtained from the ciphertext encrypting C, recover the description of C, and then
evaluate it on the input.

Unfortunately, such a construction does not even satisfy indistinguishability obfuscation (let alone any
certified deletion guarantee). The issue is that the encryption scheme is clearly malleable: An adversary
only has to guess a single index i where θi = 0 in order to flip the message bit. Let’s imagine an adversary
that can maul the ciphertext to delete a single gate. It tries to distinguish an obfuscation of C0 from one
of C1, where C0 and C1 are built from the same base circuit except that C0 appends an identity gate and

19

C1 appends two consecutive NOT gates. This adversary can attempt to remove the last gate in the circuit.
If this flips the output, the gate must have been C1. This simple mauling capability therefore violates
indistinguishability obfuscation (even before deletion). Under more sophisticated mauling attacks, it may
even be possible to recover the whole circuit from the obfuscation!

Ciphertext validity check. A simple idea to overcome this issue is to enable the classically obfuscated
program to check that the ciphertext has not been tampered with. Say the adversary provides y to the
obfuscated program as the alleged measurement of |x⟩θ. To verify that the ciphertext is intact, the program
only needs to verify that yi = xi whenever θi = 0. This can be done using a hard-coded x and θ.
Otherwise, it can output ⊥.

Unfortunately, the encryption scheme becomes completely insecure in the presence of such a program.
An adversary can learn a description of θ one bit at a time, by flipping a bit of its state |x⟩θ and observing
whether the program returns a successful evaluation or rejects. Once it learns θ, we cannot hope for any
certified deletion guarantees. Moreover, the adversary can make additional queries to learn {xi}i:θi=0,
and, eventually, the circuit C.

Subspace coset states. Fortunately, there is a way to get around the problem that BB84 states are learn-
able in this sense. Prior work (for example, in the setting of publicly-verifiable quantum money) has
switched to using entangled subspace states [AC12b] and the more-general subspace coset states. A sub-
space coset state is defined by a subspace S of Fn

2 and two vectors x, z ∈ Fn
2 , and is written as

|Sx,z⟩ :=
1√
|S|

∑
x′∈S+x

(−1)z·x′ |x′⟩ .

It is useful to think of BB84 states as a type of subspace coset state in which the subspace is spanned by the
standard basis vectors {ei}i:θi=1. The coset in the primal space is determined by the bits {xi}i:θi=0, which
are used to hide the plaintext bit b, and the coset in the dual space is determined by the bits {xi}i:θi=1,
which determine what constitutes a valid deletion certificate.

Thus, in an attempt to make the obfuscation scheme secure, we replace the use of BB84 states with
more-general subspace coset states. To encrypt each bit b of the description of the circuit, consider a
ciphertext of the form

|Sx,z⟩ , Enc(S, r, b⊕ (x · r)),

where we set S to be a random n/2-dimensional subspace, and a valid deletion certificate is now any
vector z′ ∈ S⊥ + z. The decryption algorithm, on input a vector x′ and ciphertext ct, will decrypt ct
to obtain (S, r, b̃), compute a canonical coset representative of S + x′, and use this resulting vector to
unmask b.

Additionally, it is possible to check whether x′ has been tampered with by verifying that x′ ∈ S + x.
It is even possible to publish an oracle for this consistency check, without leaking S and x [CLLZ21a].
However, proving that the consistency oracle does not compromise the certified deletion security of the
encryption scheme requires new ideas, and is a main technical contribution of this work.

Noisy consistency check. In order to carry out this consistency check, the obfuscated program must
have S and x hard-coded. Unfortunately, the obfuscation only hides S and x computationally. After
deletion, an unbounded adversary could learn x, r, and b̃⊕ (x · r), which reveals b.

To information-theoretically protect b after deletion, we will instead sample a random superspace of S
called T and hard-code the coset T + x̃ that contains S + x. We set dim(T) = 3λ/4 as a happy medium,

20

which has two nice properties. First, since T is a negligible fraction of Fλ
2 , it is hard for an adversary to

find a vector in T + x̃\S+x, so the consistency check will be essentially as good as using S+x. Second,
since S is a negligible fraction of T , T + x̃ statistically hides enough information about x that x · r is
uniformly random, even given T + x̃. Therefore we can hope to get information-theoretic deletion.

4.2 Coset Framework

Before describing our main certified deletion theorem, we discuss some tools which we develop to help
analyze coset states. The first tool is a new canonical representative CanS(x) for cosets S + x which
has more algebraic structure. Previously, [CLLZ21b] defined canonical representatives lexicographically,
which lacks any sort of algebraic structure. The algebraic structure of our coset representatives allows a
more flexible and sophisticated approach.

As a second tool, we also show a method to delay the preparation of a coset state |Sx,z⟩ using EPR
pairs, similarly to a technique used to analyze BB84 states [BB84].

Complementary Representatives. We define the canonical representative CanS(x) of a coset S + x
using a complementary subspace C ⊂ Fn

2 to S. In other words, C ∩ S = {0} and Span(S,C) = Fn
2 . A

useful fact about complementary subspaces is that any vector x ∈ Fn
2 can be uniquely decomposed as the

sum of an element of S and an element of C, say x = xS + xC . We define

CanS,C(x) := xC

There are many possible choices of C for each S. Making matters more complicated, S⊥ may not be
complementary to S since the vector space is over a finite field. To simplify matters, we consider the
description of S to also specify C, enabling the notation CanS(x).

Properties of the Representatives. An initial observation is that the set of canonical representatives
{CanS(x) : x ∈ Fn

2} is precisely C. Due to this, CanS(·) is homomorphic, i.e. CanS(x) + CanS(z) =
CanS(x+ z). The space C is also isomorphic to the quotient group Fn

2/S = {S + x : x ∈ Fn
2}.

There are two more sophisticated properties that will also be useful in our analysis of certified deletion.
These properties deal with how CanS(·) behaves when altering the space that S lies within.

• Embedding. If we increase the size of the space by adjoining some C ′ to C — for example to move
from Fn

2 to F2n
2 — then the canonical representative of S + x with respect to Span(C,C ′) does not

change from CanS(x). In fact, for any c′ ∈ C ′, the canonical representative of S + (x+ c′) in the
expanded space is simply

CanS,Span(C,C′)(x+ c′) = CanS,C(x) + c′

• Rerandomization. CanS(·) behaves particularly simply under rerandomization of the space Fn
2

by a change-of-basis M . M maps any coset S + x to MS + Mx and maps C to MC. If we
are given the canonical representative before the rerandomization, we can compute the canonical
representative of the rerandomized coset as

CanMS(Mx) =MCanS(x)

21

Delayed Preparation of Coset States. Historically, the ability to delay the preparation of BB84 states
has been quite useful. It allows a sender to send some BB84 states to a receiver, then decide the basis
later. Accordingly, the receiver’s behavior must be independent of the chosen basis.

We show how to perform a similar trick for coset states. First, the sender prepares some number
of EPR pairs

∑
v∈Fn

2
|v⟩S ⊗ |v⟩R and sends R to the receiver. It keeps the sender register S. Later, it

can choose a subspace S ⊂ Fn
2 and measure S to obtain x and z, which collapses the receiver’s state

to the coset state |Sx,z⟩. Specifically, it computes CanS(·) on register S in the computational basis and
measures the result, then computes CanS⊥(·) on register S in the Hadamard basis and measures the result
(the order of these does not matter). This technique actually works for any definition of canonical coset
representatives.

4.3 Certified Deletion for Coset States

Next, we describe the general compiler for deleting coset states. First, consider a simple template for
certified deletion: to hide a bit b, we give the adversary the following state:

|Sx,r⟩ and Z(S, r, b⊕ (CanS(x) · r)),

where |Sx,z⟩ is a random subspace coset state and Z is some side information, which may be classical. Z
will often represent the primitive to which we are adding a certified deletion guarantee.

To prove deletion, measure the subspace coset state in the Hadamard basis to get a vector z′ ∈ S⊥+z.
If done honestly, this destroys essentially all information about x and removes b from their view. We will
hope to prove that any strategy an (efficient) adversary uses to obtain a z′ ∈ S⊥ + z will also statistically
remove b from their view.

[BK23] showed how to prove this when Z satisfies semantic security with respect to S and S is
the span of standard basis vectors. However, as discussed previously, we want to use more information
about x in our primitives. For example, to do the noisy check, Z might output a random super-coset
T + x̃ ⊃ S+x. Unfortunately, revealing T means Z cannot semantically hide S,1 so [BK23]’s proof falls
short.

Conditions forZ . We show more flexible conditions forZ under which we can obtain certified deletion.
Specifically, consider Z(S, T + x̃, S⊥ + z, r, b̃), which can depend on information about x and z. The
notion of hiding we need from Z is inspired by [CLLZ21b]’s application of subspace-hiding [Zha19b] to
cosets. Roughly, a distribution D is coset-hiding if D(S + x) cannot be distinguished from a simulated
distribution Sim(W + x′) which depends only on a random super-coset W + x′ ⊃ S + x.

With coset-hiding defined, we can state the result. We show that if Z semantically hides its first input
S and coset-hides its third input S⊥ + z – that is, it can be simulated using only (T + x̃, R⊥ + ṽz, r, b̃) –
then the following experiment information-theoretically hides the encoded bit b:

1. Initialize the adversary with

|Sx,r⟩ and Z(S, T + x̃, S⊥ + z, r, b⊕ (CanS(x) · r))

where T + x̃ is a random super-coset of S + x.

2. Receive a certificate cert from the adversary. If cert ∈ S⊥ + z, then output the adversary’s view.
Otherwise, output ⊥.

1At least, not obviously. See the discussion later in this section.

22

Since the experiment outputs ⊥ whenever the adversary outputs an invalid certificate, the output of the
experiment only carries whatever information they can keep while also outputting a valid certificate.

Proof Overview: Dealing with T + x̃. We divide the proof into two parts: one where the primal super-
coset T + x̃ appears in Z , and another where the dual coset S⊥ + z appears.2 We begin by discussing the
approach to dealing with T + x̃, i.e. a certified deletion theorem for Z(S, T + x̃, r, b̃).

We will reduce to a certified deletion theorem for cosets where the side information Z ′ depends only
on (S, r, b̃), but not on T+x̃. This is similar to [BK23]’s result, but we can also begin with the the theorem
for dual-coset leakage to get a final result that incorporates both T + x̃ and S⊥ + z.

The apparent difficulty is how to incorporate T + x̃ into Z without receiving any information about
T or x̃ from Z ′(S, r, b̃). To solve this, we actually start with the original certified deletion theorem over
a smaller space F3λ/4

2 , then embed the whole space inside Fλ
2 . Next, we rerandomize the whole space

under a change-of-basis M , which maps F3λ/4
2 to a random subspace T that contains the re-randomized

space MS. At this point, we can sample a random x̃ and be assured that T + x̃ ⊃ S + (Mx + x̃) since
S +Mx ⊂ T .

The rest of the challenge |Sx,z⟩ and Z ′(S, r, b̃) can now be doctored to match the rerandomized cosets
T + x̃ and S + (Mx + x̃). First, we can use M and x̃ to modify |Sx,z⟩ into |(MS)Mx+x̃,z′⟩ matching
S + (Mx+ x̃). Then, by using the embedding and rerandomization properties of CanS(·), we can doctor
r and b̃ so that (|(MS)Mx+x̃,z′⟩ ,MS, T + x̃, r′, b̃′) encodes the same bit as before. This is enough to
construct Z(MS,T + x̃, r′, b̃′)), so any adversary breaking the expanded encoding (which matches the
statement we want to prove) also breaks the original certified deletion theorem.

Proof Overview: Dealing with S⊥ + z. Next, we discuss how to deal with S⊥ + z appearing the side-
information (without T + x̃. We first claim that the side-information Z(S, S⊥ + z, r, b ⊕ (CanS(x) · r)
statistically hides b. This includes no information about x, and b is masked by (CanS(x) · r. Due to the
homomorphism of CanS(·), this is a random bit with overwhelming probability over r.

Of course, the adversary’s view also includes |Sx,z⟩. Together the coset state and Z computationally
determine b. We will show that any adversary producing cert ∈ S⊥ + z essentially must have completely
measured |Sx,z⟩ in the Hadamard basis, destroying all information about x and thereby b.3

To show this, instead of directly sampling S, x, and z and giving the adversary |Sx,z⟩, we delay its
preparation using the approach described previously. This results in the challenger and adversary sharing
EPR pairs

∑
v |v⟩

C ⊗ |v⟩R. If the adversary were truly to collapse their half to H⊗λ |cert⟩, then the
challenger’s half would collapse to the same. This is efficiently testable using register C, so the probability
of it occurring is the same even if we utilize the coset-hiding properties of Z to switch S⊥+z for R⊥+ z̃.
Finally, we observe that the certificate check cert ∈ S⊥+z can be replaced by checking that C is supported
on basis vectors z′ where (cert− z′) ∈ S⊥. We can show that if z′ where not cert, then the probability of
this check passing is negligible, by considering the primal spaces S and R = (R⊥)⊥. S is sampled after
cert by adjoining λ/4 random vectors si to R. If (cert − z′) ∈ S⊥, then (cert − z′) · si = 0. However,
this occurs independently for each si with 1/2 probability, so the probability of it holding for all of them
is negligible.

2It is possible to do these together, but dividing them brings some additional insights.
3This is a much stronger property than shown in [BK23], which only guarantees that most of the qubits were measured in the

Hadamard basis.

23

4.4 Discussion

To gain some context, it is useful to zoom out from our main theorem, and compare our proof technique
with existing works. As we shall see shortly, our settings require new proof techniques and cannot be
framed as a special case of existing theorems.

New techniques for subspace coset states. While the previous section provides intuition, our actual
proof is trickier and requires new techniques. Essentially, facts that are obvious for continuous vector
spaces are sometimes false or difficult to formalize for discrete vector spaces. We develop new techniques
for working with subspace cosets, including an algorithm for delayed preparation of subspace coset states.
Chapter 6 presents these results.

Our first contribution is to define a canonical representative CanS(·) whose image is isomorphic to
Fn
2/S and is a subspace of Fn

2 . This improves on prior work, [CLLZ21a], which defined a set of canonical
coset representatives that was not necessarily a group. The algebraic structure of CanS(·) allows us to
prove more-sophisticated claims than what was possible with [CLLZ21a]’s coset representatives. Our
second contribution is to develop a toolkit for proving such claims.

Our third contribution is an algorithm for delayed preparation of subspace coset states. This formalizes
the intuition that the adversary’s behavior on a random coset state |Sx,z⟩ is independent of S, since S can
be chosen after the adversary acts. This also forces a degree of independence from x and z, since the
choice of S influences those heavily.

Why monogamy-of-entanglement techniques fail. Prior works [CLLZ21a, Shm22] that dealt with
subspace coset states relied on monogamy-of-entanglement (MoE) theorems, but these theorems fail to
achieve the strong guarantees needed in our setting.

First, monogamy of entanglement is an information-theoretic property, and it does not necessarily hold
if the adversary receives a computationally-secure encryption of the subspace S. We note that a recent
work [AKL23] does use a MoE property to establish a certified deletion property, but crucially only in the
information-theoretic one-time-pad encryption setting.

Next, MoE claims in prior work do not seem to easily extend to rule out the possibility that Bob
outputs the string x, and Charlie simultaneously outputs the parity of x with non-negligible advantage. If
this were possible, then even when one player produces a valid deletion certificate, the other player might
learn a bit of data with non-negligible advantage, which would violate certified deletion security.

Why non-committing encryption techniques fail. Recall that we would like to eventually prove information-
theoretic deletion of a secret that is initially information-theoretically determined by the adversary’s view.
Prior works (e.g., [AK21]) used receiver non-committing encryption schemes which have an “equivocal-
ity” property, allowing one to sample the fake keys after S is revealed. These were inherently limited to
proving weaker forms of security; e.g., restricted to (computational) security against key-leakage attacks.
Furthermore, equivocality is hard to achieve [KTZ13] for applications such as blind delegation, which
involves FHE. Another setting where an equivocality-based approach fails is differing-inputs obfuscation.
The choice of whether to behave as C0 or C1 is “hidden” under the differing inputs. Thus, the differing
inputs act as a key to decrypt S, which reveals this choice bit. However, any differing input (i.e. key) y∗

is easy to check by simply evaluating the two programs C0 and C1 on y∗, allowing fake keys to be im-
mediately recognized. While [BK23] developed methods to overcome the equivocality issue for certified
deletion, they only apply their techniques to settings where the subspace S is semantically hidden.

24

4.5 Obfuscation and Applications

We now describe how to obtain several applications with certified deletion from certified deletion of coset
states, including our main application of obfuscation. As a first result, the certified deletion theorem
where Z depends on S⊥ + z easily yields encryption with publicly verifiable certified deletion. The
construction is essentially the same as in [BK23], but the more flexible Z allows additionally publishing
an indistinguishability obfuscation of a membership program for S⊥+ z. This idea can also be applied to
the rest of the results in this section.

Obfuscation. As outlined previously, the general structure of the construction is to encrypt the circuit C
under a random coset S+x of the subspace S. Suppose for a moment that we can simultaneously hide all
bits of C with a single vector x. To use the noisy consistency check, we will sample a uniform superspace
T + x̃ of S+x. Then, we will hard-code S and T + x̃ into a classical program P [S, T, x̃, C+CanS(x)] to
be obfuscated. PS, T, x̃, C + CanS(x)] takes as input a vector v (which should be in S + x) and a string
a to be evaluated. It checks that v ∈ T + x̃, then computes CanS(v), uses it to unmasks C, and finally
computes and outputs C(a). If v /∈ T + x̃, it aborts. Then, the construction is

|Sx,z⟩ ,Obf(P [S, T, x̃, C + CanS(x)])

To argue security, we would like to switch an obfuscation ofC0 to an obfuscation ofC1, and argue that
this switch is statistically indistinguishable to an adversary that produces a successful deletion certificate.
Our main theorem provides a way to obtain such statistical guarantees, but it only handles statistically
hiding a single bit. Thus, we must perform a hybrid argument over the bits of the descriptions of the cir-
cuits. We cannot do this naively, since descriptions of circuits “in between” C0 and C1 are not guaranteed
to be functionally equivalent to C0 and C1. Instead, we make use of the two-slot technique [NY90], and
we defer details of this to the technical sections.

The above describes the main intuition and techniques that allow us to hide functionality, while still
allowing for certified deletion. In the body of the paper, we also derive the following related results and
applications.

Strong Secure Software Leasing. Secure software leasing is defined with respect to a family of pro-
grams [AL21]. The adversary is given a leased program randomly chosen from this family and outputs
two programs. If one of the programs is authenticated, then the other cannot be evaluated using the honest
evaluation procedure.

We observe that any differing inputs program family can be securely leased by obfuscating it with
certified deletion. A differing inputs program family contains pairs of programs (C0, C1) such that given
a random pair, it is hard to find an input y∗ where C0(y

∗) ̸= C1(y
∗). If an obfuscation of C0 is returned

to the lessor who then generates a valid deletion certificate, then the residual state cannot be used to
distinguish whether the program was C0 or C1, even given a differing input y∗. In particular, the adversary
that returned the program cannot later evaluate a pirated copy of it on y∗ - otherwise they could check
which program matched the output. Therefore, a leased program can be validated by attempting to delete
it and checking the deletion certificate.

We emphasize that this guarantee is stronger than the original notion of secure software leasing, which
permits the adversary to evaluate a pirated (i.e. unauthenticated) program as long as they do not use
the honest evaluation procedure. In our definition, security is guaranteed even if the adversary uses an
arbitrary evaluation procedure after returning a valid copy of the program.

25

Since we construct obfuscation with certified deletion for a polynomial number of differing inputs, we
immediately obtain (strong) secure software leasing for differing inputs program families with a polyno-
mial number of differing inputs. Existing impossibility results for secure software leasing [AL21, AK22]
rule out secure software leasing for families containing programs which cannot be learned with black-box
query access, but can be learned using non-black-box access to any functionally equivalent program. In
contrast, a differing inputs program family contains programs which cannot be learned, even with non-
black-box access to an obfuscation of the program.

Functional Encryption with Key Revocation. To substantiate the usefulness of our definition, we show
that our obfuscation scheme allows a simple and intuitive construction of public-key encryption, and even
functional encryption, with key revocation. Moreover, our key revocation guarantee is publicly-verifiable.
In key revocation, one or more secret keys are temporarily distributed to users. Later on, if the users
comply with the revocation process, these keys are deleted and cannot be used to decrypt freshly generated
ciphertexts [AKN+23, APV23].4

Our construction is essentially the same as the transformation from obfuscation to functional encryp-
tion given in [GGH+13], but our obfuscation scheme supports certified deletion. We describe a simplified
version of their construction here. The secret key for a function f will be an obfuscated circuit that first
decrypts a classical ciphertext to recover the message m, and then computes and returns f(m). The
encryption of m will use a standard public-key encryption scheme.

The above construction already guarantees that a key skf only reveals information about f(m), by
virtue of being a functional encryption scheme. The certified deletion property additionally ensures that,
if the adversary has a key for f , but deletes it before receiving the challenge ciphertext, then he learns
nothing. In fact, a straightforward reduction to the certified deletion security of the obfuscation scheme
ensures that this is the case even if the adversary has access to other secret keys (security against un-
bounded collusion). We note that a similar technique allows adding publicly-verifiable key revocation to
other encryption schemes, assuming iO.

4This property has also been referred to as secure key leasing.

26

Chapter 5

Preliminaries

5.1 Indistinguishability Obfuscation and Differing Inputs Obfuscation

Here we define two notions of obfuscation: indistinguishability obfuscation (iO) and differing inputs ob-
fuscation (diO). Indistinguishability obfuscation (iO) guarantees that for any two functionally equivalent
circuits, their obfuscations are indistinguishable.

Definition 5.1.1 (Indistinguishability obfuscation). An indistinguishability obfuscator for a class of cir-
cuits {Cλ}λ∈N is a PPT algorithm iO that takes as input a security parameter 1λ and a description of a
circuit C ∈ Cλ and outputs an obfuscated circuit C̃. It should satisfy the following properties.

• Correctness. For all λ ∈ N, all C ∈ Cλ, and all inputs x,

Pr[iO(1λ, C)(x) = C(x)] = 1.

• Security. For all sequences of functionally equivalent circuits {C0,λ, C1,λ}λ∈N and all QPT adver-
saries {Advλ}λ∈N,

|Pr[Advλ(iO(1λ, C0,λ)) = 1]− Pr[Advλ(iO(1
λ, C1,λ)) = 1]| = negl(λ)(λ).

Differing inputs obfuscation is similar to indistinguishability obfuscation, but allows the two circuits
to differ on a set of inputs as long as it is hard to find one of the differing inputs. We recall the definition
of a differing input circuit family from [ABG+13].

Definition 5.1.2 (Differing Inputs Circuits). A circuit family C associated with an efficiently sampleable
distribution D is said to be a differing input circuit family if for every PPT adversary Adv,

Pr[C0(x) ̸= C1(x) : (C0, C1, aux)← D, x← Adv(1λ, C0, C1, aux)] = negl(λ)

If this holds against QPT adversaries, we say it is a post-quantum differing input circuit family. If C0, C1

differ on at most n inputs for all (C0, C1, aux) ← D, we say C is a differing inputs circuit family with n
differing inputs.

In this work, we only consider post-quantum differing input circuit families which differ on either 1 or
polynomially many inputs. We emphasize that aux, which depends on the sampled circuits, is classical.
A QPT adversary may additionally have non-uniform quantum advice |ψAdv⟩. This advice depends only
on the circuit family, not on the sampled circuits, due to the order of the quantifiers. This definition could
be strengthened by allowing aux to be quantum. However, a classical aux suffices for our applications.

27

Definition 5.1.3 (Differing Inputs Obfuscation). An differing inputs obfuscator diO for a differing inputs
circuits family C associated with an efficiently sampleable distribution D over classical strings is a PPT
or QPT algorithm such that:

• Correctness: For all circuits C, Pr[C̃(x) = C(x)∀x : C̃ ← diO(1λ, C)] = 1

• Indistinguishability: For all differing inputs circuit classes and all PPT distinguishers D,∣∣∣∣ Pr[D(C0, C1, aux, C̃) = 1 : C̃ ← diO(1λ, C0)), (C0, C1, aux)← D]
−Pr[D(C0, C1, aux, C̃) = 1 : C̃ ← diO(1λ, C1), (C0, C1, aux)← D]

∣∣∣∣ = negl(λ)

If indistinguishability holds against QPT distinguishers, we say diO is quantum-secure. If this holds and
diO is a PPT algorithm, we instead say it is post-quantum.

[BCP14] show in the classical setting that any indistinguishability obfuscator is also a differing inputs
obfuscator for differing input circuits families with a polynomial number of differing inputs. Their ideas
can be straightforwardly extended to show that this also holds for quantum adversaries, which consist of
a unitary UAdv and quantum advice |ψAdv⟩. Their proof performs a binary search over the input space by
constructing intermediate obfuscations and asking the adversary to distinguish each of them. One may be
concerned that performing a single distinguishing experiment may irreversibly collapse the adversary’s
internal state |ψAdv⟩, rendering it useless for subsequent experiments. However, if |ψAdv⟩ exists, then so
does the state |ψAdv⟩⊗n, consisting of n copies of |ψAdv⟩. Since |ψAdv⟩ depends only on the circuit family
(not the samples C0, C1), the copied state may be obtained non-uniformly.1 Since aux is classical, it may
be copied as well. Using one copy per distinguishing experiment allows the proof to succeed.

Concurrently to this work, Zhandry [Zha23] showed a stronger result that post-quantum iO implies
post-quantum diO for a polynomial number of differing inputs even when the sampler may output quantum
auxiliary input. This result is not necessary for our constructions, since we only require security against
samplers outputting classical auxiliary input. We mention it here to give a more complete overview of
differing inputs obfuscation.

Lemma 5.1.4 ([Zha23]). Any indistinguishability obfuscator is a differing inputs obfuscator for families
with a polynomial number of differing inputs, even if the associated distribution may output quantum
auxiliary advice.

We give a much simpler proof in the case of one differing input.

Lemma 5.1.5. Any indistinguishability obfuscator is a differing inputs obfuscator for circuit families with
one differing input, even if the associated distribution may output quantum auxiliary advice.

Proof. Let y∗ ∈ {0, 1}n be the differing input. Say there is an adversary AdiO which wins the differing
inputs obfuscation game with probability noticeably greater than 1/2, but which cannot break indistin-
guishability obfuscation. Then we will construct an “inner product” adversary AIP which guesses ⟨y∗, r⟩
with probability noticeably greater than 1/2, over the choice of r. By [AC02], this implies the existence
of an efficient adversary which finds y∗ given just Π0 and Π1, violating the definition of a differing inputs
circuits family. This adversary can be obtained uniformly from one copy of AIP.

Fix any r and b ∈ {0, 1}. Define the circuit Πr,b as follows:

Πr,b(x) =

{
Π0(x) if ⟨x, r⟩ = b

Π1(x) otherwise

1If the adversary is uniform, then its quantum auxiliary input state is empty. Therefore we may obtain multiple copies of it
uniformly, and thus the reduction is uniform in this case.

28

Πr,b is functionally equivalent to Π0 if ⟨y∗, r⟩ = b, and otherwise it is functionally equivalent to Π1.
To guess ⟨y∗, r⟩, run the differing inputs obfuscation distinguishing experiment with AdiO, using input
(Π0,Π1, iO(Πr,b), for a uniform bit b. Output b⊕ b′, where b′ is AdiO’s output. There are two cases:

• Say ⟨y∗, r⟩ = 0. Indistinguishability obfuscation implies that iO(Πr,0) ≈ iO(Π0) and iO(Πr,1) ≈
iO(Π1). In other words, iO(Πr,b) ≈ iO(Πb). By assumption, if AdiO plays the experiment using
(Π0,Π1, iO(Πb)), then it outputs b with probability noticeably greater than 1/2. This is negligibly
different from the original experiment.

• Say ⟨y∗, r⟩ = 1. Similarly, indistinguishability obfuscation implies that iO(Πr,b) ≈ iO(Π1⊕b)).
By assumption, if AdiO plays the experiment using (Π0,Π1, iO(Π1⊕b)), then it outputs 1 ⊕ b with
probability noticeably greater than 1/2. This is negligibly different from the original experiment.

In both cases, this procedure predicts ⟨y∗, r⟩ with probability noticeably greater than 1/2.

5.2 Subspace-Hiding Obfuscation

Next, we define the notion of subspace-hiding obfuscation, which provides a membership test for sub-
spaces while hiding the subspace up to containment in a random superspace. Subspace-hiding obfuscation
is implied by iO along with injective one-way functions.

First, let us define the membership test: given a set S ⊆ Fn
2 , let PS be the program that takes as

input a vector s ∈ Fn
2 , and outputs 1 if s ∈ S and 0 otherwise. Second, when S is a subspace, we define a

subspace-hiding obfuscator shO to be a program that obfuscates PS . For security, we say that an adversary
cannot distinguish shO(PS) from shO(PT), where T is a random superspace of S.

Definition 5.2.1 ([Zha19b], Def. 6.2). A subspace-hiding obfuscator shO for a field F and dimensions
dS , dT is a PPT algorithm shO that takes a program PS as input and outputs an obfuscated program P̃ .
shO is secure if all QPT adversaries have negligible advantage in the following game:

• The adversary sends the challenger a subspace S ⊂ Fλ of dimension dS .

• The challenger samples a random subspace T ⊂ Fλ of dimension dT such that S ⊆ T . Then
they sample b ← {0, 1}, and if b = 0 they compute P̃ ← shO(PS), and if b = 1, they compute
P̃ ← shO(PT). Then they send P̃ to the adversary.

• The adversary makes a guess b′ for b.

The adversary’s advantage is |Pr[b′ = b]− 1/2|.

Theorem 5.2.2 ([Zha19b], Theorem 6.3). If injective one-way functions exist and |F|n−dT is exponential
in λ, then any indistinguishability obfuscator, appropriately padded, is a subspace hiding obfuscator for
field F and dimensions dS , dT .

[CLLZ21a] extend subspace-hiding to also consider programs which decide membership in a coset of
S.

Corollary 5.2.3 ([CLLZ21a]). Let iO be an indistinguishability obfuscator and suppose that injective
one-way functions exist, and consider the following game.

• The adversary sends the challenger a subspace S ⊂ Fλ
2 of dimension λ/2 and a vector x ∈ Fλ

2 .

29

• The challenger samples a random superspace T ⊃ S of dimension 3λ/4 and samples x̃← T + x.
If b = 0, they compute P̃ ← iO(PS+x), and if b = 1 they compute P̃ ← iO(PT+x̃). Then they send
P̃ to the adversary.

• The adversary makes a guess b′ for b.

For any QPT adversary, it holds that |Pr[b′ = b]− 1/2| = negl(λ) in the above game.

5.3 Functional Encryption

Functional encryption allows a user holding a key for skf and a ciphertext Enc(x) to learn f(x), but
nothing more.

Definition 5.3.1 (Functional Encryption). A functional encryption scheme is associated with a class of
functions F(λ) and a message spaceMλ. It consists of the following PPT algorithms:

• Setup(1λ) takes as input the security parameter λ, then outputs a public key pk and a master secret
key msk.

• KeyGen(msk, f) takes as input the master secret key msk and the description of a function f ∈ F,
then outputs a secret key skf .

• Enc(pk,m) takes as input the public key pk and a message m, then outputs a ciphertext c.

• Dec(skf , c) takes as input a secret key skf and a ciphertext encrypting a message m ∈ Mλ, then
outputs f(m).

Definition 5.3.2 (Decryption Correctness for FE). A functional encryption scheme must satisfy decryption
correctness:

Pr

[
Dec(skf ,Enc(pk,m)) ̸= f(m) :

(pk,msk)← Setup(1λ),
(skf , vk)← KeyGen(msk, f)

]
= negl(λ)

Functional encryption security requires that an adversary cannot learn anything beyond the functions
for which it has secret keys. This is formalized by requiring that they cannot distinguish between encryp-
tions of two different messages which have the same evaluations under the functions which the adversary
has keys for.

Definition 5.3.3 (FE Security). A functional encryption scheme, is (post-quantum) secure if the advantage
of every QPT adversary in the following game is negl(λ):

1. The challenger samples (pk,msk)← Setup(1λ) and sends pk to the adversary.

2. The following query phase is repeated a polynomial number of times:

(a) The adversary adaptively submits a query fi ∈ F(λ).
(b) The challenger samples (skfi , vki)← KeyGen(msk, fi) and sends skfi to the adversary.

3. The adversary sends two messages m0 and m1 to the challenger.

4. The challenger checks the deletion proofs. If fi(m0) = fi(m1) for every fi, then sample a random
bit b and send Enc(pk,mb) to the adversary.

30

5. The following query phase is repeated a polynomial number of times:

(a) The adversary adaptively submits a query fi ∈ F(λ).
(b) If fi(m0) = fi(m1), the challenger samples (skfi , vki) and sends skfi to the adversary.

6. The adversary outputs a bit b′ and wins if b′ = b.

We say the functional encryption scheme has selective security if this holds in the game where adver-
sary must declare the challenge messages m0 and m1 before the challenger samples (pk, sk).

31

32

Chapter 6

Coset State Framework

6.1 Coset Representatives

Since a coset S +x can be written many ways, e.g. as S +x′ for any x′ ∈ S +x, it is useful to identify it
with a single, canonical element CanS(x) from the set. Previously, [CLLZ21a] used the lexicographically
first element of S + x as its canonical element. Although this is well-defined and efficient to compute, it
is not particularly well-structured. As a more structured approach, we provide a canonical representation
which is isomorphic to the quotient group Fn/S = {S + x : x ∈ Fn}. This provides useful properties
such as homomorphism, e.g. CanS(x) + CanS(y) = CanS(x+ y).

Canonical representations CanS(·) of vectors also give a canonical description for cosets S + x. It
consists of a description of S (e.g. a basis) and CanS(x).

Complement-Defined Canonical Elements. Consider a subspace S ⊂ T . For example, T may be Fn,
a subspace of Fn, or some other vector space. Most commonly, we will work with T = Fn

2 , a vector
space over the binary field. We define the canonical representative of a coset S + x with respect to a
complementary subspace of S, i.e. a subspace C such that Span(S,C) = T and S ∩ C = {0}. Any
x ∈ T can be uniquely written as

x = xS + xC where xS ∈ S and xC ∈ C (6.1)

This decomposition implies that if xC = yC for some x,y ∈ T , then x ∈ S + y, since in this case
x = (xS − yS) + y and xS − yS ∈ S.

Thus, we can define the canonical representative of S + x with respect to C as

CanS,C(x) = xC (6.2)

Canonical representatives can be efficiently computed using any basis B = [BS , BC] of T that con-
tains a basis BS for S and a basis BC for C. Given such a basis, compute the basis decomposition of x
with respect to B and output the part corresponding to BC .

Remark 6.1.1. There many possible choice of the complementary spaceC. Furthermore, different choices
of C lead to different canonical representatives. It would be convenient if we could take C to be the
(unique) orthogonal complement of S. Unfortunately, orthogonal complements do not exist if T is defined
over a finite field, since elements of a finite field cannot be ordered.

To simplify notation, we consider the description of S to include the following information:

33

• A basis for S.

• A basis for a space C which is complementary to S.

• A basis for a space C⊥ which is complementary to S⊥.

Since the description of S determines complementary spaces for S and S⊥, we may then simply write
CanS(·) := CanS,C(·) and CanS⊥(·) := CanS⊥,C⊥(·).

6.2 Coset Representative Properties

It should be immediately obvious that the set of canonical elements is precisely C. This observation gives
us a good base to see several initial properties. First, the mapping CanS : T → C is homomorphic:

CanS(x) + CanS(y) = CanS(x+ y)

As an immediate consequence of the homomorphism, the set CT := {CanS(v) : v ∈ V } forms a
subspace for any subspace V ⊂ T . Second, since C is complementary to S, we know that Dim(C) =
Dim(T)− Dim(S). Finally, it is isomorphic to the quotient group T/S.

Parity Balance. The homomorphism property implies a useful property for hiding information; the set
of canonical representatives is balanced with respect to dot product with a random vector with very high
probability. A similar property holds for random C and fixed r ̸= 0⃗, e.g. r = 1⃗, though we omit the proof
of that.

Lemma 6.2.1. Let n ∈ N. Let S and C be complementary subspaces of Fn
2 . Let T ⊃ S be a superspace

of S. For any r ∈ Fn
2 and b ∈ F2, let

DT,r,b = {CanS(x) : x ∈ T and x · r = b}

Then
Pr

r←Fλ
2

[|DT,r,0| = |DT,r,1|] = 1− 2−(Dim(T)−Dim(S))

Proof. Since CanS : Fn
2 → C is a homomorphism and T is a subspace of Fn

2 , the set CT := {CanS(t) :
t ∈ T} forms a subspace. The dimension of CT is the dimension of T minus the dimension of the kernel
of CanS restricted to inputs t ∈ T . This is precisely S since S ⊂ T . So dim(CT) = dim(T)− dim(S).

If r /∈ C⊥T , then there exists x ∈ C⊥T such that r · x = 1. Addition by x gives a bijection between
DT,r,0 and DT,r,1. The probability of sampling such an r is 1− |C⊥T |/|Fn

2 |. Since |C⊥T | = 2n−dim(CT) =
2n−dim(T)+dim(S), we have the result.

Embedding. A subspace T can be embedded in a larger subspace by adjoining it with a set of linearly
independent vectors: T ⊂ Span(T,B). For example, we can extend Fn to F2n in this manner. CanS(·) is
compatible with such extensions, in the sense that the extension does not modify the canonical represen-
tatives of any element from the original subspace.

As a result, we can naturally obtain canonical representatives for subspaces S ⊂ T ⊂ W where the
set of canonical elements for S is a subset of the canonical elements for T .

34

Lemma 6.2.2 (Embedding Friendliness). Let T and CT be complementary subspaces of some vector
space W . Let S and CS be complementary subspaces of T . Let C = Span(CS , CT).

For all such W , T , S, C and for all cT ∈ CT and x ∈ T ,

CanS,C(x+ cT) = CanS,CS
(x) + cT

Proof. CanS,C(x+ cT) ∈ C is the unique element such that

x+ cT = xS + CanS,C(x+ cT)

for some xS ∈ S. CS and CT are complementary subspaces of C since CT ∩ T = {0} and CS ⊂ T . So
we can also uniquely decompose CanS,C(x + cT) into cS + c′T where cS ∈ CS and c′T ∈ CT . In other
words,

x+ cT = xS + (cS + c′T)

Observe that x+ cT is a decomposition of x+ cT into elements of T and CT , so it must be unique. Since
(xS + cS) ∈ T and c′T ∈ CT , these must match that decomposition, i.e. (xS + cS) = x and c′T = cT .
Finally, cS exactly matches the definition of CanS,C(x).

As an example application, consider extending Fn to F2n by appending some 0s and adjoining it
with CT = Span(ei : i ∈ [n + 1, 2n]). The embedding lemma says that if we consider any x1∥x2 =
x1∥0n+0n∥x2 for x1,x2 ∈ Fn

2 , then the canonical representative CanS(x1∥x2) is CanS(x1)∥0n+0n∥x2

for all S ⊂ Fn.

Rerandomization. A useful tool for subspaces is the ability to perform a change of basis. For a random
change of basis M , this rerandomizes the subspace. CanS(·) behaves in a very simple manner under
changes of basis.

Lemma 6.2.3 (Canonical Rerandomization). Let S and C be complementary subspaces of T . Then for
all invertible linear transformations M : T → T and for all x ∈ T ,

CanMS,MC(Mx) =MCanS,C(x)

We briefly note that because M : T → T is an invertible linear transformation, MS and MC are also
complementary subspaces of T , so CanMS,MC(·) is well-defined.

Proof. CanMS,MC(Mx) is the unique value xMC ∈MC such that

Mx = xMS + xMC

for some xMS ∈ MS. By definition of MC and MS, it must be the case that xMC = MxC for some
xC ∈ C and xMS =MxS for some xS ∈ S. Now M ’s invertibility implies that x = xS + xC . This is a
decomposition of x into S and C, so xC = CanS,C(x).

We refer to CanMS,MC(Mx) as the canonical rerandomization of CanS,C(x) because M is applied to
the whole space T to rerandomize it. Thus we should consider mapping S 7→ MS and C 7→ MC, along
with x 7→ Mx for any x ∈ T . Since we consider the description of S to also include a complementary
space C, we overload notation slightly by writing CanMS(·) to mean CanMS,MC(·).

35

6.3 Delayed Preparation of Coset States

A useful tool for analyzing random BB84 states is the ability to delay the choice of basis. The preparer
can send a random BB84 state by preparing an EPR pair, then sending one half of it to the receiver. Later,
the preparer can decide if the sent state should be in the computational basis (|0⟩ or |1⟩) or the Hadamard
basis (|+⟩ or |−⟩) and measure their own half of the EPR pair to determine the state. By deciding the
basis later, we can argue that any adversarial action on the BB84 stateHθ |x⟩ is independent of the chosen
basis.

We show that it is possible to do an analogous technique for preparing random coset states. The
preparer constructs some number of EPR pairs and sends one half of each pair to the receiver. Later, it
chooses the subspace S and measures its own halves to determine the coset offsets.

Let CanS(x) be a function which computes the canonical representative of the coset S + x ⊂ Fn.

1. The preparer constructs n EPR pairs 1/
√
|F|n

∑
v∈Fn |v⟩A ⊗ |v⟩B.

2. The preparer sends register B to the receiver.

3. The preparer chooses S ⊂ Fn.

4. The preparer computes CanS⊥(·) in the Hadamard basis on registerA, then measures the result.
Call the result z.

5. The preparer computes CanS(·) on register A in the computational basis, then measures the
result. Call the result x.

Figure 6.1: Protocol for Delaying the Preparation of an n-bit Coset State

Lemma 6.3.1. At the end of the protocol in Figure 6.1, register B holds the coset state |Sx,z⟩, where x
and z are the preparer’s measurement results.

Proof. Let CanS⊥ = {CanS⊥(z) : z ∈ Fn}. Every element v ∈ Fn can be uniquely written as v = s+ z
for some s ∈ S⊥ and z ∈ {CanS⊥}. Therefore the purified state after step 4 is

1√
|F|n

∑
x∈{CanS}

|x⟩X ⊗H
⊗2n

∑
s∈S⊥

|s+ x⟩A ⊗ |s+ x⟩B


Writing register A in the computational basis yields

1

|F|n
∑

z∈{CanS}

|z⟩Z ⊗ (I⊗n ⊗H⊗n)

∑
s∈S⊥

∑
x∈Fn

ω
x·(s+z)
|F| |x⟩A ⊗ |s+ z⟩B


By grouping the terms dependent on s ∈ S separately from those dependent only on z and x, we see that

36

the state is

1

|F|n
∑

z∈{CanS}
x∈Fn

ωz·x
|F| |z⟩Z ⊗ |x⟩A ⊗

H⊗n ∑
s∈S⊥

ωx·s
|F| |s+ z⟩B


=

√
|S|
|F|n

∑
z∈{CanS}

x∈Fn

(
ωz·x
|F| |z⟩Z ⊗ |x⟩A

)
⊗ |Sx,z⟩B

Tracing out registers Z and A completes the proof.

37

38

Chapter 7

Certified Deletion for Coset States

Previously, [BK23] gave a general certified deletion theorem for BB84 states: {|0⟩ , |1⟩ , |+⟩ , |−⟩}. Roughly,
their theorem allowed for encoding a single bit b in a quantum state Hθ |x⟩. If an adversary holding an
encryption of θ guesses the values of x which were encoded in the Hadamard basis, then b becomes
information-theoretically lost – despite being previously information-theoretically determined.

We show that if we instead base the deletable quantum state on coset states, then it is safe to reveal ad-
ditional information about the underlying cosets. This information can be used to provide repeated partial
access to the encoded data, without compromising the complete destruction of the data upon producing a
valid deletion certificate.

As a base, we can encode a single bit b using a subspace S ⊂ Fλ
2 along with three vectors x, z, r ∈ Fλ

2

as
|Sx,z⟩ , r, (CanS,C(x) · r)⊕ b (7.1)

We also want to include some side-information about S + x and S⊥ + z to allow controlled access to the
encoded bit. So instead, we will consider outputting |Sx,z⟩ along with a sample from a distribution

Z(S, S + x, S⊥ + z, r, (CanS,C(x) · r)⊕ b) (7.2)

which hides S, x, and z in some way. In [BK23], Z is required to be semantically hiding, i.e. Z(S) ≈
Z(0). We will relax the requirement to instead satisfy a weaker notion called “coset-hiding”. Roughly,
coset-hiding requires that it is indistinguishable whether Z uses the original coset S + x, or T + x for a
random superspace T ⊃ S.1

Definition 7.0.1 (Coset-Hiding). A distributionD(·) is (dS , dT , n)-coset-hiding if there exists a simulator
Sim such that for all subspaces S ⊂ Fn

2 with dimension dS and all cosets S + x of S,

D(S + x) ≈c

{
Sim(T + x̃) :

T ← SupspacedT (S)
x̃ = CanT (x)

}
To formalize the certified deletion guarantees of this encoding, we will consider an experiment where

the adversary receives the encoding of a bit b along with side information Z , then produces the deletion
certificate. If the certificate is valid, then the experiment outputs the adversary’s view; otherwise it outputs
⊥.

1When we write Z(S + x), we consider Z to receive a description of the coset, which consists of description for S (see
Chapter 6) and the canonical element of S + x. Frequently, we will explicitly write S + CanS(x) to emphasize that the
description actually uses the canonical element.

39

Definition 7.0.2 (Certified Deletion Game for Cosets). The Co-CDn,ds
A,Z(b) game is parameterized by a bit

b, dimensions n and ds, a quantum algorithm A, and a distribution Z . It is played as follows:

1. Challenge: Sample a dS-dimensional subspace S ⊂ Fn
2 . Sample x′, z′, r′ ← Fn

2 . Let b̃ =
(CanS(x) · r)⊕ b. Initialize the adversary with

|Sx,z⟩ and Z(S, S + x, S⊥ + z, r, b̃)

2. Response: The adversary sends back a certificate cert and a registerR.

3. Output: If cert ∈ S⊥ + z, outputR. Otherwise output ⊥.

Z is defined in a general manner in the Co-CD experiment – it is allowed to access all of the infor-
mation about |Sx,z⟩. This allows for more flexibility in precisely which pieces of information Z depends
upon. We can write Z = Z1 ◦ Z2 as a composition of a computationally hiding distribution Z1 with a
statistically hiding distribution Z2 which controls precisely what information Z1 can depend on. This al-
lows a clean separation of what information must be statistically hidden, and what can be computationally
hidden.

As the first part of our coset techniques, we consider a Z2 that removes S + x from its output. We
show that if Z1(S, S

⊥ + z, . . .) semantically hides S and subspace-hides S⊥ + z, then the Co-CD game
yields information-theoretic security. This theorem gives a way to safely publish a verification key by
obfuscating a membership program for S⊥ + z.

Theorem 7.0.3. Let γ = ω(log(λ)), dS⊥ = n − dS for dS ∈ N, and n ∈ N with n > dS + γ. Let
Z = Z1 ◦ Z2 where Z2(S, S + x, S⊥ + z, r, b̃) outputs (S, S⊥ + z, r, b̃). If for all S, S⊥ + z ⊂ Fn

2 , all
r ∈ Fn

2 , and all b̃,

• Z1(·, S⊥ + z, r, b̃) is semantically hiding

• and Z1(S, ·, r, b̃) is (dS⊥ , dS⊥ + γ, n)-coset-hiding,

then for all QPT A,
TD[Co-CDdS ,n

A,Z (0),Co-CDdS ,n
A,Z (1)] = negl(λ)

As example parameters, consider n = λ, dS = λ/2, and γ = λ/4. We prove this theorem in
Section 7.1.

Next, we extend the result so that Z1 can slightly depend on S + x. Specifically, we will consider
givingZ a random super-coset T+x̃ ⊃ S+x. The fact that x is not used directly inZ1 is quite important,
because this prevents an adversary from ignoring |Sx,z⟩ and directly breaking Z1 to obtain the encoded
bit.

Theorem 7.0.4. Let γ = ω(log(λ)), dS⊥ = n − dS for dS ∈ N, and n ∈ N with n > dS + γ. Let
Z = Z1 ◦Z2 where Z2(S, S+x, S⊥+z, r, b̃) samples T ← SupspacedS+γ(S), computes x̃ = CanT (x),
then outputs (S, T + x̃, S⊥ + z, r, b̃).

If for all S, S + x, S⊥ + z ⊂ Fn
2 , all r ∈ Fn

2 , and all bits b̃, with overwhelming probability over
T ← SupspacedS+γ(S),

• Z1(·, T + x̃, S⊥ + z, r, b̃) is semantically hiding

• and Z1(S, T + x̃, ·, r, b̃) is (dS⊥ , dS⊥ + γ, n)-coset-hiding,

40

then for all QPT A,
TD[Co-CDdS ,n

A,Z (0),Co-CDA,Z(1)] = negl(λ)

As example parameters, consider n = λ, dS = λ/2, and γ = λ/4. We prove Theorem 7.0.4 by
invoking Theorem 7.0.3 on a smaller space FdS+γ

2 then embedding that space into Fn
2 and rerandomizing

the variables used in the experiment. See Section 7.2 for the proof.

Remark 7.0.5. It is also possible to directly prove Theorem 7.0.4 in a similar manner to Theorem 7.0.3.
However, splitting the two theorems provides some additional insight into the structures required for dele-
tion. For instance, it is also possible to prove a similar result to Theorem 7.0.4 by reducing to [BK23]’s cer-
tified deletion theorem. Despite the fact that their theorem does not allow any information leakage about
S, x, or z, a similar embedding argument still shows that T + x̃ can be leaked in the side-information.

7.1 Proof with Dual Coset Leakage

Proof of Theorem 7.0.3. Consider the following hybrids, where Hyb0(b) = Co-CDA,Z(b).

• Hyb1(b): We purify the generation of |Sx,z⟩ according to the procedure in Figure 6.1, which we
recall here:

1. Prepare n EPR pairs ∝
∑

x∈Fn
2
|x⟩RC

⊗ |x⟩RA
.

2. Measure z ← CanS⊥(H⊗nRC) in the Hadamard basis and x ← CanS(RC) in the computa-
tional basis.

3. OutputRA as the prepared coset state.

UsingRA in place of |Sx,z⟩, proceed as in Hyb0. Explicitly, the adversary is now initialized with

registerRA and Z1(S, S
⊥ + z, r, b̃)

• Hyb2(b): This is Hyb1(b) with the following change. Instead of computing b̃ as b⊕ (r · CanS(x)),
sample b̃← F2 uniformly at random. Then, at the end of the output phase, if b̃ ̸= b⊕(r ·CanS(x)),
abort and output ⊥. Otherwise output as usual.

• Hyb3(b): The only change from Hyb2(b) is as follows. Instead of measuring x ← CanS(RC) in
the computational basis while preparing register RA, delay this measurement until the end of the
output phase just before comparing b̃ to b⊕ (r · CanS(x).

• Hyb4(b): The only change from Hyb3(b) is as follows. After checking whether cert ∈ S⊥ + z in
the output phase, perform an additional measurement {Πcert, I −Πcert} on registerRC , where

Πcert := H⊗n |cert⟩ ⟨cert|H⊗n

If the result is Πcert, continue the output phase as in Hyb3(b). Otherwise, immediately output ⊥.

Note that the projection is done before measuring x← CanS(RC) and checking whether b̃ matches
b⊕ (r · CanS(x)).

We begin by showing that the distance between b = 0 and b = 1 in the last hybrid is negligible.

Claim 7.1.1. TD[Hyb4(0),Hyb4(1)] = negl(λ)

41

Proof. The probability of the experiment outputting ⊥ before the final check of b̃ is independent of b.
Additionally, the trace distance conditioned on outputting ⊥ is 0. Therefore the overall trace distance is
no more than the trace distance conditioned on the experiment not outputting ⊥ before it checks b̃.

If this occurs, then x is the result of a computational basis measurement done on a Hadamard basis
state Πcert := H⊗n. In particular,

Pr
Hyb4(b)

[̃b = b⊕ (r · CanS(x))] = Pr
x←Fn

2

[̃b⊕ b = (r · CanS(x))]

If r ̸= 0n, which occurs with 1 − 2−n probability, this probability is precisely 1/2, independently of b.
Since this check is the only place in the experiment where b is used, the claim follows.

Next, we show that the distance between b = 0 and b = 1 is negligible in each prior hybrid by relating
Hybi+1 to Hybi.

Claim 7.1.2. TD[Hyb3(0),Hyb3(1)] = negl(λ)

We defer the proof of Claim 7.1.2 until the end of the proof for easier reading, since it is much more
involved than the other claims.

Claim 7.1.3. TD[Hyb2(0),Hyb2(1)] = negl(λ)

Proof. Register RC is disjoint from the adversary’s view and checking cert ∈ S⊥ + z uses the already-
measured z. Thus, measurements on it can be commuted past the adversary’s actions in the response
phase and the certificate check in the output phase. As a result, Hyb2(b) = Hyb3(b) and the claim follows
from Claim 7.1.2.

Claim 7.1.4. TD[Hyb1(0),Hyb1(1)] = negl(λ)

Proof.
TD[Hyb1(0),Hyb1(1)] ≤ 2TD[Hyb2(0),Hyb2(1)]

since Hyb2(b) is identically distributed to the distribution which outputs ⊥ with probability 1/2 and oth-
erwise outputs Hyb1(b). 2negl(λ) is still negligible, so Claim 7.1.3 implies the claim.

Claim 7.1.5. TD[Hyb0(0),Hyb0(1)] = negl(λ)

Proof. Hyb0(b) = Hyb1(b) since the purified procedure precisely creates the state |Sx,z⟩ in register RA
(Lemma 6.3.1). Therefore Claim 7.1.4 implies the claim.

To complete the proof, we fill in the missing proof of Claim 7.1.2.

Proof of Claim 7.1.2. The only difference between Hyb3(b) and Hyb4(b) is the addition of the measure-
ment {Πcert, I − Πcert} and post-selection on outcome Πcert. Therefore if the experiment aborts due to
obtaining result I −Πcert with only negligible probability, the gentle measurement lemma (Lemma 2.3.1)
and Claim 7.1.1 together imply the claim.

We show that this is the case. Consider the following hybrid experiments:

• Hyb3,0(b) is Hyb3(b), except it stops immediately after applying {Πcert, I − Πcert} (if this point is
reached) and outputs an error message 1 if the experiment would abort due to this check. Otherwise
it outputs 0.

42

• Hyb3,1(b) is the same as Hyb3(b), except it replaces Z(S, S⊥ + z, r, b̃). Specifically, instead of
sampling S directly, first sample a random subspace R⊥ ⊂ Fn

2 of dimension dS⊥ + γ and sample
S⊥ ⊂ R⊥ as a random subspace. Then, initialize the adversary with Sim(R⊥ + z̃, r, b̃) where
z̃ = CanR⊥(z).

• Hyb3,2(b) is the same as Hyb3,1(b), except that it performs an additional measurement z̃← CanR⊥(H⊗nRC)
while preparing |Sx,z⟩. It uses this z̃ to prepare Sim(R⊥ + z̃, r, b̃).

• Hyb3,3(b) is the same as Hyb3,2(b), except we commute the measurement of z past the measurement
of z̃ and the adversary’s operations in the response phase. Additionally, since S⊥ is no longer used
until after the response phase (only R⊥ is required before then), also delay the sampling of S⊥.

• Hyb3,4(b) is the same as Hyb3,3(b), but instead of measuring z ← CanS⊥(H⊗nRC) and checking
that cert ∈ S⊥ + z, the challenger measures whether the contents ofRC belong to S⊥ + cert in the
Hadamard basis and accepts the certificate if so.

The outcome of Hyb3,1(b) is computationally indistinguishable from Hyb3,0(b) by the hiding of Z1,
since the rest of the hybrid (including the measurement) requires only information about S, S⊥ + z,
r, and b̃ (but not R⊥). The outcome of Hyb3,2(b) is identical to Hyb3,1(b) since RC is supported on
vectors in S⊥ + z ⊂ R⊥ + z and CanR⊥(·) is deterministic on vectors in R⊥ + z. The outcome of
Hyb3,3(b) is identical to Hyb3,2(b) since the measurements CanS⊥(H⊗nRC) and CanR⊥(H⊗nRC) can
be simultaneously diagonalized (using the Hadamard basis), so they commute, andRC is disjoint from the
adversary’s operations in the response phase. The outcome of Hyb3,4(b) is the same as Hyb3,3(b) since
z ∈ S⊥ + cert if and only if cert ∈ S⊥ + z.

Finally, we show that Hyb3,4(b) outputs the error message 1 with negligible probability. This occurs
precisely when the certificate check passes but the final measurement returns I − Πcert. Since these two
projections can be simultaneously diagonalized in the Hadamard basis, we can write the probability of an
error message in terms of a measurement in the Hadamard basis:

Pr
cert,z,S⊥

[z ̸= cert ∧ z ∈ S⊥ + cert]

where the probability is over the adversary outputting cert, then the challenger measuring register RC in
the Hadamard basis to obtain z, and finally the challenger sampling S⊥. For any fixed string cert, this is a
convex combination over z ̸= cert of PrS⊥⊂R⊥ [z ∈ S⊥ + cert], so it is upper bounded by the maximum
such z. z ∈ S⊥ + cert if and only if z− cert ∈ S⊥, i.e. (z− cert) · s = 0, for all s ∈ S. S (and thereby
S⊥) can be sampled by adjoining γ random linearly independent vectors si /∈ R to R = (R⊥)⊥, which
has dimension dS−γ. For each one, the probability that (z−cert) ·si = 0 is precisely 1/2. So the overall
probability of an error message is bounded above by 2−γ = negl(λ).

7.2 Proof with Primal Coset Leakage

Proof. We will reduce to Theorem 7.0.3 over FdS+γ
2 with the same subspace dimension dS and same gap

γ. Define Z ′(S, S⊥ + z, r, b̃) as follows:

1. Sample a random change-of-basis matrix M ∈ Fn×n
2 over Fn

2 . We consider M to also operate on
elements x ∈ FdS+γ

2 by first appending 0s to x. Let T be the image of FdS+γ
2 under M .

43

2. Sample x̃′ ← Span(ei : i ∈ (dS + γ, n]) and z′re ← Fn
2 . These will be used for rerandomizing x

and z.

3. Let SM =MS be the image of S under M . Define x̃ =M x̃′.

Let z′ ∈ Fn
2 be the vector such that z′ ·Mv = z · x for all v ∈ FdS+γ

2 , i.e. z′ = (M−1)T z. Let
zre = z′ + z′re.

4. Sample r2 ← Span(ei : i ∈ (dS + γ, n]). Set

b̃′ := b̃⊕ (r2 · x̃′)

and set r̃ = (M−1)T (r+ r2). This is the vector such that r̃ ·Mv = r+ r2 · v for all v ∈ Fn
2 .

5. Output (M, x̃, z′re, Z(SM , T + x̃, S⊥M + zre)).

We first show that Z ′(S, S⊥ + z, r, b̃) is semantically-hiding in its first input and (dim(S⊥M),dim(S⊥M) +
γ, n)-coset-hiding in its second. Consider the following hybrid distributions:

• Z ′′(S⊥ + z, r, b̃) does the same thing as Z ′, except it uses Z(0, T + x̃, S⊥M + zre) in its output.

• Z ′′′(T,R⊥ + z̃, r, b̃) behaves as Z ′′ except that it replaces Z(0, T + x̃, S⊥M + zre) in the output
as follows. it uses R⊥ to compute R ⊂ S over FdS+γ

2 and computes its embedded rerandomization
RM :=MR ⊂MS over Fn

2 . Finally, it uses Sim(T + x̃, R⊥n + z̃re) in step 3, where z̃re ← R⊥n +zre
and Sim is the simulator for Z .

Z ′ and Z ′′ are indistinguishable because Z is semantically hiding in its first input. To see that Z ′′ and Z ′′′
are indistinguishable, we will reduce to the (dim(S⊥M), dim(S⊥M)+γ, n)-coset hiding ofZ . R⊥ ⊃ S⊥ has
dimension γ+dim(S⊥) = 2γ, soR ⊂ S is a random subspace of S with dimension dS+γ−2γ = dS−γ.
Therefore R⊥M is a random superspace of S⊥M with dimension n − (dS − γ). Since S⊥M has dimension
n−dS , we can also write dim(R⊥M) = n− (dS−γ)−dim(S⊥M)+dim(S⊥M) = dim(S⊥M)+γ. Therefore
R⊥M satisfies the requirements to invoke the coset-hiding of Z .

Next, we give a QPT adversary for the Co-CD game using Z ′ that produces the same result as a QPT
adversary for the Co-CD game using Z .

Claim 7.2.1. For every QPT adversary A, there exists another QPT adversary A′ such that

TD[Co-CDA,Z(0),Co-CDA,Z(1)] = TD[Co-CDA′,Z′(0),Co-CDA′,Z′(1)] (7.3)

Theorem 7.0.3 then implies that this trace distance must be negligible for all A, completing the proof.

Proof of Claim 7.2.1. A′ is initialized by the challenger with |Sx,z⟩ and

Z(S, S⊥ + z, r, b̃) = (M, x̃, z′re, Z(SM , T + x̃, S′⊥ + zre, r̃, b̃
′))

First, A′ updates |Sx, z⟩ to match T + x̃ and S⊥M + zre). It coherently applies the unitary UM : |v⟩ 7→
|Mv⟩ to |Sx,z⟩, then applies Pauli operations X x̃ and Zz′re , resulting in the state

X x̃Zz′reUM (XxZz |S⟩) = X x̃Zz′re
(
XMxZz′ |SM ⟩

)
(7.4)

= ± |(SM)Mx+x̃, zre⟩ (7.5)

44

Observe that SM + Mx ⊂ T since x ∈ FdS+γ
2 , so SM + Mx + x̃ ⊂ T + x̃. Furthermore, SM is

uniformly random within Fn
2 since M is a random change of basis, Mx + x̃ = M(x + x̃′) is uniformly

random within Fn
2 since (x+ x̃′) is, and zre is uniformly random within Fn

2 since z′re is. Also note that r̃
is uniformly random within Fn

2 because r+ r2 is.
Next, we argue that the updated state |(SM)Mx+x̃, zre⟩ together with the rerandomized values r̃ and

b̃′ encode the same bit b as the data that A′ was initialized with. Recall that r̃ = (M−1)T (r + r2) for
r ∈ Span(ei : i ≤ dS + γ) and r2 ∈ Span(ei : i > dS + γ). By the canonical rerandomization lemma
(Lemma 6.2.3),

r̃ · CanSM
(M(x+ x̃′)) = (M−1)T (r+ r2) ·MCanS(x+ x̃′) (7.6)

= (r+ r2) · CanS(x+ x̃′) (7.7)

FdS+γ
2 and Span(ei : i ∈ (dS + γ, n]) are complementary with respect to Fn

2 , so we can simplify this
expression using the canonical embedding lemma (Lemma 6.2.2):

(r+ r2) · CanS(x+ x̃′) = (r+ r2) · (CanS(x)∥0n−(dS+γ) ⊕ 0dS+γ∥x̃′) (7.8)

= (r · CanS(x)) + (r2 · x̃′) (7.9)

where the last line considers CanS(x) over FdS+γ
2 . Therefore

b̃′ ⊕ (r̃ · CanSM
(Mx+ x̃′) = b̃′ ⊕ (r · CanS(x))⊕ (r2 · x̃′) (7.10)

= b̃⊕ (r · CanS(x)) (7.11)

= b (7.12)

Now A′ internally runs A on

|(SM)Mx+x̃, zre⟩ and Z(SM , T + x̃, S⊥M + zre, r̃, b̃
′)

Since this encodes the same bit b as the encoding thatA′ was initialized with, this is the start of Co-CDA,Z(b).
A′ receives from A a vector v and a state ρb. It computes MTv− z′re and truncates the last n− (dS + γ)
bits to obtain v′. Finally, it outputs (v′, ρb).

Observe that if v ∈ S⊥M + zre, i.e. if it is a valid certificate for |(SM)Mx+x̃, zre⟩, then v = w + zre
for some w ∈ S⊥. Then MTv = MTw + (z + zre) − zre. Since w ∈ S⊥M , it must be that MTw · s =
w ·Ms = 0 for all s ∈ S. So MTv ∈ S⊥n + z, where Sn denotes S after appending n− (dS + γ) bits 0
to consider it as a subspace of Fn

2 (before rerandomizing it using M). S⊥n contains precisely the elements
of S⊥ appended by every possible (n − (dS + γ))-bit long string, since Sn is obtained by appending
n − (dS + γ) bits 0 to S. Furthermore the last n − (dS + γ) bits of z are 0 due to applying the same
embedding. Therefore discarding the last n− (dS + γ) bits of MTv yields a vector v′ ∈ S⊥ + z.

This implies that the experiment Co-CDA′,Z′(b) outputs ρb with the same distribution that Co-CDA,Z(b)
would. In particular, Equation (7.3) holds.

45

46

Chapter 8

Obfuscation with Certified Deletion

8.1 Definition

Definition 8.1.1 (Differing inputs obfuscation with certified deletion). An differing inputs obfuscation
scheme with (publicly-verifiable) certified deletion for a class of circuits {Cλ}λ∈N has the following syntax.

• diO-CD(1λ, C) → |C̃⟩ , vk: The obfuscation algorithm takes as input the security parameter 1λ, a
circuit C ∈ Cλ and outputs a (quantum) obfuscated program |C̃⟩ and a verification key vk.

• Eval(|C̃⟩ , x) → y: The evaluation algorithm takes as input the obfuscated program |C̃⟩ and a
(classical) input x, and outputs a (classical) y.

• Del(|C̃⟩)→ cert: The deletion algorithm takes as input the obfuscated program |C̃⟩ and outputs a
deletion certificate cert.

• Verify(vk, cert) → {⊤,⊥}: The verification algorithm takes as input the verification key and a
deletion certificate and outputs either ⊤ or ⊥.

It should satisfy the following properties.

• Functionality preservation. For all λ ∈ N, all C ∈ Cλ, and all inputs x,

Pr[Eval(|C̃⟩ , x) = C(x) : |C̃⟩ , vk← diO-CD(1λ, C)] = 1.

We remark that even if the description of Eval involves measurements, the above correctness guar-
antee implies that the obfuscated state |C̃⟩ can be reused an arbitrary number of times, by imple-
menting Eval coherently and just measuring the output bit.

• Correctness of deletion. For all sequence of circuits {Cλ ∈ Cλ}λ∈N,

Pr

[
Verify(vk, cert) = ⊤ :

|C̃⟩ , vk← diO-CD(1λ, Cλ)

cert← Del(|C̃⟩)

]
= 1− negl(λ).

• Computational security. Let {Cλ}λ∈N be a differing inputs circuits family associated with an effi-
ciently sampleable distribution family {Dλ}λ∈N. Then for all QPT adversaries {Aλ}λ∈N,∣∣∣∣ Pr[A(C0, C1, aux, diO-CD(1λ, C0))) = 1 : (C0, C1, aux)← Dλ]

−Pr[A(C0, C1, aux, diO-CD(1λ, C1))) = 1 : (C0, C1, aux)← Dλ]

∣∣∣∣ = negl(λ)

47

• Certified everlasting security. Let {Cλ}λ∈N be a differing inputs circuits family associated with a
sampler {Dλ}λ∈N. For all QPT adversaries {Aλ}λ∈N,

TD (diO-CD-EXPAλ
(0), diO-CD-EXPAλ

(1)) = negl(λ),

where the experiment diO-CD-EXPA(b) is defined as follows.

– Sample (C0, C1, aux) ← Dλ.1 Sample (|C̃⟩ , vk) ← diO-CD(1λ, Cb) and initialize A with
(C0, C1, aux, |C̃⟩).

– Parse A’s output as a deletion certificate cert and a left-over quantum state ρ.
– If Verify(vk, cert) = ⊤ then output ρ, and otherwise output ⊥.

We say it has public verifiability if this holds even when A is also initialized with vk.

Note that we require that even an unbounded adversary cannot tell the leftover state from diO-CD-EXP(0,Aλ)
and diO-CD-EXP(1,Aλ) apart. Such an adversary can compute the differing inputs for themselves, since
A was given the classical descriptions of C0 and C1. Thus, even an unbounded adversary cannot evaluate
the obfuscated program on the differing inputs after deletion.

In this work, we consider the case of differing inputs circuits families with a polynomial number of
differing inputs. One notable special case is the case of zero differing inputs. We call this case indis-
tinguishability obfuscation with certified deletion (iO-CD). It guarantees that for any two functionally
equivalent circuits C0 and C1, iO-CD(C0) is statistically close to iO-CD(C1) after they have been deleted.

Intriguingly, iO-CD does not imply diO-CD for a polynomial number of differing inputs, unlike their
counterparts which do not support deletion. In the latter case, one can use a distinguisher for diO to find
the differing inputs for a given pair of circuitsC0,C1 in polynomial time. This would violate the properties
of a differing inputs circuit class. However, the distinguisher for diO-CD only manages to distinguish after
deletion. Since it is allowed unbounded computation after deletion, it can find the differing inputs at this
point regardless of whether it can successfully distinguish the obfuscation.

8.2 Construction

We provide a construction of diO-CD for circuits with polynomially-many differing inputs from post-
quantum iO (and one-way functions). The construction consists of two pieces. First, it contains the
quantum part of a ciphertext which can be certifiably deleted. This ciphertext can be decrypted by mea-
suring it in the computational basis then doing classical computation. Second, it contains the obfuscation
of a classical program which has the classical part of the ciphertext hard-coded. This program takes as
input a supposed measurement of the ciphertext along with the input a. If the measurement is valid, then
the program decrypts it to obtain two circuits, one of which is evaluated on the input a.

Hard-Coded Values. Subspace and offset tuples {Si, Ti, x̃i}i∈[2ℓ+1], vectors {ri}i∈[2ℓ+1], and a bitstring c̃ ∈

{0, 1}2ℓ+1.
Input. vectors {vi}i∈[2ℓ+1] and an input a.

diO-CD Classical Program

1Recall that we restrict aux to be classical. Our definitions and constructions also extend to the case of a quantum aux,
but require explicitly assuming a suitable diO, as it is not clearly implied by iO. However, a classical aux is sufficient for our
applications.

48

1: if sti ∈ Ti + x̃i for every i ∈ [2ℓ+ 1] then
2: Compute c′i := c̃i ⊕ (CanSi

(v) · r) for each i ∈ [2ℓ+ 1].
3: Parse c′1, . . . , c

′
2ℓ+1 as (b, C0, C1), where C0 and C1 are circuits with description length ℓ.

4: Output Cb(a).

diO-CD(1λ, C):

1: Let ℓ = |C|.
2: For each i ∈ [2ℓ + 1], sample subspaces Si ⊂ Ti ⊂ Fλ

2 such that dim(Si) = λ/2 and dim(Ti) = 3λ/4.
Additionally for each i ∈ [2ℓ+ 1], sample offsets xi, zi ← Fλ

2 and x̃i ← Ti + xi.
3: Let c := (0, C, 0ℓ). For all i ∈ [2ℓ + 1], sample ri ← Fλ

2 and define c̃i := ci ⊕ (CanSi
(x) · r). Define

c̃ := (c̃1, . . . , c̃2ℓ+1).
4: Compute the indistinguishability obfuscation iOclass of the diO-CD classical program using hard-coded val-

ues {Si, Ti, x̃i, ri}i∈[2ℓ+1] and c̃.
5: For each i ∈ [2ℓ+1], compute the indistiguishability obfuscation iOS⊥+z = iO(PS⊥+z) of the membership

checking program for S⊥
i + zi.

6: Output
|C̃⟩ :=

(
{|(Si)xi,zi

⟩}i∈[2ℓ+1], iOclass

)
, vk := {iOS⊥+z}i∈[2ℓ+1]

Eval(|C̃⟩ , a): a

1: Measure {|(Si)xi,zi
⟩}i∈[2ℓ+1] in the computational basis to obtain vectors {vi}i∈[2ℓ+1].

2: Run iOclass on input ({vi}i∈[2ℓ+1], x) to obtain y, then output y.

Del(|C̃⟩): Measure {|(Si)xi,zi
⟩}i∈[2ℓ+1] in the Hadamard basis to obtain vectors {vi}i∈[2ℓ+1], then output cert :=

{vi}i∈[2ℓ+1].
Verify(vk, cert): If iOS⊥

i +zi
(vi) = Accept for all i ∈ [2ℓ+ 1] then output Accept. Otherwise output Reject.

aAs remarked in definition 8.1.1, one can always perform this procedure coherently and preserve the ability to run Eval
on multiple inputs.

Differing Inputs Obfuscation with Certified Deletion

Theorem 8.2.1. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists differing inputs obfuscation with (publicly-verifiable) certified deletion for polynomially many dif-
fering inputs (definition 8.1.1).

Proof. First, we note that (perfect) functionality preservation and correctness of deletion (with some negli-
gible error) are immediate from the scheme. Thus, it remains to show computational security and certified
everlasting security.

Computational security. Consider two differing inputs circuits (C0, C1, aux) ← Dλ. We will switch an
obfuscation of C0 to an obfuscation of C1 via the following sequence of hybrids.

• Hyb0: This is the distribution (|C̃⟩ , vk)← diO-CD(1λ, C0).

• Hyb1: We modify the classical program iOclass to always decode c̃ to c′ = (0, C0, 0
ℓ) if it does not

abort. This is accomplished by replacing the hardcoded (Ti, x̃i) with (Si,xi) in iOclass for each
i ∈ [2ℓ+ 1]. That is, we obfuscate the following program.

49

Hard-Coded Values. Subspace and offset tuples {Si, Si,xi}i∈[2ℓ+1], vectors {ri}i∈[2ℓ+1], and a bitstring

c̃ ∈ {0, 1}2ℓ+1.
Input. vectors {vi}i∈[2ℓ+1] and an input a.

1: if vi ∈ Si + xi for every i ∈ [2ℓ+ 1] then
2: Compute c′i := c̃i ⊕ (CanSi(vi) · ri).
3: Parse c′1, . . . , c

′
2ℓ+1 as (b, C0, C1), where C0 and C1 are circuits with description length ℓ.

4: Output Cb(x).

Hyb1 Classical Program

Recall that Can(vi) = CanSi(xi) for all vi ∈ Si+xi. Since c̃i = ci⊕ (CanSi(xi) ·ri), the program
always decodes c̃ to c′ = c = (0, C0, 0

ℓ) if it does not abort.

• Hyb2: Replace c = (0, C0, 0
ℓ) with c = (0, C1, 0

ℓ) when computing c̃.

• Hyb3: For each i ∈ [2ℓ+ 1], replace (Si,xi) with (Ti, x̃i) in the obfuscated program P . This is the
distribution (|C̃⟩ , vk)← diO-CD(1λ, C1).

Indistinguishability between Hyb0 and Hyb1 and between Hyb2 and Hyb3 follows from subspace-
hiding obfuscation (corollary 5.2.3). Indistinguishability between Hyb1 and Hyb2 follows from the se-
curity of diO due to the fact that C0 and C1 are samples from a differing inputs circuits family with a
polynomial number of differing inputs. Recall that any iO is a diO for a polynomial number of differing
inputs.

Certified everlasting security. Consider two differing inputs circuits (C0, C1) ← Dλ. We will switch an
obfuscation of C0 to an obfuscation of C1 by changing one bit of the string c in the construction at a
time, then argue that each switch is statistically close conditioned on the adversary producing a successful
deletion certificate.

• Hyb0: This is the certified everlasting security game with (|C̃⟩ , vk)← diO-CD(1λ, C0).

• Hyb1 to Hybℓ: In hybrid Hybi for i ∈ [1, . . . , ℓ], we switch the ℓ+ 1 + i’th bit of c to the i’th bit of
the description of C1. That is, in Hybℓ, the string c = (0, C0, C1).

• Hybℓ+1: Switch the first bit of c to 1. So, now c = (1, C0, C1).

• Hybℓ+2 to Hyb2ℓ+1: In hybrid Hybi for i ∈ [ℓ+2, . . . , 2ℓ+1], we switch the i− ℓ’th bit of c to the
i− ℓ− 1’th bit of C1. That is, in Hyb2ℓ+1, the string c = (1, C1, C1).

• Hyb2ℓ+2: Switch the first bit of c to 0. So, now c = (0, C1, C1).

• Hyb2ℓ+3 − Hyb3ℓ+2: In hybrid Hybi for i ∈ [2ℓ+ 3, 3ℓ+ 2], we switch the i− ℓ− 1’th bit of c to
0. That is, in Hyb3ℓ+2, the string c = (0, C1, 0

ℓ). Note that this is exactly the certified everlasting
security game with (|C̃⟩ , vk)← diO-CD(1λ, C1).

The proof follows by combining the following claims.

Claim 8.2.2. TD(Hybj−1,Hybj) = negl(λ) for all j ∈ [1, . . . , ℓ].

50

Proof. We will reduce this claim to Theorem 7.0.4. To do so, we must define a distributionZ(·) and argue
that it is semantically hiding in its first input and coset-hiding in its third input. Defining i∗ := ℓ+ 1 + j,
we note that the output of diO-CD in Hybi−1 and Hybi can be written as

|(Si∗)xi∗ ,zi∗ ⟩ and Z1(Si∗ , Ti∗ + x̃i∗ , S
⊥
i∗ + zi∗ , c̃i∗)

where a sample from Z1(Si∗ , Ti∗ + xi∗ , S
⊥
i∗ + zi∗ , c̃i∗) takes the form(

{|(Si)xi,zi⟩}i ̸=i∗ , iOclass,
{
iO
(
PS⊥

i +zi

)}
i∈[2ℓ+1]

)
This distribution can be sampled from by sampling from Hybi−1 (equivalently, Hybi) using Si∗ , Ti∗ +xi∗ ,
S⊥i∗ + zi∗ , and c̃i∗ as hard-coded values for index i∗ while sampling the other indices i ̸= i∗ as usual.

It suffices to show that Z1 can be simulated using only Ti∗ + x̃i∗ , S⊥i∗ + zi∗ , ri∗ , and c̃i∗ . This implies
both required properties. We show how to simulate it via the following sequence of hybrids.

• Hyb0(Si∗ , Ti∗ + x̃i∗ , S
⊥
i∗ + z, r, c̃i∗): This is the original distribution Z1 with the same inputs.

• Hyb1(Si∗ , Ti∗ + x̃i∗ , S
⊥
i∗ +z, r, c̃i∗): This is the same as Hyb0, except that we modify the classical

program iOclass to always decode the first ℓ+ 1 bits of c̃ to (0, C0) if it does not abort. Therefore it
will always either abort or evaluate C0.

Specifically, replace the hard-coded values (Ti, x̃i) with (Si,xi) in the diO-CD classical program,
for every i ∈ [1, . . . , ℓ + 1]. In other words, in Hyb1, iOclass is an obfuscation of the following
program.

Hard-Coded Values. Subspace and offset tuples {Si, Si,xi}i∈[ℓ+1] and {Si, Ti, x̃i}i∈[ℓ+2,...,2ℓ+1], vec-

tors {ri}i∈[2ℓ+1], and a bitstring c̃ ∈ {0, 1}2ℓ+1.
Input. vectors {vi}i∈[2ℓ+1] and an input a.

1: if vi ∈ Si + xi for every i ∈ [ℓ+ 1] then
2: if vi ∈ Ti + x̃i for every i ∈ [ℓ+ 2, 2ℓ+ 1] then
3: Compute c′i := c̃i ⊕ (CanSi(vi) · ri).
4: Parse c′1, . . . , c

′
2ℓ+1 as (b, C0, C1), where C0 and C1 are circuits with description length ℓ.

5: Output Cb(x).

Hyb1 Classical Program

Note that if vi ∈ Si + xi, then CanSi(vi) = CanSi(xi). This is always the case for i ∈ [ℓ + 1] if
the program does not abort. Since c̃i = ci ⊕ (CanSi(xi) · ri), the program always decodes the first
ℓ+ 1 bits of c̃ to (0, C0) if it does not abort.

• Hyb2(Ti∗ + x̃i∗ , S
⊥
i∗ + z, r, c̃i∗): This is the same as Hyb1, except that we replace Si∗ with 0|Si∗ |

in the classical obfuscated program iOclass. This removes its dependence on Si∗. Note that since
i∗ > ℓ+ 1, the program still decodes the first ℓ bits of c̃ to (0, C0) if it does not abort. Therefore it
will always either abort or evaluate C0.

• Hyb3(Ti∗ + x̃i∗ , R
⊥
i∗ + z̃, r, c̃i∗): This is the same as Hyb2, except that we will remove the

dependence of iO
(
PS⊥

i∗+zi∗

)
on S⊥i∗ + zi∗ . Sample Ri∗ as a uniformly random superspace of S⊥i∗

of dimension 3λ/4 and set z̃i∗ = CanR⊥
i∗
(zi∗). Use iO

(
PR⊥

i∗+z̃i∗

)
in place of iO

(
PS⊥

i∗+zi∗

)
. Note

51

that if we consider Ti∗+x̃i∗ , ri∗ , and c̃i∗ to be fixed, then this distribution depends only onR⊥i∗+z̃i∗ ,
so it can be considered as a coset-hiding simulator for definition 7.0.1.

The indistinguishability of Hyb0 and Hyb1 follows by repeated application of subspace-hiding ob-
fuscation (corollary 5.2.3) for each i ∈ [1, . . . , ℓ + 1]. Next, the indistinguishability of Hyb1 and Hyb2
follows from the security of iO, since these programs are functionally equivalent. Indeed, note that in both
hybrids, the program always outputs C0(x) if it does not abort, and the aborting conditions are the same.
Finally, the indistinguishability of Hyb2 and Hyb3 follows again from corollary 5.2.3.

Claim 8.2.3. TD(Hybℓ,Hybℓ+1) = negl(λ).

Proof. We will again reduce this claim to theorem 7.0.4. Note that the output of diO-CD in Hybℓ and
Hybℓ+1 can be written as

|(S1)x1,z1⟩ and Z1(S1, T1 + x̃1, S
⊥
1 + z1, r1, c̃1)

where a sample from Z1(S1, T1 + x̃1, S
⊥
1 + z1, r1, c̃1) takes the form(

{|(Si)xi,zi⟩}i ̸=1, iOclass,
{
iO
(
PS⊥

i +zi

)}
i∈[2ℓ+1]

)
This distribution can be sampled from by sampling from Hybℓ (equivalently, Hybℓ+1) using S1, T1 + x1,
S⊥1 + z1, r1, and c̃1 as hard-coded values for index 1 while sampling the other indices i ̸= 1 as usual. In
Hybℓ we have c̃1 = 0⊕ (CanS1(x1) · r1), while in Hybℓ+1 we have c̃1 = 1⊕ (CanS1(x1) · r1).

It suffices to show that Z1 can be simulated using only T1 + x̃1, S⊥1 + z1, r1, and c̃1. This implies
both required properties. We show how to simulate it via the following sequence of hybrids.

• Hyb0(S1, T1 + x̃1, S
⊥
1 + z1, r1, c̃1): This is Z1 with the same inputs.

• Hyb1(S1, T1+ x̃1, S
⊥
1 +z1, r1, c̃1): This is the same as Hyb0, except that we modify the classical

obfuscated program iOclass to always decode the last 2ℓ bits of c̃ to (C0, C1). Therefore it will
always abort, output C0(x), or output C1(x), depending on c̃1. Specifically, replace Ti + x̃i with
Si + xi in the diO-CD classical program for every i ∈ [2, . . . , 2ℓ+ 1].2

Note that if vi ∈ Si + xi, then CanSi(vi) = CanSi(xi). This is always the case for i > 1 if the
program does not abort. Since c̃i = ci ⊕ (CanSi(xi) · ri), the program always decodes the last 2ℓ+
bits of c̃ to (C0, C1) if it does not abort.

• Hyb2(S1, T1 + x̃1, S
⊥
1 + z1, r1, c̃1): This is the same as Hyb1, except we modify the classical

program to use hard-coded versions of C0 and C1, instead of decoding them from c̃. In particular,
it uses the indistinguishability obfuscations C̃0 and C̃1 of these programs. In detail, iOclass is an
obfuscation of the following program:

Hard-Coded Values. Subspace and offset tuple {S1, T1, x̃1} and {Si, Si,xi}i∈[2,...,2ℓ+1], vectors {ri}i∈[2ℓ+1],

a bitstring c̃ ∈ {0, 1}2ℓ+1, and obfuscated programs C̃0 = iO(C0) and C̃1 = iO(C1).
Input. vectors {vi}i∈[2ℓ+1] and an input a.

Hyb2 Classical Program

2This is similar to iOclass for Hyb1 in the proof of the prior Claim 8.2.2.

52

1: if v1 ∈ T1 + x̃1 then
2: if vi ∈ Si + xi for every i ∈ [1, . . . , 2ℓ+ 1] then
3: Compute b := c̃1 ⊕ (CanS1

(v1) · r1).
4: Output C̃b(a).

• Hyb3(S1, T1 + x̃1, S
⊥
1 + z1, r1, c̃1): Same as Hyb2, except in the classical program, the hard-

coded value C̃0 is an obfuscation of C1 instead of C0. In other words, iOclass is an obfuscation of
the following program:

Hard-Coded Values. Subspace and offset tuple {S1, T1, x̃1} and {Si, Si,xi}i∈[2,...,2ℓ+1], vectors {ri}i∈[2ℓ+1],

a bitstring c̃ ∈ {0, 1}2ℓ+1, and obfuscated programs C̃0 = iO(C1) and C̃1 = iO(C1).
Input. vectors {vi}i∈[2ℓ+1] and an input a.

1: if v1 ∈ T1 + x̃1 then
2: if vi ∈ Si + xi for every i ∈ [1, . . . , 2ℓ+ 1] then
3: Compute b := c̃1 ⊕ (CanS1

(v1) · r1).
4: Output C̃b(a).

Hyb3 Classical Program

• Hyb4(T1 + x̃1, S
⊥
1 + z1, r1, c̃1): This is the same as Hyb3, except the classical program always

evaluates a hard-coded copy of C1 if it does not abort. Since the circuit being internally evaluated is
always the same, the program does not need to decode c̃, and therefore we can also remove S1 from
its parameters. In detail, iOclass is an obfuscation of the following program:

Hard-Coded Values. A subspace and offset {T1, x̃1}, subspace and offset tuples {Si, Si,xi}i∈[2ℓ+1],

vectors {ri}i∈[2ℓ+1], a bitstring c̃ ∈ {0, 1}2ℓ+1, and the circuit C1.
Input. vectors {vi}i∈[2ℓ+1] and an input a.

1: if v1 ∈ T1 + x̃1 then
2: if vi ∈ Si + xi for every i ∈ [1, . . . , 2ℓ+ 1] then
3: Output C1(a).

Hyb4 Classical Program

• Hyb5(T1 + x̃1, R
⊥
1 + ṽz1, r1, c̃1): This is the same as Hyb4, except that we will remove the

dependence of iO
(
PS⊥

1 +z1

)
on S⊥1 + z1. Sample R⊥1 as a uniformly random superspace of S⊥1 of

dimension 3λ/4 and set z̃1 := CanR⊥(z1). Use iO
(
PR⊥

1 +z̃1

)
in place of iO

(
PS⊥

1 +z1

)
. Note that

if we consider the other parameters to be fixed, then this distribution depends only on R⊥1 + z̃1, so
it can be consider as a coset-hiding simulator for Definition 7.0.1.

Now, the indistinguishability of Hyb0 and Hyb1 follows by repeated application of corollary 5.2.3 for
each i ∈ [2, . . . , 2ℓ+ 1].

Next, the indistinguishability of Hyb1 and Hyb2 follows from the security of iO, since these programs
are functionally equivalent. Indeed, note that in Hyb1, the program will always either abort or unmask the
c̃ as (b, C0, C1) for some arbitrary bit b. Therefore in both Hyb1 and Hyb2, the program outputs Cb(x) if

53

it does not abort.
The indistinguishability of Hyb2 and Hyb3 follows from the security of diO, which follows from the

security of iO. Since C0 and C1 differ on a polynomial number of hard-to-find inputs, iO(C0) ≈ iO(C1).
In more detail, assuming Hyb2 and Hyb3 are distinguishable, we can distinguish iO(C0) from iO(C1) as
follows. The reduction is given (C0, C1, aux) sampled by the differing inputs circuits sampler, as well as
iO(Cb) for a random b. It classically samples the cosets, then constructs the obfuscated program specified
by Hyb2/Hyb3 using iO(Cb). It runs the distinguisher for Hyb2/Hyb3 and outputs the result.

The indistinguishability of Hyb3 and Hyb4 follows from the security of iO, since these programs are
functionally equivalent. Indeed, note that in Hyb3, the program will always evaluate iO(C1) if it does not
abort, which is functionally equivalent to C1. Finally, the indistinguishability of Hyb4 and Hyb5 follows
again from corollary 5.2.3.

Claim 8.2.4. TD(Hybi−1,Hybi) = negl(λ) for all i ∈ [ℓ+ 2, . . . , 2ℓ+ 1].

Proof. This follows from essentially an identical proof as claim 8.2.2.

Claim 8.2.5. TD(Hyb2ℓ+1,Hyb2ℓ+2) = negl(λ).

Proof. This follows from a similar proof to claim 8.2.3. The only difference is that we can transition
directly from sub-hybrid Hyb1 to Hyb4 using the security of iO. Note that in Hyb1, the classical program
would always unmask (b, C1, C1) if it does not abort, and so it always evaluates C1 in this case. In Hyb4,
the classical program also always evaluates C1 if it does not abort, and the aborting conditions are the
same.

Claim 8.2.6. TD(Hybi−1,Hybi) = negl(λ) for all i ∈ [2ℓ+ 3, . . . , 3ℓ+ 2].

Proof. This follows from essentially an identical proof as claim 8.2.2.

8.3 Variant: Nesting

Nested differing inputs. We also introduce a new circuit class called nested differing inputs circuits,
along with the corresponding security property. This property will allow generalizing the classical tech-
nique of wrapping a differing inputs obfuscation inside another indistinguishability obfuscator with a more
general functionality. Since the functionality of the outer iO may take in a larger input than the inner func-
tionality, and may query the inner differing inputs obfuscation and use the output arbitrarily, there may be
an exponential number of differing inputs.3 As long as the adversary cannot find a differing input when
given the description of the outer functionality, the inner functionality can still be switched according to
the security of differing inputs obfuscation for a polynomial number of differing inputs. This technique
allows additional versatility when using differing inputs obfuscation.

Unfortunately, wrapping a quantum program in a classical indistinguishability obfuscation is not well-
defined. Therefore, we explicitly build this technique into the properties of diO-CD.

3For example, say the outer functionality takes as input (x, y), then ignores x and outputs f(y), where f is the inner func-
tionality.

54

Definition 8.3.1 (Nested Differing Inputs Circuits). A nested differing inputs circuits family C′ is defined
by a circuit Cf and a differing inputs circuit family C with a distribution DC . It consists of the circuits
Cf ◦ CC for CC ∈ C, which take as input bitstrings x and y then output Cf (x, y, CC(y)). It is associated
with a distribution D′C . Samples from D′ are obtained by sampling (C0, C1, aux) ← DC and outputting
(Cf ◦ C0, Cf ◦ C1, aux).

y∗ is a nested differing input for (Cf ◦ C0, Cf ◦ C1, aux) ← D′ if it is a differing input for (C0, C1).
Note that two circuits Cf ◦ C0 and Cf ◦ C1 may have an exponential number of differing inputs even
though they only have polynomially many nested differing inputs. However, all differing inputs are of the
form (x, y∗) where y∗ is a nested differing input.

Deletion security for nested differing inputs circuit families using the same diO-CD security game. We
say a diO-CD scheme has deletion security for nested differing inputs circuits if it has deletion security
for all nested differing inputs circuits families. We refer to such a scheme as a nested differing inputs
obfuscation with certified deletion.

Construction. Recall that the diO-CD construction given above can be evaluated by performing a com-
putational basis measurement, then evaluating a classical program on the result. Therefore, we can “nest”
an obfuscated program ((|ψ⟩ , iOclass), vk)← diO-CD(C) inside another program Cf by creating the pro-
gram (|ψ⟩ , Cf ◦ iOclass). It can be correctly evaluated by measuring |ψ⟩ in the computational basis, then
evaluating Cf ◦ iOclass on the measurement result and any other inputs. Furthermore, the inner program
retains its certified deletion security. Cf ◦ iOclass can be additionally obfuscated using diO-CD to protect
Cf , since Cf ◦ iOclass is a classical program. Thus we have the following corollary.

Corollary 8.3.2. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists nested differing inputs obfuscation with (publicly verifiable) certified deletion for polynomially many
nested differing inputs.

8.4 Variant: Provable Correctness

A desirable property for an obfuscation scheme is the ability to prove that the program is well-formed.
For example, when obfuscating a program that allows the holder to decrypt ciphertexts, the holder may
wish to be assured that they can correctly decrypt any ciphertext. Unfortunately, our diO-CD construction
does not allow for this. Since the functionality of an obfuscated program C̃ = (|ψ⟩ , iOclass) is determined
by |ψ⟩, whether or not C̃ has the correct functionality is not a QMA statement.

Tokenized diO-CD To remedy this, we introduce a new diO-CD property which we call “tokenization”
and give an alternative scheme which satisfies it. A tokenized diO-CD generates programs which consist
of a quantum token and a classical (obfuscated) program. Crucially, the functionality of the program is
fully determined by the classical obfuscated program. On input a (measured) token t and an input x, the
classical program either aborts for all x or evaluates C(x) for a fixed program C. This ensures that if a
token is valid, then the program behaves correctly on it, and that invalid tokens are detectable. Thus, the
well-formedness of a tokenized diO-CD program can be formulated as the QMA statement “there exists a
token t such that the classical program evaluates C(x) for all x”.

Definition 8.4.1 (Tokenized diO-CD). A (nested) differing inputs obfuscator with certified deletion (Obf,
Eval, Del, Verify) is tokenized if it satisfies the following properties:

1. Obf(C) outputs a quantum token |ψ⟩ =
∑

t∈{0,1}poly(λ) αt |t⟩ and a classical program C̃.

55

2. Eval((|ψ⟩ , C̃), x) = C̃(|ψ⟩ , x) =
∑

t∈{0,1}poly(λ) αt |C̃(t, x)⟩.

3. The probability of generating an obfuscation (|ψ⟩ , C̃)← Obf(C) such that for all t ∈ {0, 1}poly(λ),
either

(a) for all x, C̃(t, x) = C(x)

(b) or for all x, C̃(t, x) = ⊥

is 1− negl(λ).

Computational Certified Deletion Achieving the tokenized property requires trading statistical secu-
rity after deletion for computational security after deletion. This is unavoidable for provable correctness,
since the functionality must be encoded classically in order for correctness to be a QMA statement. Thus
the functionality is information-theoretically determined even after deletion. We define a computational
certified deletion security by directly leaking the differing inputs after deletion. This captures the fact that
the adversary can no longer evaluate the program on differing inputs once it deletes the program.

Definition 8.4.2 (Computational certified deletion for diO-CD). LetDC be the distribution associated with
a differing inputs circuit family C. Define the following game, parameterized by a bit b:

1. The challenger samples differing input circuits (C0, C1, aux)← DC . It computes the set of differing
inputs Y ∗ = {y∗ : C0(y

∗) ̸= C1(y
∗)} and the obfuscation (C̃b, vk)← diO-CD(Cb, 1

λ), then sends
(C̃b, C0, C1, aux) to the adversary.

2. The challenger receives a proof of deletion cert from the adversary.

3. If Verify(vk, cert) = ⊤, send the set of differing inputs Y ∗ to the adversary.

4. The adversary outputs a bit b′ and wins if b′ = b.

A diO-CD scheme has computational certified deletion security for C if the adversary’s advantage in
winning this game is negl(λ).

If this holds even when the adversary also receives vk in step 1, then we say the diO-CD scheme has
publicly verifiable computational certified deletion security.

Construction The construction is almost exactly the same as our original diO-CD construction (sec-
tion 8.2), except we remove the noise from the check. This is accomplished by setting Si = Ti and
x̃i = xi instead of sampling them so that Ti + x̃i is a random super-coset of Si + xi. In more detail, to
obfuscate a program C, do the following.

• Let ℓ = |C|. For each i ∈ [2ℓ + 1], sample subspaces Si ⊂ Fn
2 with dim(Si) = λ/2, then sample

xi, zi, ri ← Fλ
2 .

• Let c := (0, C, 0ℓ), and for all i ∈ [2ℓ + 1], define c̃i := ci ⊕ (CanSi(xi) · ri). Define c̃ :=
(c̃1, . . . , c̃2ℓ+1).

• Compute the indistinguishability obfuscation iOclass of the diO-CD classical program using hard-
coded values {Si, Si,xi, ri}i∈[2ℓ+1] and c̃.

56

• Output

|C̃⟩ :=
(
{|(Si)xi,zi⟩}i∈[2ℓ+1], iOclass

)
and vk :=

{
iO
(
PS⊥

i +zi

)}
i∈[2ℓ+1]

.

Deletion and verification are done as in the original scheme. For convenience, we recall the diO-CD
classical program here, updated for the chosen parameters.

Hard-Coded Values. Subspace and offset tuples {Si, xi}i∈[2ℓ+1], vectors {ri}i∈[2ℓ+1], and a bitstring c̃ ∈

{0, 1}2ℓ+1.
Input. vectors {vi}i∈[2ℓ+1] and an input a.

1: if vi ∈ Si + xi for every i ∈ [2ℓ+ 1] then
2: Compute c′i := c̃i ⊕ (CanSi

(xi) · ri).
3: Parse c′1, . . . , c

′
2ℓ+1 as (b, C0, C1), where C0 and C1 are circuits with description length ℓ.

4: Output Cb(a).

diO-CD Classical Program

Corollary 8.4.3 (Tokenized diO-CD). Assuming post-quantum indistinguishability obfuscation and in-
jective one-way functions, there exists diO-CD with provable correctness for polynomially many differing
inputs.

Proof. Observe that if vi ∈ Si + xi, then c̃ is always unmasked to (0, C, 0ℓ). Therefore whenever the
program does not abort, it evaluates C. Since whether the program aborts is independent of the input a,
the above construction is indeed tokenized. This establishes provable correctness.

Next we show (publicly verifiable) computational certified deletion security. Consider the following
hybrids:

• Hyb0: The outcome bit from the computational certified deletion game for the tokenized diO-CD
construction.

• Hyb1: This is the same as Hyb0, except we modify iOclass. For every i ∈ [2ℓ+1], sample a random
Ti ⊃ Si with dimension 3λ/4. Let x̃i := CanTi(xi) Instead of obfuscating the diO-CD classical
program with {Si, Si,xi, r} hard-coded, use {Si, Ti, x̃i, r}. This is our original diO-CD scheme.

Indistinguishability of Hyb0 and Hyb1 follows from the repeated application of subspace-hiding ob-
fuscation (corollary 5.2.3). Observe that any QPT adversary’s winning advantage in Hyb1 is negligible.
Otherwise, an adversary could violate the (information-theoretic) certified deletion security of the original
diO-CD scheme (theorem 8.2.1) by computing the list of differing inputs inefficiently after deletion, then
running the QPT adversary. Since the distributions over the outcome bits of the game in Hyb0 and Hyb1
are indistinguishable, this also holds in Hyb0.

57

58

Chapter 9

Applications

In this section, we discuss several applications of our techniques:

• Section 9.1: Encryption with Publicly Verifiable Certified Deletion. Encryption with certified
deletion guarantees that once an adversary generates a valid certificate for the ciphertext, the plain-
text is information-theoretically lost. We show how to publish the verification key while still main-
taining this guarantee, assuming indistinguishability obfuscation and injective one-way functions.

• Section 9.2: Functional Encryption with (Publicly Verifiable) Certified Deletion for Cipher-
texts. Functional encryption allows someone who possesses a key skf for a function f and a cipher-
text ctm for a message m to compute f(m), but nothing more. Certified deletion for ciphertexts
adds the ability to verifiably destroy the ciphertext ctm. Afterwards, the remaining information
about m is information-theoretically lost; nothing more can be learned about it even if additional
keys skg are acquired. We show how to construct this from sub-exponentially secure obfuscation
with certified deletion.

• Section 9.3: Functional Encryption with (Publicly Verifiable) Key Revocation. In contrast, key
revocation adds the ability to delete the decryption key skf . After deleting skf , even if an adversary
learns a new ciphertext ctm′ , they will not be able to learn f(m′).1 We show how to construct this
from obfuscation with certified deletion and injective one-way functions.

• Section 9.4: Strong Secure Software Leasing. Consider a leasor who leases out a piece of software
to a leasee. Secure software leasing guarantees that if the leasee returns an intact (as determined
by the leasor’s verification) copy of the software, then they cannot also have a fully functional
copy of the software locally that can be evaluated using the honest evaluation procedure. Strong
secure software leasing ensures that the copy cannot be evaluated even using arbitrary evaluation
procedures. We show that this is immediately implied by obfuscation with certified deletion.

9.1 Encryption with Publicly Verifiable Certified Deletion

Standard certified deletion requires that the verification key vk is hidden from the adversary. It would
be useful if vk could be safely published, allowing anyone to verify certificates of deletion. Combining
our coset certified deletion theorem with constructions from [BK23] yields a variety of primitives with
publicly verifiable certified deletion.

1This is the only result in this section which is not information-theoretically secure after deletion. This weakness is inherent,
since an unbounded adversary could anyway break ctm′ to recover m′ without ever having received skf .

59

Corollary 9.1.1. Assuming indistinguishability obfuscation and post-quantumX ∈ {public-key, attribute-
based, fully-homomorphic, time-release, witness} encryption, there exists X encryption with publicly ver-
ifiable certified deletion.

We briefly sketch the construction for public-key encryption. The other constructions are analogous.
Key generation simply generates a key pair (sk, pk) from the underlying (post-quantum) PKE. To encrypt
a message bit2 m ∈ {0, 1} using public key pk, sample an λ/2-dimensional subspace S ⊂ Fλ

2 and offsets
x, z ← Fλ

2 , then output

ct = |Sx,z⟩ , r, (r · CanS(x))⊕m, PKE.Enc(pk, S) (9.1)

vk = iO(PS⊥+z) (9.2)

where PS⊥+z decides membership in S⊥ + z. Decryption can be done using S, which can be recov-
ered from PKE.Enc(pk, S) using sk. To delete a ciphertext, measure |Sx,z⟩ in the Hadamard basis
to get a vector v ∈ S⊥ + z. Anyone holding vk can check that v ∈ S⊥ + z to validate the cer-
tificate v. Deletion security is immediate from our coset deletion theorem using the observation that
(PKE.Enc(pk, S), iO(PS⊥+z)) is subspace-hiding.

9.2 Functional Encryption with Certified Deletion for Ciphertexts

Next, we construct a new kind of encryption where the ciphertexts can be verifiably deleted: functional
encryption. In functional encryption, a central party can distribute secret keys skf which allow the holder
of skf to learn f(x) from Enc(x), but no more. Ciphertext certified deletion additionally requires that the
ciphertexts Enc(x) can be verifiably deleted. Afterwards, the adversary cannot learn any more information
about x even if it receives a new key skg or breaks the computational problem underlying the functional
encryption scheme.

In contrast to other encryption schemes, functional encryption reveals some information about x even
before Enc(x) is deleted. This closely matches how obfuscation with certified deletion reveals some
information about the program before it is deleted.3

In the following we sketch how to construct FE with ciphertext certified deletion, albeit at the cost
of assuming subexponential hardness of the underlying building blocks. We leave open the problem of
constructing FE with ciphertext certified deletion from polynomial assumptions.

9.2.1 Definition

Syntax. FE with ciphertext certified deletion augments the syntax of a standard FE scheme with two
new algorithms Del and Verify. Additionally, Enc also outputs a verification key vk and all algorithms
may be QPT.

• Del(|ct⟩) takes as input a ciphertext and outputs a certificate.

• Verify(vk, cert) takes as input a verification key vk and a certificate cert, then outputs Accept or
Reject.

The scheme needs to satisfy an additional correctness property, that Verify will always accept a certificate
generated honestly from the ciphertext:

Pr[Verify(Del(c), vk) = Acc : (pk,msk)← Setup(1λ), (c, vk)← Enc(pk,m)] = 1.
2This can be generically lifted to longer messages via a standard hybrid argument.
3Even in the classical setting, functional encryption and obfuscation are closely related [BV15, AJ15, GMM17].

60

Security. Security can be defined using a variant of the FE security game (Definition 5.3.3) where the
query restrictions on secret keys skf are completely lifted after the adversary deletes the challenge cipher-
text ct. More explicitly: during the entire game, the adversary may query for secret keys skf . At any point,
it may query for a challenge ciphertext ct∗ = Enc(mb) by submitting two messages m0 and m1 to the
challenger. At any point, it may then submit a certificate. The only constraint on the adversary’s queries
is that f(m0) = f(m1) for all f queried before the challenger receives a valid certificate. Afterwards, the
adversary is free to query the key generation oracle on any functions.

We also consider a more stringent security definition where the adversary becomes computationally
unbounded after submitting a valid certificate. In this case, it could directly compute new secret keys skf
itself.

Definition 9.2.1 (FE Certified Everlasting Security for Ciphertexts). A functional encryption with certified
deletion for ciphertexts has certified everlasting security if for every QPT adversary A,

TD[FE-CEVA(0),FE-CEVA(1)] = negl(λ)

where FE-CEVA(b) is defined as follows:

1. Setup: The challenger generates a key pair (pk,msk)← Setup(1λ) and sends pk to A.

2. Query Phase 1: The adversary may query functions f ∈ Fλ to the challenger. The challenger
replies with skf ← KeyGen(msk, f).

3. Challenge: A sends two messages (m0,m1) to the challenger, subject to the constraint that f(m0) =
f(m1) for all previously queried f . The challenger sends back ct from (ct, vk)← Enc(pk,mb).

4. Query Phase 2: The adversary may submit additional key queries for functions f , subject to the
constraint that f(m0) = f(m1).

5. Deletion and Output. The adversary outputs a certificate cert and a state ρ. If Verify(vk, cert) =
Accept, output ρ. Otherwise, output ⊥.

We say the functional encryption scheme has selective security if this holds in the game where adver-
sary must declare the challenge messages m0 and m1 before the challenger samples (pk, sk).

We say it is publicly verifiable if this holds even when A also receives vk during the challenge step.

9.2.2 Construction

The ingredient of the construction are a subexponentially-secure diO-CD scheme and a unique signature
scheme (Gen,Sig,Verify). The public parameters of the scheme simply consist of a verification key vk
and a signing key sk sampled uniformly. A functional key for f is computed as

skf ← Sig(sk, f).

To encrypt a message m, define Π to be the program that takes as input a function f and a signature σ,
checks the validity of the signature 1 = Verify(vk, f, σ) and if this check passes, outputs f(m). Otherwise
it outputs ⊥. The ciphertext is then defined to be the diO-CD of Π. Decryption works canonically, and
correctness follows by the correctness of the underlying building blocks.

61

Theorem 9.2.2. Assuming sub-exponentially4 secure differing inputs obfuscation with certified deletion
and unique signatures, there exists functional encryption with selective ciphertext certified everlasting
security. Furthermore, the certificates are publicly verifiable.

Sketch. Next, we provide a sketch of the security analysis. The proof proceeds by defining a series of
hybrids, iterating over all possible functions f . Starting from an encryption of m0, each hybrid gradually
modifies the obfuscated circuit to output f(m1) on input a valid pair (f, σ). Note that this circuit can
be defined in such a way that its size does not blow up exponentially (e.g., by iterating over all f in
lexicographical order). To argue indistinguishability, we consider two cases:

• If f(m0) = f(m1), then indistinguishability follows from the sub-exponential security of diO-CD,
since the two circuits are functionally equivalent, i.e. there are zero differing inputs.

• If f(m0) ̸= f(m1), then observe that the two circuits differ in exactly one input, which is (f, σ),
where σ is the unique valid signature on f . By the sub-exponential unforgeability of the signature
scheme, it follows that the two circuits are a valid differing-input pair. Thus indistinguishability
follows by the sub-exponential security of the diO-CD, since the adversary can only query the
signature (i.e., the differing-input) only after producing a valid deletion certificate.

In the final hybrid, the circuit is functionally equivalent to a valid encryption of m1 and therefore we can
conclude the proof by another invocation of the sub-exponential security of diO-CD.

Unique Signatures. We conclude by recalling the unique signatures can be instantiated using standard
iO and one-way function, using the construction of Sahai and Waters [SW14]. In their scheme, a sig-
natures on a message m is the output of a pseudorandom function (PRF) on m, whereas the verification
key consists of an obfuscated circuit that checkes whether the PRF was correctly computing (using the
hardwired key). Since the PRF is in particular a function, it follows that signatures are unique. For more
details, we refer the reader to [SW14].

9.3 Functional Encryption with Key Revocation

We can also consider a dual notion of certified deletion for FE, where the secret key skf can be verifiably
deleted. After skf is deleted, the party is no longer able to learn f(x) from new ciphertexts Enc(x)
(assuming they do not have a second sk′f for the same function which they did not delete).

We show that we can construct FE with key revocation using differing inputs obfuscation with certified
deletion. We note that our construction can also be used to generically construct key revocation for any
PKE.

9.3.1 Definition

Definition 9.3.1 (Functional Encryption with Key Revocation). A functional encryption scheme with key
revocation is associated with a class of functions F(λ) and a message space Mλ. It consists of the
following QPT algorithms:

• Setup(1λ) takes as input the security parameter λ, then outputs a public key pk and a master secret
key msk.

4This refers to the final trace distance.

62

• KeyGen(msk, f) takes as input the master secret key msk and the description of a function f ∈ F,
then outputs a secret key skf and a verification key vk.

• Enc(pk,m) takes as input the public key pk and a message m, then outputs a ciphertext c.

• Dec(skf , c) takes as input a secret key skf and a ciphertext encrypting a message m ∈ Mλ, then
outputs f(m).

• Del(skf) takes as input a decryption key, then outputs a certificate of deletion cert.

• Verify(cert, vk) takes as input a certificate of deletion cert and a verification key vk, then outputs
Accept or Reject.

Definition 9.3.2 (Correctness for FE with Key Revocation). A functional encryption scheme with key
revocation is correct if it satisfies the following two properties:

• Decryption Correctness For all functions f ∈ F and messages m ∈ M,

Pr

[
Dec(skf ,Enc(pk,m)) ̸= f(m) :

(pk,msk)← Setup(1λ),
(skf , vk)← KeyGen(msk, f)

]
= negl(λ)

• Deletion Correctness

Pr[Verify(Del(skf), vk) = Acc : (pk,msk)← Setup(1λ), (skf , vk)← KeyGen(msk, f)] = 1

In the key revocation game, the adversary receives some number of secret keys for functions of its
choice. It deletes some of them, then queries the challenger on messages m0 and m1 such that f(m0) =
f(m1) for every secret key skf which it did not delete. There are no restrictions with respect to the
functions computed by deleted secret keys. After receiving a ciphertext for one of the messages, the
adversary then is allowed to receive more secret keys skf subject to the constraint that f(m0) = f(m1).
They then attempt to guess which message was encrypted.

Definition 9.3.3 (Key Revocation for FE). A functional encryption scheme, augmented as above, has
secret key certified deletion if the advantage of every QPT adversary in the following game is negl(λ):

1. The challenger samples (pk,msk)← Setup(1λ) and sends pk to the adversary.

2. The following query phase is repeated a polynomial number of times:

(a) The adversary adaptively submits a query fi ∈ F(λ).
(b) The challenger samples (skfi , vki)← KeyGen(msk, fi) and sends skfi to the adversary.

3. Let n be the number of iterations in the query phase. The adversary sends a list of deletion proofs
cert1, . . . , certn, along with two messages m0 and m1. For any secret key skfi they do not wish to
delete, they may send certi = ⊥.

4. The challenger checks the deletion proofs. If fi(m0) = fi(m1) for every fi such that Verify(certi, vki) =
Rej, then sample a random bit b and send Enc(pk,mb) to the adversary.

5. The following query phase is repeated a polynomial number of times:

(a) The adversary adaptively submits a query fi ∈ F(λ).

63

(b) If fi(m0) = fi(m1), the challenger samples (skfi , vki) and sends skfi to the adversary.

6. The adversary outputs a bit b′ and wins if b′ = b.

We say the functional encryption scheme has selective secret key certified deletion if this holds in the
game where adversary must declare the challenge messages m0 and m1 before the challenger samples
(pk, sk).

Note that key revocation security subsumes standard indistinguishability security for FE (Defini-
tion 5.3.3).

Remark 9.3.4. Definition 9.3.3 only requires computational security after deletion, unlike many of our
other results. Unfortunately, this is inherent. Even if the adversary never received a secret key skf , the
encryption of any message is still only computationally secure for any FE scheme.

9.3.2 Construction

Our construction is a natural generalization of the construction in [GGH+13]. Their construction makes
use of a classical public key encryption scheme (GenPKE,EncPKE,DecPKE) and statistically simulation
sound non-interactive non-interactive zero knowledge proofs (SSS-NIZK). The secret key skf consists
of an obfuscated program which takes in a SSS-NIZK π and two ciphertexts c1, c2, then if π shows that
c1 and c2 encrypt the same message, it outputs f(Dec(c1)). Our construction simply implements this
functionality as a diO-CD program with a very slight change to allow treating the challenge ciphertext as
a differing input.

SSS-NIZK proof systems can be built using statistically-binding commitments and any NIZK proof
system [GGH+13]. NIZK proof systems are known from quantum-resistant assumptions [PS19].

Define the language

L = {(pk1, pk2, c1, c2,1, c2,2) : ∃m, r1, r2 s.t. c1 = Enc(pk1,m; r1) ∧ c2 = Enc(pk2,m⊕ c2,2); r2)}

This language consists of ciphertexts which encrypt the same message. c2,2 acts as a one-time-pad
key for the message inside c2,1, which will later allow us to argue that some c∗2,1, c

∗
2,2 is hard to find even

when we have access to c∗2,1 and a one-way function image g(c∗2,2). This is necessary for constructing a
differing inputs circuit where (c∗2,1, c

∗
2,2) is part of the differing input.

Hardcoded: a function f , a public key pk, and a secret key sk1 for a classical PKE

Input: NIZK π, ciphertexts c1 and (c2,1, c2,2)

1: Parse pk = (crs, pk1, pk2)
2: if VerifyL(crs, π, (pk1, pk2, c2,1, c2,2)) = ⊤ then
3: Output f(Dec(sk1, c1)).

FE Secret Key Functionality

Setup(1λ)

1: Sample two classical PKE key pairs (pk1, sk1), (pk2, sk2)← GenPKE(1
λ).

2: Set crs← SetupNIZK(1
λ).

FE with Key Revocation

64

3: Output the public key pk = (crs,Lpk1,pk2 , pk1, pk2) and the master secret key msk = sk1.
KeyGen(msk, f) Output a diO-CD program for the FE Secret Key Functionality using the parameters (f, pk, sk1).

Enc(pk,m)

1: Parse pk = (crs, pk1, pk2). Sample c2,2 uniformly at random, then compute c1 = EncPKE(pk1,m; r1) and
c2,1 = EncPKE(pk2,m⊕ c2,2; r2).

2: Compute π ← ProveL(crs, (pk1, pk2, c1, c2,1, c2,2), (r1, r2)).
3: Output (π, c1, c2,1, c2,2).
Dec(skf , c)

1: Parse skf = (|t⟩ , C̃skf) and c = (π, c1, c2,1, c2,2).

2: Coherently evaluate and output C̃skf (|t⟩ , π, c1, c2,1, c2,2).
Del(skf)

1: Parse skf = (|t⟩ , C̃skf).
2: Compute and output the diO-CD deletion proof cert← DeldiO-CD(|t⟩).
Verify(cert, vk) Output VerifydiO-CD(cert, vk).

Theorem 9.3.5 (Selective FE with Key Revocation). Assuming the existence of nested differing inputs
obfuscation with certified deletion, post-quantum indistinguishability obfuscation, public key encryption,
and injective one-way functions, there exists functional encryption with (publicly verifiable) selective key
revocation.

Remark. The assumptions in this theorem can be reduced to post-quantum iO and injective one-way
functions. We previously constructed nested diO-CD from iO and injective one-way functions (Corol-
lary 8.3.2). Public-key encryption can also be constructed from iO and one-way functions [GGH+13,
GGSW13]. Their security proofs hold even against quantum adversaries.

Proof. Any poly-time adversary makes at most q = q(λ) queries over both query phases. For simplicity
we assume that they make exactly q queries. We proceed by a hybrid argument where in the first hybrid
the challenger encrypts m0. Then, we gradually change the encryption into an encryption of m1 using a
two-key argument.

• Hyb0: This is the secret key certified deletion game for functional encryption played with the
scheme above using message m0 in the challenge ciphertext.

• Hyb1: This hybrid is identical to the previous hybrid, except (crs, π∗) are simulated as

(crs, pk∗)← Sim(1λ, (pk1, pk2, c
∗
1, c
∗
2,1, c

∗
2,2),L)

where the challenge ciphertext is (π∗, c∗1, c
∗
2,1, c

∗
2,2). Note that in the selective security game, the

challenge ciphertext can be computed before the public key is given to the adversary.

• Hyb2: This hybrid is identical to the previous hybrid, except the challenge ciphertext is computed
using c∗2,1 = Enc(pk2,m1⊕ c∗2,2). Recall that the NIZK π∗ is simulated according to (c∗1, c

∗
2,1, c

∗
2,2).

• Hyb3,i for i = 1, . . . , q: In this series of hybrids, we change the form of the functional secret keys
skf . In Hyb3,i, the first i functional secret keys requested are computed as obfuscations of the Hyb3
program. The remaining i+ 1 to q keys are generated as in Hyb2. Hyb3,0 is exactly Hyb2. Let g be
an injective one-way function.

65

Hardcoded: a function f , a public key pk, and secret key sk1 for a classical PKE, the message m1, the

ciphertexts c∗1, c∗2,1, and the value g(c∗2,2)
Input: NIZK π, ciphertexts c1 and (c2,1, c2,2)

1: Parse pk = (crs, pk1, pk2)
2: if VerifyL(crs, π, (pk1, pk2, c1, c2,1, c2,2)) = ⊤ then
3: if c1 = c∗1, c2,1 = c∗2,1 and g(c2,2) = g(c∗2,2) then
4: Output f(m1).
5: else
6: Output f(Dec(sk1, c1)).

Hyb3 Program

• Hyb4,i for i = 1, . . . , q: In this series of hybrids, we change the form of the functional secret keys
skf . In Hyb4,i, the first i functional secret keys requested are computed as obfuscations of the Hyb4
program. The remaining i+ 1 to q keys are generated as in Hyb3,q. Hyb4,0 is exactly Hyb3,q.

Hardcoded: a function f , a public key pk, and secret keys sk1, sk2 for a classical PKE

Input: NIZK π, ciphertexts c1 and (c2,1, c2,2)

1: Parse pk = (crs, pk1, pk2)
2: if VerifyL(crs, π, (pk1, pk2, c1, c2,1, c2,2)) = ⊤ then
3: Output f(Dec(sk2, c2,1) + c2,2).

Hyb4 Program

• Hyb5: This hybrid is identical to the previous hybrid, except the challenge ciphertext is computed
using c∗1 = Enc(pk1,m1).

• Hyb6,i for i = 1, . . . , q: In this series of hybrids, we change the form of the functional secret keys
skf . In Hyb6,i, the first i functional secret keys requested are computed as obfuscations of the FE
secret key program. The remaining i+1 to q keys are generated as in Hyb5. Hyb6,0 is exactly Hyb5.

• Hyb6: This hybrid is identical to the previous hybrid, except the crs and NIZK proof π∗ in the
challenge ciphertext are generated honestly. This hybrid corresponds to the secret key certified
deletion game using message m1 in the challenge ciphertext.

Claim 9.3.6. If the SSS-NIZK system is computationally zero knowledge, then Hyb0 is computationally
indistinguishable from Hyb1.

Proof. This is immediate from the zero knowledge property, since the rest of the game can be simulated
by a reduction which internally generates the PKE keys.

Claim 9.3.7. If the classical PKE scheme is semantically secure, Hyb1 is computationally indistinguish-
able from Hyb2.

Proof. This is immediate from the semantic security of the classical PKE scheme, since the rest of the
game can be simulated by a reduction which internally generates just (pk1, sk1).

66

Claim 9.3.8. If the diO-CD scheme has nested differing inputs certified deletion, the classical PKE is
semantically secure, and if g is an injective one-way function, Hyb3,i is computationally indistinguishable
from Hyb3,i+1. Note that Hyb2 = Hyb3,0.

Proof. We can rewrite the FE secret key program and the Hyb3 program in nested form as follows:

Hardcoded: a public key pk and an inner program C

Input: NIZK π, ciphertexts c1 and (c2,1, c2,2)

1: Parse pk = (crs, pk1, pk2)
2: if VerifyL(crs, π, (pk1, pk2, c1, c2,1, c2,2)) = ⊤ then
3: Output C(c1, c2,1, c2,2)

FE Secret Key Outer Program

Hardcoded: a function f and secret key sk1 for a classical PKE

Input: ciphertexts c1 and (c2,1, c2,2)

1: Output f(Dec(sk1, c1)).

FE Secret Key Inner Program

Hardcoded: a function f , secret key sk1 for a classical PKE, the message m1, the ciphertexts c∗1 and c∗2,1, and

the one-way function image g(c∗2,2)
Input: ciphertexts c1 and (c2,1, c2,2)

1: if c1 = c∗1, c2,1 = c∗2,1, and g(c2,2) = g(c∗2,2) then
2: Output f(m1).
3: else
4: Output f(Dec(sk1, c1)).

Hyb3 Inner Program

The FE secret key program is obtained by instantiating the FE secret key outer program with the FE
secret key inner program. The Hyb3 program is obtained by instantiating it with the Hyb3 inner program.
Using the injectiveness of the one-way function, it is easy to verify that the two inner programs differ
in at most one input: (c∗1, c

∗
2,1, c

∗
2,2). To show that the inner programs are differing inputs circuits, we

need to show that (c∗1, c
∗
2,1, c

∗
2,2) is hard to find given their descriptions and the auxiliary information the

adversary has when the challenger creates the obfuscated circuits, which is the message pair (m0,m1)
and the description of the FE secret key outer program without the hardcoded inner program C. Note that
this auxiliary input is entirely classical, as required by our definition of diO-CD. It suffices to show that
the adversary cannot even find c∗2,2.

Claim 9.3.9. Assuming the properties from claim 9.3.8, for any (m0,m1) and any function f , we have

67

Pr

A(C0, C1, aux) = c∗2,2 :

(pk1, sk1), (pk2, sk2)← KeyGenPKE(1
λ),

c∗2,2 ← {0, 1}n,
c∗1 ← Enc(pk1,m0), c

∗
2,1 ← Enc(pk2,m1 ⊕ c∗2,2),

C0 = FEInner(f, sk1),
C1 = Hyb3Inner(f, sk1,m1, c

∗
1, c
∗
2,1, g(c

∗
2,2))

aux = (pk1, pk2,m0,m1, f)

 = negl(λ)

Proof. Consider a hybrid where c∗2,1 is generated as an encryption of 0 instead of being an encryption
of m1 ⊕ c∗2,2. Since C0, C1, and aux can be generated given c∗2,1 and pk2, without knowledge of sk2,
this hybrid is indistinguishable from the experiment above due to the semantic security of the PKE. Note
that in this hybrid, c∗2,2 is independent of m0 and m1 even given c∗2,1. Furthermore, C0 and C1 can
be computed just using g(c∗2,2) instead of c∗2,2. Since c∗2,2 is uniformly random and independent of the
auxiliary information, by the one-way property of g we have Pr[A(C0, C1, aux) = c∗2,2] = negl(λ) in this
hybrid. Since this hybrid is indistinguishable from the original experiment, we have the claim.

Therefore the nested differing inputs certified deletion property of the diO-CD scheme ensures that, for
any m0, m1 ,and fi, the deletion game played with the FE secret key program for skfi is indistinguishable
from the one played with the Hyb3 program for skfi , i.e. Hyb3,i is computationally indistinguishable from
Hyb3,i+1.

Claim 9.3.10. If the diO-CD scheme is an indistinguishability obfuscator and the NIZK is statistically
simulation sound, Hyb4,i is computationally indistinguishable from Hyb4,i+1. Note that Hyb3,q = Hyb4,0.

Proof. It suffices to show that the Hyb3 program is functionally equivalent to the Hyb4 program, since then
indistinguishability obfuscation immediately implies the indistinguishability of the two hybrids. Consider
any input (π, c1, c2,1, c2,2). There are three cases:

• π is rejecting. In this case, both programs output ⊥.

• π is accepting and (c1, c2,1, c2,2) = (c∗1, c
∗
2,1, c

∗
2,2). In this case, both programs output f(Dec(sk2, c2,1)⊕

c2,2) = f(m1).

• π is accepting and (c1, c2,1, c2,2) ̸= (c∗1, c
∗
2,1, c

∗
2,2). In this case, due to the statistical simulation

soundness of the NIZK, Dec(sk1, c1) = Dec(sk2, c2,1) ⊕ c2,2. Therefore both programs have the
same output f(Dec(sk1, c1)).

Claim 9.3.11. If the classical PKE scheme is semantically secure, Hyb5 is computationally indistinguish-
able from Hyb4,q.

Proof. This is immediate from the semantic security of the classical PKE scheme, since the rest of the
game can be simulated by a reduction which internally generates (pk2, sk2).

Claim 9.3.12. If the diO-CD scheme is an indistinguishability obfuscator and the NIZK is statistically
simulation sound, Hyb6,i is computationally indistinguishable from Hyb6,i+1. Note that Hyb5 = Hyb6,0.

Proof. It suffices to show that the Hyb4 program is functionally equivalent to the FE secret key program,
since then indistinguishability obfuscation immediately implies the indistinguishability of the two hybrids.
Consider any input (π, c1, c2,1, c2,2). There are two cases:

68

• π is rejecting. In this case, both programs output ⊥.

• π is accepting. In this case, due to the statistical simulation soundness of the NIZK, Dec(sk1, c1) =
Dec(sk2, c2,1)⊕ c2,2. This holds even for (c1, c2,1, c2,2) = (c∗1, c

∗
2,1, c

∗
2,2). Therefore both programs

have the same output f(Dec(sk2, c2,1)⊕ c2,2).

Claim 9.3.13. If the NIZK is computationally zero knowledge, Hyb6,q is computationally indistinguishable
from Hyb7.

Proof. This is immediate from the zero knowledge property, since the rest of the game can be simulated
by a reduction which internally generates the PKE keys.

Therefore the game when played when the challenge ciphertext is an encryption of m0 is indistin-
guishable from the game when the challenge ciphertext is an encryption of m1.

9.4 Strong Secure Software Leasing

We show that obfuscation with certified deletion implies a strong notion of secure software leasing [AL21]
for a wide class of programs. As corollary, we construct this notion of secure software leasing from post-
quantum indistinguishability obfuscation and post-quantum one-way functions.

Definition 9.4.1 (Secure Software Leasing). A secure software leasing scheme for a circuit class C consists
of the QPT algorithms (Gen,Eval,Verify), defined as follows.

• Gen(1λ, C) takes in the security parameter and a circuit C ∈ C, then outputs a leased program C̃
and a verification key vk.

• Eval(C̃, x) takes in a leased program C̃ and an input x, then outputs a value y.

• Verify(vk, C̃) takes in a verification key vk and a leased program C̃, then outputs Accept or Reject.

It must satisfy correctness:

• Evaluation Correctness: For every C ∈ C with input length n,

Pr[Eval(C̃, x) = C(x) ∀x ∈ {0, 1}n : (C̃, vk)← Gen(1λ, C)] = 1− negl(λ)

• Verification Correctness: For every C ∈ C with input length n,

Pr[Verify(vk, C̃) = Accept : (C̃, vk)← Gen(1λ, C)] = 1− negl(λ)

The definition above has slightly different syntax than the one presented in [AL21]. It directly gener-
ates a leased program and verification key in Gen, instead of generating the verification key in Gen, then
separately generating leased programs in an algorithm named Lessor which also takes in the verification
key. We note that a scheme with the syntax definition above can be transformed into a scheme with the
syntax from [AL21] by using any symmetric-key encryption scheme and signature scheme.

Strong finite-term leasing security guarantees that if the leasee returns a valid program, then the output
of the program on certain inputs is hidden. This is a stronger guarantee than finite lessor security, which
only guarantees that after the leasee returns a valid program, they cannot evaluate every input using the
honest Eval procedure.

69

Definition 9.4.2 (Strong Finite-Term Leasing). A secure software leasing scheme (Gen,Eval,Verify) for a
circuit class C associated with a distributionDC has strong β-perfect finite-term leasing if for all QPT ad-
versaries Adv = (Adv1,Adv2) where Adv1 outputs a bipartite state on registers R1 and R2, the following
holds:

Pr

 Verify(vk,TrR2 [ρ]) = Accept
∧

∀x Pr[Adv2(Tr
R1 [ρ], x) = C(x)] ≥ β

:

C ← DC
(C̃, vk)← Gen(1λ, C)

ρ← Adv1(C̃)

 = negl(λ)

If this holds when vk is also given to Adv1 and Adv2, then we say it has publicly verifiability. If this holds
when Adv2 is computationally unbounded, we say it has statistical returns.

We note that unlike in diO, Adv does not receive additional auxiliary input after the circuit C is
sampled.

Theorem 9.4.3. Assuming diO-CD, there exists secure software leasing with (publicly verifiable) β-
perfect strong finite-term security for all differing inputs circuits families, where β = 1/2 + negl(λ).
Furthermore, it has statistical returns.

Proof. Let diO-CD = (Obf,Eval,Del,Verify) be a differing inputs obfuscation with certified deletion.
The secure software leasing scheme SSL is

• SSL.Gen(1λ, C): Run diO-CD.Obf(1λ, C) then output the result

• SSL.Eval(C̃, x): Run diO-CD.Eval(C̃, x) and outputs the result.

• SSL.Verify(vk, C̃): We first describe the scheme with measurements. Evaluate cert← diO-CD.Del(C̃).
Output diO-CD.Verify(vk, cert). To avoid damaging a valid program, do this procedure coherently
and measure the output bit.

Correctness follows from the description of the scheme and correctness of diO-CD. To show strong
finite term lessor security, we first defineDC . Recall that a differing inputs circuit family is associated with
an efficiently sampleable distribution DDI. To generate a sample from DC , sample (C0, C1, aux) ← DDI

and a bit b, then output Cb. Observe that if the leasee returns a valid program, then a valid deletion
certificate can be extracted from the program.

Consider the SSL experiment where DC outputs a circuit Cb. Call the state that the adversary outputs
ρ(b).5 Let ρ′(b) be the leftover state after applying the deletion procedure to the first register and tracing
out the resulting certificate. Say the certificate is valid with noticeable probability. Then by the security
of diO-CD and convexity of trace distance, we have TD(ρ′(0), ρ′(1)) = negl(λ) whenever the certificate
is valid.

We now argue that the probability ρ′(b) can be used to evaluate Cb(y
∗) is at most 1/2 + negl(λ)

for any differing input y∗. Say that Adv2(ρ′(b), x) outputs Cb(x) with probability β0 for all x. Then
Adv2(ρ

′(1− b), x) also outputs Cb(x) with probability ≥ β0− negl(λ). Therefore, for any differing input
y∗, Adv2(ρ′(1 − b), y∗) is incorrect with probability at least 1 − β0 − negl(λ). Thus, the probability of
Adv2 correctly evaluating for a random b is at most 1/2β0 + 1/2(1− (β0 − negl(λ))) = 1/2 + negl(λ).
In other words, β ≤ 1/2 + negl(λ).

5We consider this to be a pure state sampled from the adversary’s output distribution. Otherwise, we can set the probability of
outputting a “good” pirated state to 0 by simply arguing that the adversary always outputs mixed state with negligible probability
mass on “good” pure states.

70

Reducing β. We can lower β further for certain differing inputs circuits classes. Consider the game
where an adversary Adv receives C̃0 ← diO-CD(C0), deletes it, then attempts to guess C0(y

∗) for some
differing input y∗. Since diO-CD(C0) ≈ diO(C1) even given y∗ after deletion, intuitively Adv cannot
guess C0(y

∗) any better than if it were just given C1 and y∗.

Theorem 9.4.4. Assuming diO-CD, there exists secure software leasing with (publicly verifiable) β-
perfect strong finite-term security for all differing inputs circuits families C associated with sampler DC ,
where

β = max
QPT Adv

Pr

[
Adv(C1, y

∗) = C0(y
∗) :

(C0, C1, aux)← DC
uniform y∗ s.t. C0(y

∗) ̸= C1(y
∗)

]
+ negl(λ)

Furthermore, it has statistical returns, where β is taken as the maximum over unbounded Adv.

Proof. The proof is almost identical to the one above, except for two differences. First, we define DC
to output a random C0, instead of a random Cb. Second, we note that Adv2(ρ′(1), y∗) outputs C0(y

∗)
with probability at most β for every differing input y∗. Therefore Adv2(ρ

′(0), y∗) outputs C0(y
∗) with

probability at most β + negl(λ).

This result gives a very general criteria for whether a program class can be securely leased. Indeed,
many program classes which were previously studied for secure software leasing are a special case of this
theorem. We do note, however, that some of these classes have been securely leased in prior work using
weaker assumptions than iO.

Corollary 9.4.5. Assuming post-quantum one-way functions and diO-CD, there exists strong secure soft-
ware leasing for pseudorandom functions, evasive functions, random point functions, and compute-and-
compare circuits.

Sketch. We sketch the result for psuedorandom functions and note that the other classes can be argued
similarly. Because of Theorem 9.4.4, it suffices to construct a differing-inputs circuit family. Let C be
a PRF-evaluating circuit class, where Ck(x) = PRF(k, x) for every Ck ∈ C. Let ky∗ be a privately
punctured PRF key [KPTZ13, BW13, BGI14, BLW17], which has the same behavior as k, except it
contains no information about PRF(k, y∗). Privately puncturable PRFs can be obtained from iO [BLW17],
which is implied by diO-CD. Then {(Ck, Ck∗y) : y

∗ ← {0, 1}λ} is a differing inputs circuits class where

max
QPT Adv

Pr

[
Adv(C1, y

∗) = C0(y
∗) :

(C0, C1, aux)← DC
uniform y∗ s.t. C0(y

∗) ̸= C1(y
∗)

]
= negl(λ)

71

72

Part II

Secret Sharing with Certified Deletion

73

In this part, we show how to equip secret sharing with certified deletion. Secret sharing [Sha79, Bla79,
ISN87] is a foundational cryptographic primitive that allows a dealer to distribute a secret s among n par-
ties so that only certain “authorized” subsets of the parties may recover the secret. A particularly appealing
aspect of secret sharing as compared to most other cryptographic primitives is it doesn’t require computa-
tional hardness assumptions. That is, one can construct secret sharing secure against any computationally
unbounded adversary, for any monotone access structure (e.g. [ISN87, BL90, LV18]).

However, the security of these schemes still rests on a stringent assumption: over the course of the
(potentially unbounded) adversary’s operation, it only ever sees an unauthorized set of shares. This may
be unacceptable for users sharing particularly sensitive information. Even if an adversary initially may
only access a limited number of shares, over time they may be able to corrupt more and more parties, or
perhaps more and more shares become compromised independently and are leaked into the public domain.
A user who becomes paranoid about this possibility generally has no recourse, and, worse yet, cannot even
detect if an adversary has obtained access to enough shares to reconstruct their secret.

By making use of uniquely quantum effects, secret sharing with certified deletion enables security
even against adversaries that eventually corrupt an authorized set of shares.

Previously, Bartusek and Khurana [BK23] defined and constructed a very limited flavor of secret
sharing with certified deletion: 2-out-of-2 secret sharing where only one the two shares can be deleted.
We show that it is possible to introduce certified deletion guarantees into more versatile and general flavors
of secret sharing.

75

76

Chapter 10

Results

We formulate two powerful but incomparable notions of certified deletion security for general-purpose
secret sharing schemes, and show how to construct a scheme satisfying each definition. One of our key
technical tools is a high-rate seedless extractor from certain quantum sources of entropy that significantly
generalizes and improves upon the “XOR extractor” of [ABKK23].

No-signaling security. First, we address the shortcomings of [BK23]’s security definition for 2-out-of-
2 secret sharing sketched above, and formulate a natural extension that (i) applies to schemes for any
monotone access structure,1 and (ii) allows for the possibility that any of the shares may be deleted.

Consider a scenario involving multiple non-communicating adversaries that each individually can
access some unauthorized set of shares. These adversaries may share entanglement, but may not exchange
messages. Now, the user may request that some of its shares are deleted. If the adversaries jointly delete
enough shares so that the remaining undeleted shares form an unauthorized set, then we require that the
user’s secret remains private even given the combined views of all the adversaries. That is, even if a single
adversarial entity can eventually corrupt all of the parties, the secret is still hidden if enough shares have
previously been deleted.2

We refer to this security notion for secret sharing schemes as no-signaling security (see chapter 14 for
a precise definition), emphasizing the fact that shares must be deleted by adversaries that cannot yet pool
information about an authorized set of shares, as this would trivially allow for reconstruction of the secret.
Then, in chapter 15 we show how to combine [BK23]’s simple 2-out-of-2 secret sharing scheme with any
standard secret sharing scheme for monotone access structure S (e.g. [ISN87, BL90, LV18]) in order to
obtain a secret sharing scheme for S with no-signaling security.

Theorem 10.0.1 (Informal). There exists a secret sharing scheme with no-signaling certified deletion
security for any monotone access structure S.

Adaptive security. Next, we consider a particularly cunning but natural class of adversaries. Suppose
that initially the adversary only obtains access to some unauthorized set of shares. At some point, the
user becomes paranoid and requests that some subset of these shares are deleted. The adversary obliges
but then continues to corrupt new parties or locate other leaked shares. The adversary may continue to
delete some of these shares to appease the user, while continuing to work behind the scenes to mount a

1A monotone access structure defines sets of authorized users by a set S of subsets of n where for any subset S ∈ S, it holds
that S′ ∈ S for all supersets S′ ⊃ S.

2We remark that this definition also captures adversaries that don’t end up corrupting all the shares, by imagining that there
is a separate component of the adversary that honestly deletes the uncorrupted shares.

77

long-term attack on the system. However, as long as the set of corrupted parties minus the set of certifiably
deleted shares continues to be unauthorized, we can hope that the user’s secret remains private from such
an adversary.

Unfortunately, the notion of no-signaling security does not capture such adaptive behavior. No-
signaling security only models adversaries that delete once, and then receive some extra information
after this single round of deletion. Thus, we formalize adaptive security as an alternative and quite strong
notion of certified deletion security for secret sharing schemes (see chapter 14 for a precise definition).

Protecting against such arbitrarily adaptive adversaries turns out to be a significant challenge. The
main technical component of this part realizes a secret sharing scheme with adaptive certified deletion
security for the specific case of threshold access structures (chapter 16).

Theorem 10.0.2 (Informal). There exists a threshold secret sharing scheme with adaptive certified dele-
tion security.

High-rate seedless extractors from quantum sources of entropy. One of our technical building blocks
is an improved method for seedless extraction from certain quantum sources of entropy. Roughly, the
source of entropy comes from performing a standard basis measurement on a register that is in superposi-
tion over a limited number of Fourier basis states.

While seedless extraction from such sources of entropy [ABKK23] has been a crucial component in
previous realizations of cryptographic primitives with certified deletion [BK23],3 the technique had been
limited to (i) extracting from qubit registers (i.e. where data is natively represented as superpositions of
bitstrings) and (ii) extracting only a single bit of entropy. Here, we generalize these techniques to extract
from qudit registers (i.e. where data is natively represented as superpositions of vectors over finite fields),
and produce several field elements worth of entropy, vastly improving the rate of extraction. Beyond
being interesting in its own right, these improvements are crucial for showing security of our construction
of threshold sharing with adaptive certified deletion security. Moreover, we show how to apply these high-
rate extraction techniques to extension fields. This allows us to represent our quantum shares as string of
qubits (as opposed to qudits), removing the need for entanglement in our construction. We refer the reader
to section 11.3 and chapter 13 for more details.

3See discussion therein for why seedless as opposed to seeded extraction is crucial.

78

Chapter 11

Technical Overview

Intuitively, certified deletion for secret sharing aims to keep the secret private from an adversary if the
total set of undeleted shares they have access to is unauthorized. One could formalize this by considering
an adversary who initially receives an unauthorized set of shares and then deletes some of them. If the
undeleted shares are still unauthorized when combined with the shares that the adversary did not receive,
then we allow the adversary to access these remaining shares. This closely matches the definition of
encryption with certified deletion, where the adversary initially receives and deletes a ciphertext Enc(k,m)
encrypting message m using key k, and then later receives the key k.

However, this definition is not meaningful for all access structures. For example, in a k out of n access
structure where k < n/2, the shares that the adversary does not start with already form an authorized set
on their own, so it never makes sense to allow the adversary to access all of these shares at once. In this
section, we give an overview of two different ways to address this definitional deficiency: no-signaling
certified deletion and adaptive certified deletion.

11.1 No-Signaling Certified Deletion

In no-signaling certified deletion, we address this problem by allowing the adversary to delete from multi-
ple sets of shares P1, . . . , Pℓ. However, if P1 ∪ · · · ∪ Pℓ contains all shares, then the adversary as a whole
gets to see every share before it generates any deletion certificates. Thus, to prevent trivial attacks, we do
not allow the adversary to communicate across sets. However, the different parts of the adversary may
still share entanglement. This modification yields the no-signaling certified deletion game SS-NSCDS(s)
for secret s and access structure S over n parties, which we describe here.

1. The challenger secret-splits s into n shares with access structure S.

2. Each adversary Advi is initialized with one register of a shared state |ψ⟩, receives the shares in a set
Pi, and produces some set of certificates {certj}j∈Pi . If Advi does not wish to delete share j, then
it may set certj = ⊥.

3. If the total set of shares that have not been deleted is unauthorized, then output the joint view of the
adversaries. Otherwise, output ⊥.

No-signaling certified deletion for secret sharing requires that for every secret pair (s0, s1) and every
partition P = (P1, . . . , Pℓ) of [n], the outputs of SS-NSCDS(s0) and SS-NSCDS(s1) have negligible
trace distance.

79

Tool: 2-of-2 Secret Sharing with Certified Deletion [BK23]. Recently, Bartusek and Khurana con-
structed a variety of primitives with certified deletion. One of these primitives is a secret sharing scheme
which splits a secret s into a quantum share |sh1⟩ and a classical share sh2, along with a verification key
vk that can be used to test the validity of deletion certificates. Given either one of the shares, the secret is
hidden. Furthermore, if an adversary given |sh1⟩ performs a destructive measurement that yields a valid
deletion certificate, then they will never be able to recover s, even if they later obtain sh2. Note that in this
scheme, only one of the two shares can be deleted.

A Black-Box Compiler. We show how to compile Bartusek and Khurana’s 2-of-2 certified deletion
scheme together with any classical secret sharing scheme into a secret sharing scheme with no-signaling
certified deletion. Notably, the compiled scheme inherits the same access structure as the classical secret
sharing scheme. Thus, one can construct secret sharing with no-signaling certified deletion for general
access structures by using any classical secret sharing scheme for general access structures, e.g. [ISN87,
ABF+19].

As a starting point, let us first construct a scheme where only one of the shares can be deleted.

1. Secret split the secret s into a quantum share |qsh⟩ and a classical share csh using the 2-of-2 secret
sharing scheme with certified deletion. This also produces a verification key vk.

2. Split the 2-of-2 classical share csh into classical shares csh1, . . . , cshn using the classical secret
sharing scheme for S.

3. The verification key is vk and the i’th share is cshi. The deletable quantum share is |qsh⟩.

Given the quantum share and any authorized set of classical shares, s can be reconstructed by first recov-
ering csh from the authorized set. On the other hand, any adversary which attempts to delete |qsh⟩ with
only access to an unauthorized set of classical shares has no information about the 2-of-2 classical share
csh. Thus if they produce a valid deletion certificate, they will have no information about s even after
obtaining the rest of the classical shares, which only reveals csh.

Who Deletes? To finish the compiler, we need to enable certified deletion of any share. This can be
achieved by adding a step at the beginning of the compiler to create n classical shares sh1, . . . , shn of s
with the same access structure S. Then, the splitter can enable certified deletion for each share shi by using
the prior compiler to produce a set of classical shares cshi,1, . . . , cshi,n, a deletable quantum share |qshi⟩,
and a verification key vki. The i’th share contains the deletable state |qshi⟩, as well as {cshj,i}j∈[n].

Note that anyone holding share i is able to delete shi by deleting |qshi⟩, as discussed previously. If
sufficiently many shares are deleted, so that the only remaining shi form an unauthorized set, then no
adversary can learn anything about the secret even after obtaining all of the remaining shares and residual
states.

Proof of Security: Guessing Deletions. Although the intuition is straightforward, there is a nuance in
the proof of security. When proving security, we wish to replace the deleted 2-of-2 secrets shi with empty
secrets ⊥. If we could do so, then security immediately reduces to the security of the classical S-scheme,
since only an unauthorized set of shi remains. However, it is difficult to determine which of these 2-of-2
secrets shi to replace with ⊥ when preparing the shares.

Since non-local operations commute, we could consider generating the shares for each adversary
Advi one at a time. For example, supposing Adv1 operates on the set of shares P1 ⊂ [n], the experiment
could initialize Adv1 with uniformly random shares, and then for each i ∈ P1, reverse-sample the shares

80

{cshi,j}j∈[n]\P1
for the rest of the adversaries to match either shi or ⊥, depending on whether or not Adv1

deleted share i.
Unfortunately, we cannot continue this strategy for all of the adversaries. It may be the case that the

union of Adv1 and Adv2’s shares P1 ∪ P2 contains an authorized set. Thus, when initializing Adv2, the
challenger must already know whether, for each i ∈ P2, the i’th share of s should be set to shi or ⊥
(since this will be determined by {cshi,j}j∈P1∪P2). This view is constructed before the adversary decides
whether or not to delete share i, so the only way for the challenger to do this is to guess whether the
adversary will delete share i or not.

Now, guessing which shares the entire set of adversaries will delete incurs a multiplicative exponential
(in n) loss in security. Fortunately, Bartusek and Khurana’s 2-of-2 scheme actually satisfies an inverse
exponential trace distance between the adversary’s view of any two secrets, after deletion. Thus, by
setting the parameters carefully, we can tolerate this exponential loss from guessing, and show that our
scheme for general access structures satisfies negligible security.

11.2 Adaptive Certified Deletion

Intuitively, any definition of certified deletion should allow the adversary to eventually receive an autho-
rized set of shares, as long as they have previously deleted enough shares so that their total set of undeleted
shares remains unauthorized. In no-signaling certified deletion, we allowed multiple non-communicating
adversaries to delete from different unauthorized sets of shares. That is, when Advi generates its set of
certificates, it only has access to a single unauthorized set Pi. However, one could also imagine a more
demanding setting where, after deleting some shares, the adversary can adaptively corrupt new shares, as
long as their total set of undeleted shares remains unauthorized. Then, they can continue deleting shares
and corrupting new shares as long as this invariant holds. This setting arises naturally when we consider
an adversary which covertly compromises shares over a long period of time, while occasionally deleting
shares to avoid revealing the extent of the infiltration. We call this notion adaptive certified deletion. It is
defined using the following adaptive certified deletion game SS-ACDS(s).

1. The challenger splits the secret s into n shares with access structure S. The adversary starts with an
empty corruption set C and an empty deletion set D.

2. For as many rounds as the adversary likes, it gets to see the shares in C and choose whether to
corrupt or delete a new share.

Corrupt a new share. The adversary corrupts a new share i by adding i toC. IfC\D is authorized,
the experiment immediately outputs ⊥.

Delete a share. The adversary outputs a certificate cert for a share i. If cert is valid, add i to D.
Otherwise, the experiment immediately outputs ⊥.

3. When the adversary is done, the experiment outputs its view.

Adaptive certified deletion for secret sharing requires that for every secret pair (s0, s1), the outputs
of SS-ACDS(s0) and SS-ACDS(s1) have negligible trace distance. In this work, we focus on the (k, n)
threshold access structure, where any set of size ≥ k is authorized.

Incomparable Definitions. We have already seen that no-signaling certified deletion does not imply
adaptive certified deletion. It is also the case that adaptive certified deletion does not imply no-signaling
certified deletion. Consider a two-part no-signaling adversary Adv1 and Adv2 with views P1 and P2. To

81

change (Adv1,Adv2) to an adaptive adversary, one would need to come up with a transformation that
deletes the same shares as (Adv1,Adv2), in the same way. However, Adv1 might not even decide which
shares to delete until after they have seen every share in P1. So, the new adaptive adversary would have
to corrupt all of P1 before it can delete a single share that Adv1 would. Similarly, it would also have to
corrupt all of P2 before it knows which shares Adv2 would delete. However, if P1∪P2 is authorized, then
the experiment would abort before the new adaptive adversary gets the chance to delete shares for both
Adv1 and Adv2.

An Attack on the No-Signaling Construction. Unfortunately, the previous construction actually does
not in general satisfy adaptive certified deletion security. Indeed, observe that the classical parts of each
share can never be deleted. Because of this, an adversary could, for any i, obtain k classical shares
cshi,1, . . . , cshi,k that reveal cshi, simply by corrupting and immediately deleting the first k shares one-
by-one. Afterwards, the adversary will always have both the classical share cshi and the quantum share
|qshi⟩ when it corrupts a new share i, so it can recover the underlying classical share shi. Now it can
“delete” the i’th share while keeping shi in its memory. Eventually, it can collect enough shi in order to
obtain the secret s.

The core problem with the no-signaling construction is the fact that it encodes the 2-of-2 classical
shares csh in a form which can never be deleted. If we were to take a closer look at Bartusek and Khurana’s
2-of-2 scheme, we would observe that csh contains a mapping θ of which parts of |qsh⟩ encode the secret
(the “data indices”) and which parts contain only dummy information used to verify certificates (the
“check indices”). Without θ, there is no way to decode the secret. Unfortunately, in order to encode θ in
a deletable form, we seem to be back where we started - we need secret sharing with adaptive certified
deletion!

A New Construction. To avoid this pitfall, we take a new approach that allows the parties to reconstruct
without knowledge of the check indices. This removes the need to encode θ altogether. To achieve this, we
begin with Shamir’s secret sharing [Sha79], in which the shares are evaluation points of a degree k − 1
polynomial f where f(0) = s. This polynomial is over some finite field K with at least n + 1 elements.
A useful property of Shamir’s secret sharing is that it has good error-correcting properties - in fact, it also
forms a Reed-Solomon code, which has the maximum possible error correction [RS60].

To split a secret s, we start by constructing a polynomial f where f(0) = s. Each share contains
some number of evaluations of f encoded in the computational basis. These evaluations are mixed with a
small number of random Fourier basis states that will aid in verifying deletion certificates. The positions
of these checks, along with the value encoded, make up the verification key. An example share and key
are illustrated here.

sh = |f(1)⟩ ⊗ |f(2)⟩ ⊗ QFT |r1⟩ ⊗ |f(4)⟩ ⊗ QFT |r2⟩ ⊗ . . .
vk = ∗ ∗ r1 ∗ r2 . . .

When reconstructing the secret, these checks are essentially random errors in the polynomial evaluation.
By carefully tuning the degree of the polynomial together with the number of evaluations and checks in
each share, we can ensure that any k shares contain enough evaluation points to correct the errors from
the check positions, but that any k − 1 shares do not contain enough evaluation points to determine the
polynomial. This results in f being determined by slightly more than k − 1 shares worth of evaluations.
Additionally, we slightly increase the degree of the polynomial to account for the limited amount of
information that an adversary can retain after deletion. See Chapter 16 for more details.

82

Share deletion and certificate verification follow the established formula. To delete a share, measure it
in the Fourier basis and output the result as the certificate. To verify the certificate, check that it matches
the verification key at the check positions.

Proving Adaptive Certified Deletion. Intuitively, we want to show that after the adversary deletes
a share, the next share it corrupts gives it no additional information, no matter how many shares the
adversary has seen so far. To formalize this, we will show that the adversary cannot distinguish between
the real SS-ACD(k,n)(s) experiment and an experiment in which each share is generated uniformly at
random and independently of the others. Since the first k − 1 shares to be corrupted do not yet uniquely
determine the polynomial f , they already satisfy this. Thus, we can restrict our attention to modifying the
last n− k + 1 shares to be corrupted.

It will be useful to name the shares in the order they are corrupted or deleted. The a’th share to be
corrupted is ca, and the b’th share to be deleted is share db. In the (k, n) threshold case, if ck−1+b is
corrupted before db is deleted, then C\D has size k and is authorized, so the experiment will abort.

Techniques from BK23. We begin by recalling the techniques introduced in [BK23] to analyze 2-of-2
secret sharing with certified deletion, along with the construction. These techniques will form the starting
point of our proof. To share a single-bit secret s ∈ {0, 1}, sample random x, θ ← {0, 1}λ and output

sh1 = Hθ |x⟩ , sh2 =

θ, s⊕ ⊕
i:θi=0

xi

 , vk = (x, θ),

where Hθ denotes applying the Hadamard gate H to the i’th register for each i : θi = 1. Bartusek and
Khurana showed that if an adversary given sh1 produces a certificate cert such that certi = xi for every
check position i : θi = 1, then they cannot distinguish whether s = 0 or s = 1 even if they later receive
sh2. Their approach has three main steps.

1. First, they delay the dependence of the experiment on s by initializing sh1 to be the register X in∑
x |x⟩

X ⊗ |x⟩Y . Later, the challenger can obtain x by measuring register Y , and use it to derive s.

2. Second, they argue that if the adversary produces a valid deletion certificate, then sh1 has been “al-
most entirely deleted”, in the sense that the challenger’s copy satisfies a checkable predicate with
high probability. Intuitively, this predicate shows that the data positions (θi = 0) of the challenger’s
copy have high joint entropy when measured in the computational basis. To show that the predicate
holds, they use the fact that the adversary does not have sh2 in their view, so sh1 looks uniformly
random. This allows a cut-and-choose argument where the locations of the check indices are deter-
mined after the adversary outputs its deletion certificate.

3. Finally, they show that the challenger derives a bit s that is uniformly random and independent
of the adversary’s view. This utilizes a result from [ABKK23] which shows that XOR is a good
seedless extractor for entropy sources that satisfy the aforementioned predicate.

Adapting to Secret Sharing. As a starting point, let us try to adapt these techniques to undetectably
change shares to uniformly random. For concreteness, consider the task of switching a share ck−1+b to
uniformly random. Although we have not yet outlined the general proof structure, we will eventually need
to perform this task. We will use this starting point to gain insights that will help guide the eventual proof
structure.

83

1. The first step is to delay the synthesis of the secret information until after the adversary outputs
a deletion certificate. In our case, we will delay creating share ck−1+b until after the adversary
produces a valid certificate for share db.

This can be achieved by sampling the first k − 1 corrupted shares to be uniformly random, then
using polynomial interpolation to prepare the rest of the shares. More concretely, consider the first
corrupted k − 1 shares c1, . . . , ck−1. The challenger will prepare each of these shares ca using
two registers Cca and Sca , then send the share to the adversary in register Sca . To prepare the j’th
position of ca, the experiment challenger prepares either a uniform superposition

∑
x∈K |x⟩

Cca,j or∑
x∈KQFT |x⟩Cca,j , depending on whether j is an evaluation position or a check position. If j is an

evaluation position for share ca, the experiment challenger copies Cca,j to Sca,j in the computational
basis, yielding

∝
∑
x∈K
|x⟩Sca,j ⊗ |x⟩Cca,j ,

and otherwise it copies Cca,j to Sca,j in the Fourier basis, yielding

∝
∑
x∈K

QFT |x⟩Sca,j ⊗ QFT |x⟩Cca,j .

Note that the adversary cannot determine which positions are evaluation positions and which are
check positions, since each Sca,j register looks maximally mixed. Also observe that Cca contains
a copy of share ca, and the evaluation positions in the initial k − 1 Cca registers determine the
polynomial f . Then, when the adversary requests to corrupt a later share, the challenger computes
the evaluation points for that share by performing a polynomial interpolation using its copies of the
prior shares. For reasons that will become apparent shortly, we require that share db is included
when interpolating ck−1+b. The other points may be arbitrary.

The above procedure is actually slightly simplified; since the degree of f is slightly larger than the
number of evaluation positions in k − 1 shares, the first k − 1 shares do not quite determine f . To
remedy this, we will also initialize a small portion of every Si to be uniformly random, before any
interpolation takes place.

2. Next, we will need to show that Cdb , which contains the challenger’s copy of share db, satisfies
the deletion predicate if certdb passes verification. This is not hard to show if db was generated
uniformly at random, but it is not clear what happens if the adversary has some information about
where the check positions are in db before deleting it. The first k − 1 shares are uniformly random
in the original experiment, so this is not a problem for any share which is deleted before ck is
corrupted. However, later shares depend on earlier shares, potentially leaking information about the
check positions. This will be our first barrier to overcome.

3. Finally, we will need to show that interpolating ck−1+b using Cdb produces a uniformly random
value whenever Cdb satisfies the deletion predicate. In other words, polynomial interpolation
should double as a good randomness extractor from deleted shares. Fortunately, polynomial
interpolation is a matrix multiplication, and we have intuition from the classical setting that lin-
ear operations are good randomness extractors. Since a small amount of every share is uniformly
random “for free”, the extractor needs to produce only slightly less than a full share’s worth of
evaluations to produce ck−1+b. This is our second technical contribution, which we will revisit in
Section 11.3.

84

In step two, we seem to need the evaluation points in db to look like the check positions when db is
deleted, i.e. they should be uniformly random and independent of the rest of the adversary’s view. A
natural approach to ensure this is to modify the shares to uniformly random round-by-round over a series
of hybrid experiments. In hybrid i, the first k − 1 + i shares to be corrupted are uniformly random. Since
di+1 must be deleted before ck+i is corrupted (or else the experiment aborts), di+1 must have been one of
the uniformly random shares. Now we can apply the cut-and-choose argument to show that Cdi satisfies the
deletion predicate, thereby satisfying the extractor requirements to change ck+i to be uniformly random
and reach hybrid i + 1. The first k − 1 shares are already uniformly random, which gives us an opening
to begin making modifications in round k.

Unfortunately, the strategy of modifying the shares one-by-one to be uniformly random has a major
flaw. In particular, the challenger needs to produce additional polynomial evaluations whenever the ad-
versary wishes to corrupt another share, which it does via interpolation. Recall that in order to claim that
ck−1+i is indistinguishable from random, we apply an extractor which uses register Cdi as its source of
entropy. But in order to invoke the security of the extractor, it seems that we cannot allow the challenger
to re-use Cdi when interpolating later points, as this might leak additional information about the source to
the adversary.

To get around this issue, we might require that the challenger never uses Cdi again to interpolate later
points. However, the randomness extractor outputs less randomness than the size of a share. Intuitively,
this occurs because the adversary can avoid fully deleting the source share di by guessing the location of a
very small number of check positions.1 Imperfect deletion limits the entropy of the source, which in turn
limits the size of the extractor output. Now, since the challenger started with exactly enough evaluations to
uniquely determine f , if we take away the points in Cdi then there are no longer enough evaluation points
remaining to create the rest of the shares, even given the newly interpolated points.

Predicates First, Replacement Later. Intuitively, the problem outlined above arises from the possibility
that the adversary receives additional information about earlier shares from the later ones, since they are all
correlated through the definition of the polynomial f . Our first idea to overcome this issue is to prove that
the predicate holds for all rounds before switching any shares to uniformly random. In particular, we will
consider a sequence of hybrid experiments where in the i’th hybrid, the challenger performs the predicate
measurement on Cdi after receiving and verifying the corresponding certificate. If the measurement rejects,
the experiment immediately aborts and outputs ⊥.

If we can undetectably reach the last hybrid experiment, then it is possible to undetectably replace
every share with uniform randomness by working backwards. In the last hybrid experiment, either the
predicate holds on the challenger’s copy Cdn−k+1

of share dn−k+1 or the experiment aborts. In either
case, the last share cn to be corrupted can be undetectably replaced with uniform randomness. Since
no further shares are interpolated, we no longer run into the issue of re-using the randomness source
Cdn−k+1

, allowing the challenger to safely complete the experiment. Then, once cn is uniformly random,
the challenger no longer needs to interpolate shares after cn−1, so cn−1 can also be replaced with uniform
randomness. This argument can be continued until all shares are replaced.

To undetectably transition from hybrid i to hybrid i+1, we must show that the predicate measurement
returns success with high probability on Cdi+1

. This is not hard to show for shares which are deleted before
the k’th share is corrupted, because the deleted shares must be one of the shares which were generated

1One may wonder whether it is possible to instead use coset states for the shares, which provide guarantees of full deletion
[BGK+24]. Unfortunately, coset states induce errors which are the sum of a small number of uniformly random vectors. It is
not clear how to correct these errors to reconstruct the secret without prior knowledge of the underlying subspace. However,
encoding the subspace brings us back to the original problem of secret sharing with adaptive certified deletion.

85

uniformly at random. However, it is not clear how to show for shares which are deleted after the k’th share
is corrupted, since this seems to require replacing ck with uniform randomness, which brings us back to
our previous problem.

Chaining Deletions via Truncated Experiments. Our second insight is the observation that the result
of a measurement made when di is deleted is independent of later operations. Thus, when arguing about
the probability that the predicate measurement accepts on Cdi , it is sufficient to argue about the truncated
experiment that ends immediately after the predicate measurement on Cdi . Crucially, the adversary cannot
corrupt share ck+i in the truncated experiment without causing the experiment to abort due to |C\D| ≥ k.
Instead, ck−1+i is the last share that can be corrupted. This prevents the catastrophic re-use of Cdi after
share ck−1+i is constructed.

Let us assume that we have already shown that the deletion predicate measurement accepts on Cdi with
high probability; for example, this clearly holds for d1, which must be corrupted before ck is corrupted.
How likely it is to accept on Cdi+1

? Say the deletion predicate measurement accepts on Cdi . Then we can
invoke the extractor to undetectably replace share ck−1+i with uniform randomness in the truncated game,
since no further shares are corrupted before the game ends. We can use similar logic to replace each of
the first k − 1 + i shares to be corrupted in the truncated game. At this point, the adversary has no choice
but to delete a uniformly random share as di+1, so we can apply a cut-and-choose argument to show that
the predicate holds with high probability on Cdi+1

This argument can be repeated inductively to show that
the predicate holds in each of the polynomially many rounds.

Recap of the First Challenge. In summary, the first challenge to address in proving adaptive certified
deletion is the possibility of later shares leaking information about prior shares through the re-use of Cdb
in interpolation. This prevents directly replacing each share with uniform randomness. To sidestep this
issue, we first argue that every Cdb is a good source of entropy using a series of games which end after db
is deleted. Then even if Cdb is used to interpolate both share ck−1+b and ck+b, we can rely on the entropy
from Cdb+1

to mask its re-usage when interpolating ck+b.

11.3 High Rate Seedless Extractors from Quantum Sources of Entropy

The final task to finish the proof of adaptive certified deletion security in the previous section is to show
that polynomial interpolation is a good randomness extractor for entropy sources formed by deleted shares.
Although polynomial interpolation arises quite naturally in our construction, there are additional technical
reasons why it would be difficult to design a construction for adaptive certified deletion using existing
extractors.

If we were to design a scheme using a seeded extractor, as done in [BI20b], then every deletion would
need to be independent of the seed to avoid the entropy source depending on the seed. However, as we saw
with the no-signaling construction, safely encoding the seed seems to already require secret sharing with
adaptive certified deletion. [BK23] makes use of the seedless XOR extractor developed by [ABKK23] to
avoid a similar problem. Unfortunately, the XOR extractor produces only a single bit from a relatively
large input. In the case of threshold secret sharing, the extractor must use the randomness produced by
deleting a single share to extract an output which is only slightly smaller than a full share.

To address this need, we give a new family of seedless randomness extractors for quantum entropy
sources with high rate. These constructions have connections to linear error-correcting codes and may be
of independent interest.

86

A Family of Extractors. The input of the extractor is a vector of M elements of a finite field F, and
the output is a vector of m elements of F. The source consists of a register X which may be arbitrarily
entangled with a side-information register A. If the register X is in superposition over Fourier basis
vectors with Hamming weight ≤ (M − m)/2 in F, then we can argue that the output Extract(X) is
uniformly random, even given A.2

The extractor family consists of matrices R ∈ Fm×M such that every set of m columns of R are
linearly independent. In other words, R is a parity check matrix for a linear error-correcting code with
distance at least m. An extractor R is applied by coherently multiplying R with the source register X in
the computational basis and writing the result to the output register.

Application to Polynomial Interpolation. This family generalizes both the XOR extractor and poly-
nomial interpolation. The XOR extractor can be represented as the all-ones matrix with one row. Each
column is non-zero, so the extractor can produce a one-bit output. In the case of polynomial interpolation,
we can write the linear interpolation operator for a polynomial f as a matrix R with deg(f) + 1 columns
and a number of rows equal to the number of points being interpolated. R is a sub-matrix of a parity
check matrix for a Reed-Solomon code, so it falls into the new extractor family. In fact, our result shows
that any subset of columns in a polynomial interpolation matrix forms a good randomness extractor for an
appropriate randomness source. When interpolating a share ck−1+b, we can write the interpolation matrix
asR = [R1|R2], whereR2 is applied to db andR1 is applied to the other points x on the polynomial. Then
the new share is ck−1+b = R1x+R2db. If db has satisfies the deletion predicate, then our extractor result
shows that R2db is uniformly random. Thus, the newly interpolated share cb is also uniformly random.

Removing Entanglement. A downside of using polynomials for secret sharing is that each evaluation
point exists in field F whose size scales with the total number of distinct points that must be defined on the
polynomial. For example, F might be Zp for some prime p > nt, where t is the number of evaluations per
share. Using the approach outlined so far, each check position must be encoded in the Fourier basis over
the same field K. However, a logical Zp-qudit requires ⌈log2(nt+1)⌉ qubits, which must all be entangled
to produce a Fourier basis element of Zp.

We show how to remove the entanglement of the construction to only use single-qubit states, either
in the Hadamard basis or in the computational basis. We modify the construction by setting the field
F to be the binary extension field with 2⌈log2(nt+1)⌉ elements, so that each check position consists of
⌈log2(nt + 1)⌉ qubits. Then, we individually set each of these qubits to be a random Hadamard basis
element. The other parts of the construction remain the same. Note that computational basis vectors over
F can be encoded as a tuple of computational basis qubits.

Proving the security of this modification requires an expansion of the extractor theorem to allow
general finite fields F, which may have pk elements for some prime p and k ≥ 1. A Fourier basis element
for such a field is obtained by applying the quantum Fourier transform over the additive group of F, which
is Zk

p . In particular, a Fourier basis element of F consists of k Fourier basis elements of Zp. In the case
where p = 2, these are single-qubit Hadamard basis elements.

We emphasize that the only change is to modify how Fourier basis elements are defined by allowing
general finite fields; both the extractor family and the Hamming weight requirement remain the same (i.e.
they are still defined with respect to F, not Zp). To gain intuition about the usefulness of this statement,
let us consider its application in our secret-sharing construction. Ideally, an honest deleter would measure
each qubit of its share in the Hadamard basis. However, since the dealer can only verify check positions,
which each consist of ⌈log2(nt + 1)⌉ qubits, we can only prove a bound on the Hamming weight of the

2The Hamming weight over a (potentially non-binary) finite field is being the number of nonzero entries in the vector.

87

deleted state over ⌈log2(nt+ 1)⌉-sized chunks, which corresponds to F. This matches the entropy source
requirements of the theorem. On the other hand, the polynomial that the secret is encoded in is also over
F, so polynomial interpolation must take place over F. This matches the extractor family.

11.4 Open Problems

Although our results significantly strengthen secret sharing to resist new classes of attacks, we have only
scratched the surface of an area with many fascinating open problems. We mention a few of them here.

• Adaptive Certified Deletion for General Access Structures. Against adaptive attacks, we con-
struct a secret sharing scheme for the special case of threshold access structures. Is it possible to
construct one for general access structures?

• Stronger Definitions. We prove the security of our schemes against either “distributed” attacks
(i.e. no-signaling security) or adaptive attacks. Can we (i) formulate natural security definitions
that capture both types of attacks, and (ii) prove the security of secret sharing schemes under such
all-encompassing definitions?

• Other Threshold Primitives. Aside from secret sharing, there are many other primitives which
use thresholds or other access structures. For example, in threshold signatures, any k members may
non-interactively sign messages under a secret key split between n parties [DF90]. Is it possible to
construct threshold signatures or other threshold primitives with certified deletion?

• High Rate Commitments with Certified Deletion. A commitment with certified deletion allows
the committed message to be certifiably and information-theoretically deleted [HMNY22, BK23].
However, current approaches either work in the random oracle model or require Θ(λ) qubits to
commit to a single bit. Our new high-rate extractor (Theorem 13.0.1) provides a promising start to
reduce the commitment overhead. Unfortunately, the proof technique pioneered by [BK23] for the
plain model requires guessing the committed message, which incurs a security loss that is exponen-
tial in the size of the message. Is it possible to overcome this difficulty and construct commitments
with certified deletion that are not much larger than the committed message?

88

Chapter 12

Preliminaries

12.1 Quantum Computation

A classical operation f can be applied to a quantum register X using the map

|x⟩X ⊗ |y⟩Y 7→ |x⟩X ⊗ |y + f(x)⟩Y

We denote the application of this operation as Y ← f(X).

Quantum Fourier Transform over Finite Groups. Let G be a finite cyclic group and let ω|G| :=
exp(2πi|G|) be a primitive |G|’th root of unity. Let X be a register containing a G-qudits. The quantum
Fourier transform (QFT) over G applied to X is the operation

|x⟩X 7→
∑
y∈G

ωxy
|G| |y⟩

X

Any Abelian group H may be decomposed as a product of cyclic groups G1 × · · · × Gk. The QFT over
H is the tensor of the QFTs on each of these groups. For example, if H = Gk, then the QFT over H is
given by the operation

|x⟩X 7→
∑
y∈Gk

ωx·y
|G| |y⟩

X

When we consider taking a QFT over a finite field, we technically mean taking the QFT over its additive
group. For example, if F has order pk for some prime p, then its additive group is Zk

p and the QFT is the
mapping above, where G = Zp.

Fourier transforms are closely related to roots of unity. An n’th root of unity ω is an element of C
such that ωn = 1. ω is a primitive n’th root of unity if ωk ̸= 1 for every k ∈ [n− 1]. The following claim
about the summation of roots of unity will be useful.

Claim 12.1.1. Let G be a cyclic group and let ω ̸= 1 be an |G|’th root of unity. Then∑
x∈G

ωx = 0

Proof.

ω
∑
x∈G

ωx =
∑
x∈G

ω1+x (12.1)

=
∑
z∈G

ωz (12.2)

89

where z = 1 + x ∈ G. Since ω ̸= 1 by definition, this can only be the case if
∑

x∈G ω
x = 0.

12.2 Statistics

Claim 12.2.1 (Hoeffding’s Inequality [Hoe94]). Let X1, . . . , Xn be Boolean independent random vari-
ables. Let µ = E[

∑n
i=1Xi]. Then for every δ > 0,

Pr

[∣∣∣∣∣
n∑

i=1

Xi − µ]

∣∣∣∣∣ ≥ δ
]
≤ 2 exp

(
−2δ2

n

)

12.3 Polynomials and Reed-Solomon Codes

We give some useful facts about polynomials over finite fields and the related Reed-Solomon error-
correcting code.

Interpolation. Lagrange interpolation gives a method of finding every point on a degree d polynomial
f over any field K, given any d+ 1 points on f [LM01]. In particular, for every degree d, there is a linear
operation Interpolated(Y,X) that takes in a set of d+ 1 pairs (x, f(x)) and outputs f(y) for each y ∈ Y .
The operation to find a set of s points is described by a matrix R ∈ Ks×(d+1).

Fact 12.3.1. LetR ∈ Ks×(d+1) be an interpolation matrix for a degree d polynomial. Then any s columns
of R are linearly independent.

Proof. Consider the matrix P = [R| − Is]. It suffices to show that any s columns of P are linearly
independent. Observe that Py = 0 if and only if yi lies on the unique degree d polynomial defined by
y1, . . . , yd+1 for every i ∈ [d + 2, d + 1 + s]. Assume, for the sake of contradiction, that some set of
s columns of P were linearly dependent. Then there exists a y with exactly s non-zero values such that
Py = 0. Since y is in the kernel of P , it consists of d + 1 + s evaluations of a degree d polynomial.
However, this would imply the existence of a degree d polynomial with d + 1 + s − s = d + 1 zeros,
which does not exist.

Reed-Solomon Codes. A Reed-Solomon code is a error correcting code based on polynomials over
a finite field K [RS60]. Given a message m ∈ Kd, it encodes m as a polynomial f with degree d +
1, then outputs s evaluations of f as the codeword. For finite field K and degree d, there exists an
efficient correction procedure CorrectK,d(X) which attempts to recover a polynomial f using a noisy set
of evaluation pointsX , e.g. [WB86, Gao03]. IfX has size s and there are< (s−d+1)/2 pairs (x, y) ∈ X
such that y ̸= f(x), then CorrectK,d(X) outputs f .

12.4 Secret Sharing

Classical secret sharing. We introduce the standard notion of a secret sharing scheme, which allows
one party to distribute a classical secret s among n parties, such that only certain subsets of parties have
the ability to reconstruct the secret s. An access structure S ⊆ P([n]) for n parties is a monotonic set of
sets, i.e. if S ∈ S and S′ ⊃ S, then S′ ∈ S. Any set of parties S ∈ S is authorized to access the secret.
Secret sharing for general monotone access structures was first introduced by [ISN87].

90

Definition 12.4.1 (Secret Sharing for Monotone Access Structures). A secret sharing scheme is specified
by a monotone access structure S over n parties, and consists of two classical algorithms:

• SplitS(s) is a randomized algorithm that takes in a secret s, and outputs n shares sh1, . . . , shn.

• ReconstructS({shi}i∈P) is a deterministic algorithm that takes in a set of shares {shi}i∈P for some
P ⊆ [n], and outputs either s or ⊥.

The scheme should satisfy the following notions of correctness and security.

• Correctness. For all subsets P ⊆ [n] such that there exists S ∈ S such that P ⊆ S,

Pr [Reconstruct({shi}i∈P) = s : (sh1, . . . , shn)← SplitS(s)] = 1.

• Privacy. There exists a randomized algorithm Sim such that for all subsets P ⊆ [n] such that for
all S ∈ S, P ̸⊆ S, and any s,

{{shi}i∈P : (sh1, . . . , shn)← SplitS(s)} ≡ {{shi}i∈P : {shi}i∈P ← Sim(P)} .

2-out-of-2 secret sharing with certified deletion Now, we recall the definition of 2-out-of-2 secret
sharing with certified deletion as defined by [BK23]. A 2-out-of-2 secret sharing scheme is a very special
case of secret sharing where the secret is split into two shares such that both shares together determine the
secret, but either share individually cannot be used to recover the secret.

Definition 12.4.2 (2-out-of-2 Secret Sharing with Certified Deletion). We augment the standard notion
of secret sharing to include a deletion algorithm Delete2-2 and a verification algorithm Verify2-2. We
also specify that one share is quantum and the other share is classical. Finally, we introduce a security
parameter 1λ, since our deletion security guarantee will be statistical rather than perfect.

• Split2-2(1
λ, s) is a quantum algorithm that takes in the security parameter 1λ, a secret s, and outputs

a quantum share |sh1⟩, a classical share sh2, and a classical verification key vk.

• Reconstruct2-2(|sh1⟩ , sh2) is a quantum algorithm that takes in two shares and outputs the secret
s.

• Delete2-2(|sh1⟩) is a quantum algorithm that takes in a quantum share |sh1⟩ and outputs a deletion
certificate cert.

• Verify2-2(vk, cert) is a classical algorithm that takes in a verification key vk and a deletion certifi-
cate cert and outputs either ⊤ or ⊥.

Beyond satisfying the standard secret sharing notions of correctness and privacy (definition 12.4.1)
for the 2-out-of-2 access structure, the scheme should satisfy the following properties.

• Deletion correctness. For all λ ∈ N and s,

Pr

[
Verify2-2(vk, cert) = ⊤ :

(|sh1⟩ , sh2)← Split2-2(1
λ, s)

cert← Delete2-2(|sh1⟩)

]
= 1.

• Certified deletion security. Let Adv be an adversary, s be a secret, and define the experiment
2SS-NSCD(1λ,Adv, s) as follows:

91

– Sample (|sh1⟩ , sh2, vk)← Split2-2(1
λ, s).

– Run (cert,R)← Adv(1λ, |sh1⟩), whereR is an arbitrary output register.

– If Verify2-2(vk, cert) = ⊤, output (R, sh2), and otherwise output ⊥.

Then, for any unbounded adversary Adv and any pair of secrets s0, s1, it holds that

TD
[
2SS-NSCD(1λ,Adv, s0), 2SS-NSCD(1λ,Adv, s1)

]
= 2−Ω(λ).

[BK23] showed the existence of a 2-out-of-2 secret sharing scheme with certified deletion satisfying
the above definition. Notice that our certified deletion security definition requires a trace distance of
2−Ω(λ). While the theorem from [BK23] only states a bound of negl(λ), a quick inspection of their proof
establishes that they in fact show a bound of 2−Ω(λ).

92

Chapter 13

High-Rate Seedless Quantum Extractors

In this section, we study seedless extraction of large amounts of entropy from a quantum source. The
source of entropy comes from applying a quantum Fourier transform to a state which is “almost” a compu-
tational basis state. In particular, the source register X is in superposition over vectors with low Hamming
weight, and may be arbitrarily entangled with a registerA that contains side-information about the source.
Previously, [ABKK23] showed that the XOR function perfectly extracts a single bit of entropy in this set-
ting. However, in order to extract multiple bits of entropy, they resorted to the use of a random oracle. We
also remark that the case of seeded extraction has been well-studied by, e.g. [RK05, DFL+09, BF10].

We describe a general class of extractors that produces multiple truly random elements of any finite
field F, even conditioned on the side-information register A. In the case where the finite field has order
pk for a prime p, we show that a large amount of entropy is generated even when the quantum Fourier
transform is applied by interpreting each element x ∈ Fpk as a vector x ∈ Fk

p and applying the transform
mod p to each index (as opposed to applying the transform mod pk directly to the field element). This
feature allows the source to be prepared using less entanglement in our eventual application to secret
sharing.

Notation. The Hamming weight hF(v) of a vector v ∈ FM over a finite field F is its number of non-zero
positions. We denote vectors v and matrices R using bold font. Since we will be working with elements
which can be interpreted as elements of two different fields, we use (·)F to denote that the contents of
the parentheses should be interpreted as elements and operations over F. For example, (x + y)F denotes
addition of x and y inside the field F. If x,y ∈ Fk, then (x+y)F denotes vector addition. For an extension
field K of F, a scalar x ∈ K can also be interpreted as a vector x ∈ Fk. In this case, for x, y ∈ K, (x · y)F
produces a scalar in F. If an element can be interpreted as either a vector or a scalar, we bold it depending
on the context of the first operation applied; for example, (xy)K or (x · z)F for x ∈ K, y ∈ Kn, and
z ∈ Fk.

Theorem 13.0.1. Let F be a finite field of order pk. Let X = X1, . . . ,XM be a register containing M
F-qudits, and consider any quantum state

|γ⟩A,X =
∑

u∈FM :hF(u)<
M−m

2

|ψu⟩A ⊗ |u+w⟩X

for some integer m ≤M and some fixed string w ∈ FM . Let R ∈ Fm×M be a matrix such that every set
of m columns of R are linearly independent.

Let ρA,Y be the mixed state that results from the following procedure:

93

1. Apply a quantum Fourier transform over F’s additive group Zk
p to each register Xi. In other words,

interpret Xi as a sequence of registers Xi,1, . . . ,Xi,k containing Zp-qudits, then apply a quantum
Fourier transform mod p to each Xi,j .

2. Initialize a fresh register Y , and apply the isometry |x⟩X 7→ |x⟩X ⊗ |Rx⟩Y .

3. Trace out register X .

Then

ρA,Y = TrX [|γ⟩ ⟨γ|]⊗

 1

|F|m
∑
y∈Fm

|y⟩ ⟨y|

 .

Remark 13.0.2. As an example, consider F to be the field with 2n elements. Note that for the source,
the Hamming weight is taken over the larger field F, but the quantum Fourier transform is done over the
individual qubits, which in this case makes it just a Hadamard gate. The extractor R operates over F and
produces an output in Fm.

Proof. First, we apply the Fourier transform to |γ⟩ to obtain

√
|F|−M

∑
u∈FM :hF(u)<

M−m
2

|ψu⟩A ⊗
∑

x∈FM

ω
((u+w)F·x)Zp
p |x⟩X ,

where ωp is a primitive p’th root of unity. Next, after applying the extractor, but before tracing out X , the
state becomes

√
|F|−M

∑
x∈FM

 ∑
u∈FM :hF(u)<

M−m
2

ω
((u+w)F·x)Zp
p |ψu⟩A

⊗ |x⟩X ⊗ |Rx⟩Y (13.1)

:=
√
|F|−M

∑
x∈FM

|ϕx⟩A ⊗ |x⟩X ⊗ |Rx⟩Y . (13.2)

Since the additive group of F is Zk
p , for every u,w ∈ FM and x ∈ ZkM

p , we have

((u+w)F · x)Zp = ((u+w)Zk
p
· x)Zp = ((u+w) · x)Zp .

94

Tracing out register X yields

ρA,Y = |F|−M
∑

x∈FM

|ϕx⟩ ⟨ϕx| ⊗ |Rx⟩ ⟨Rx| (13.3)

= |F|−M
∑
y∈Fm

x∈FM :(Rx)F=y

|ϕx⟩ ⟨ϕx| ⊗ |y⟩ ⟨y| (13.4)

= |F|−M
∑
y∈Fm

x∈FM :(Rx)F=y ∑
u1,u2∈FM :

hF(u1),hF(u2)≤M−m
2

ω
((u1+w)·x)Zp
p ω

((u2+w)·x)Zp
p |ϕu1⟩ ⟨ϕu2 |

⊗ |y⟩ ⟨y| (13.5)

=
∑

u1,u2∈FM :

hF(u1),hF(u2)≤M−m
2

|ϕu1⟩ ⟨ϕu2 |

⊗

|F|−M ∑
y∈Fm

|y⟩ ⟨y|
∑

x∈FM :(Rx)F=y

ω
((u1+w)·x−(u2+w)·x)Zp
p

 (13.6)

=
∑

u1,u2∈FM :

hF(u1),hF(u2)≤M−m
2

|ϕu1⟩ ⟨ϕu2 |

⊗

|F|−M ∑
y∈Fm

|y⟩ ⟨y|
∑

x∈FM :(Rx)F=y

ω
((u1−u2)·x)Zp
p

 . (13.7)

Next, we apply Claim 13.0.3, proven below, to show that every |ϕu1⟩ ⟨ϕu2 | term where u1 ̸= u2 has
coefficient 0. To see this, consider any such u1,u2 and the value u = (u1−u2)Zp = (u1−u2)F. Condition
1 is satisfied by u since u1 ̸= u2. Condition 2 is satisfied since hF(u) ≤ hF(u1) + hF(u2) ≤M −m, so
there are at least m indices of u which are zero. Finally, condition 3 is satisfied since any m columns of
R are linearly independent.

Finally, noting that if u1 = u2, then the coefficient of |ϕu1⟩ ⟨ϕu1 | ⊗ |y⟩ ⟨y| is the number of solutions
to (Rx)F = y, which is |F|M−m, we conclude that

ρA,Y =
∑

u∈FM :hF(u)≤M−m
2

|ϕu⟩ ⟨ϕu| ⊗

|F|−m ∑
y∈Fm

|y⟩ ⟨y|

 (13.8)

= TrX [|γ⟩ ⟨γ|]⊗

|F|−m ∑
y∈Fm

|y⟩ ⟨y|

 . (13.9)

Claim 13.0.3. Let u ∈ FM and y ∈ Fm, and suppose that

1. ui ̸= 0 for some index i.

95

2. There exists a set J ⊆ [0, . . . ,M − 1] of size m such that for every j ∈ J , uj = 0.

3. The submatrix RJ consisting of the columns of R corresponding to J has full rank.

Then ∑
x∈FM :(Rx)F=y

ω
(u·x)Zp
p = 0.

Remark 13.0.4. We note that in the case that F = Fp, then the above expression actually holds for any
u /∈ rowspan(R), which follows from a standard argument. The three conditions above do imply that
u /∈ rowspan(R), but are more restrictive. We take advantage of the extra restrictions in order to prove
that the expression holds even in the case where F is an extension field of Fp.

Proof. Our strategy will be to partition the affine subspace Sy = {x ∈ FM : (Rx)F = y} into parallel
lines, and then claim that the sum over each line is 0.

To begin, define a vector z ∈ FM so that

• zi = 1,

• zj = 0 for all j /∈ J ∪ {i}, and

• (Rz)F = 0m,

which is possible because the m ×m submatrix RJ has full rank. By construction, we have that for any
c ∈ F,

(u · (cz)F)Zp =

ui · (czi)F +
∑
j∈J

uj · (czj)F +
∑

j /∈J∪{i}

uj · (0)F


Zp

= (ui · c)Zp , (13.10)

where note that in the final expression, ui and c are interpreted as vectors in Zk
p .

Now, fix any x ∈ Sy and c ∈ F. Then we have that (x + cz)F ∈ Sy, since (R(x + cz))F = y + 0.
Therefore, we can partition Sy into one-dimensional cosets (lines) of the form {x+ cz}c∈F.

We now show that the sum over any particular coset is 0, i.e. that for any x ∈ Sy,∑
c∈F

ω
(u·(x+cz)F)Zp
p = 0.

Since the additive group of F is Zk
p , by eq. (13.10) we have that

(u · (x+ cz)F)Zp = (u · x+ u · (cz)F)Zp

= (u · x+ ui · c)Zp

We now view ui ∈ F as a vector ui = ui,0, . . . , ui,k−1 ∈ Zk
p. In particular, since ui ̸= 0, there exists an

index t such that uk,t ̸= 0 ∈ Zp. By also interpreting c ∈ F as an element of Zk
p , we can decompose it

as c = (c′ + ctet)Zp , where c′ ∈ Zk
p is such that c′t = 0, where ct ∈ Zp, and where et ∈ Zk

p is the t’th
standard basis vector. Therefore

(u · (x+ cz)F)Zp = (u · x+ ui · c′ + ui,tct)Zp .

96

Since ui,t ̸= 0 and ωp is a primitive p’th root of unity, we know that ωui,t
p ̸= 1 is a p’th root of unity.

Therefore by Claim 12.1.1,∑
c∈F

ω
(u·(x+cz)F)Zp
p =

∑
c′∈Zk

p :c
′
t=0

ω
(u·x+ui·c′)Zp
p ·

∑
ct∈Zp

(
ω
ui,t
p

)ct (13.11)

=
∑

c′∈Zk
p :c

′
t=0

ω
(u·x+ui·c′)Zp
p · 0 (13.12)

= 0. (13.13)

97

98

Chapter 14

Definitions of Secret Sharing with Certified
Deletion

A secret sharing scheme with certified deletion augments the syntax of a secret sharing scheme with
additional algorithms to delete shares and verify deletion certificates. We define it for general access
structures. As described in section 12.4, an access structure S ⊆ P([n]) for n parties is a monotonic set
of sets, i.e. if S ∈ S and S′ ⊃ S, then S′ ∈ S. Any set of parties S ∈ S is authorized to access the secret.
A simple example of an access structure is the threshold structure, where any set of at least k parties is
authorized to access the secret. We denote this access structure as (k, n).

Definition 14.0.1 (Secret Sharing with Certified Deletion). A secret sharing scheme with certified deletion
is specified by a monotone access structure S over n parties, and consists of four algorithms:

• SplitS(1
λ, s) takes in a secret s, and outputs n share registers S1, . . . ,Sn and a verification key vk.

• ReconstructS({Si}i∈P) takes in set of share registers for some P ⊆ [n], and outputs either s or ⊥.

• DeleteS(Si) takes in a share register and outputs a certificate of deletion cert.

• VerifyS(vk, i, cert) takes in the verification key vk, an index i, and a certificate of deletion cert, and
outputs either ⊤ (indicating accept) or ⊥ (indicating reject).

Definition 14.0.2 (Correctness of Secret Sharing with Certified Deletion). A secret sharing scheme with
certified deletion must satisfy two correctness properties:

• Reconstruction Correctness. For all λ ∈ N and all sets S ∈ S,

Pr
[
ReconstructS({Si}i∈S) : (S1, . . . ,Sn, vk)← SplitS(1

λ, s)
]
= 1.

• Deletion Correctness. For all λ ∈ N and all i ∈ [n],

Pr

[
VerifyS(vk, i, cert) = ⊤ :

(S1, . . . ,Sn, vk)← SplitS(1
λ, s)

cert← DeleteS(Si)

]
= 1.

The standard notion of security for secret sharing requires that no set of unauthorized shares S /∈ S
reveals any information about the secret (see section 12.4). We next present our notion of no-signaling
certified deletion security. Here, the shares are partitioned into unauthorized sets, and different parts of the

99

adversary operate on each partition, potentially deleting some number of shares from each. The different
parts of the adversary are allowed to share entanglement, but are not allowed to signal. If the adversaries
jointly produce a valid certificate for at least one share from every authorized set, then we require that
the joint residual state of all of the adversaries contains no (or negligible) information about the secret.
Observe that this notion of security is at least as strong as the standard notion of security for secret sharing
(if we relax to statistical rather than perfect security). Indeed, if the standard notion does not hold, and
thus there is some unauthorized set S that leaks information about the secret, then the adversary would be
able to win the certified deletion game by honestly deleting every share except for those in S.

Definition 14.0.3 (No-Signaling Certified Deletion Security for Secret Sharing). Let P = (P1, . . . , Pℓ)
be a partition of [n], let |ψ⟩ be an ℓ-part state on registers R1, . . . ,Rℓ, and let Adv = (Adv1, . . . ,Advℓ)
be an ℓ-part adversary. Define the experiment SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s) as follows:

1. Sample (S1, . . . ,Sn, vk)← SplitS(1
λ, s).

2. For each t ∈ [ℓ], run ({certi}i∈Pt ,R′t) ← Advt({Si}i∈Pt ,Rt), where R′t is an arbitrary output
register.

3. If for all S ∈ S, there exists i ∈ S such that VerifyS(vk, i, certi) = ⊤, then output (R′1, . . . ,R′ℓ),
and otherwise output ⊥.

A secret sharing scheme for access structure S has no-signaling certified deletion security if for any
“admissible” partition P = (P1, . . . , Pℓ) (i.e. for all Pt ∈ P and S ∈ S, Pt ̸⊆ S), any ℓ-part state |ψ⟩,
any (unbounded) ℓ-part adversary Adv, and any pair of secrets s0, s1,

TD[SS-NSCDS(1
λ, P, |ψ⟩ ,Adv, s0), SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s1)] = negl(λ).

Next, we present an alternative definition which allows the adversary to start by corrupting some
unauthorized set, and then continue to adaptively delete some shares and corrupt new parties, as long as
the total set of parties corrupted minus the set of shares deleted is unauthorized. Similarly to the previous
definition, adaptive certified deletion for secret sharing subsumes the standard notion of security for secret
sharing.

Definition 14.0.4 (Adaptive Certified Deletion for Secret Sharing). Let Adv be an adversary with internal
registerR which is initialized to a state |ψ⟩, let S be an access structure, and let s be a secret. Define the
experiment SS-ACDS(1

λ, |ψ⟩ ,Adv, s) as follows:

1. Sample (S1, . . . ,Sn, vk) ← SplitS(1
λ, s). Initialize the corruption set C = ∅ and the deleted set

D = ∅.

2. In each round i, the adversary may do one of three things:

(a) End the experiment by outputting a registerR ← Adv({Sj}j∈C ,R).
(b) Delete a share by outputting a certificate certi, an index ji ∈ [n], and register (certi, ji,R)←

Adv({Sj}j∈C ,R). When the adversary chooses this option, if VerifyS(vk, ji, certi) outputs⊤,
then add ji to D. Otherwise, immediately abort the experiment and output ⊥.

(c) Corrupt a new share by outputting an index ji ∈ [n] and register (ji,R)← Adv({Sj}j∈C ,R).
When the adversary chooses this option, add ji to C. If C\D ∈ S, immediately abort the
experiment and output ⊥.

3. OutputR, unless the experiment has already aborted.

100

A secret sharing scheme for access structure S has adaptive certified deletion security if for any
(unbounded) adversary Adv, any state |ψ⟩, and any pair of secrets (s0, s1),

TD[SS-ACDS(1
λ, |ψ⟩ ,Adv, s0), SS-ACDS(1

λ, |ψ⟩ ,Adv, s1)] = negl(λ)

It will also be convenient to establish some notation for the order of the corrupted and deleted shares.
Let ca be the a’th share to be corrupted (i.e. added to C) and let db be the b’th share to be deleted (i.e.
added to D).

101

102

Chapter 15

Secret Sharing with No-Signaling Certified
Deletion

In this section, we’ll show how to combine any classical secret sharing scheme (CSplitS,CReconstructS)
(definition 12.4.1) for access structure S ∈ P([n]) with a 2-out-of-2 secret sharing scheme with certi-
fied deletion (Split2-2,Reconstruct2-2,Delete2-2,Verify2-2) (definition 12.4.2) in order to obtain a secret
sharing scheme for S that satisfies no-signaling certified deletion security (definition 14.0.3).

Theorem 15.0.1. The construction given in fig. 15.1 satisfies no-signaling certified deletion security (def-
inition 14.0.3).

Proof. Let Adv = (Adv1, . . . ,Advℓ) be any ℓ-part adversary that partitions the shares using an admissible
partition P = (P1, . . . , Pℓ) and is initialized with the ℓ-part state |ψ⟩ on registers R1, . . . ,Rℓ. Let s0, s1
be any two secrets, and assume for contradiction that

TD[SS-NSCDS(1
λ, P, |ψ⟩ ,Adv, s0), SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s1)] = nonnegl(λ).

Now, for s ∈ {s0, s1}, define a hybridH1(s) as follows.

H1(s)

1. Sample C ← P([n]).

2. Sample (sh1, . . . , shn)← CSplitS(s).

3. Set κ = max{λ, n}2, and for each i ∈ [n], sample (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

4. For each i ∈ [n], sample (cshi,1, . . . , cshi,n)← CSplitS(cshi).

5. Set vk = (vk1, . . . , vkn), and initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

6. For each t ∈ [ℓ], run ({certi}i∈Pt ,R′t)← Advt({Si}i∈Pt ,Rt).

7. Let C∗ := {i : Verify2-2(vki, i, certi) = ⊤}. Output (R′1, . . . ,R′ℓ) if C = C∗ and [n] \C∗ /∈ S, and
otherwise output ⊥.

That is, H1(s) is the same as SS-NSCDS(1
λ, P, |ψ⟩ ,Adv, s) except that H1(s) makes a uniformly

random guess C for the subset of shares for which the adversary produces a valid deletion certificate, and
aborts if this guess is incorrect.

103

SplitS(1
λ, s)

• Sample (sh1, . . . , shn)← CSplitS(s).

• Set κ = max{λ, n}2, and for each i ∈ [n], sample (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

• For each i ∈ [n], sample (cshi,1, . . . , cshi,n)← CSplitS(cshi).

• Set vk = (vk1, . . . , vkn), and initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

ReconstructS({Si}i∈P)

• Parse each register Si as |qshi⟩ , {cshj,i}j∈[n].

• For each i ∈ P , compute cshi ← CReconstructS({cshi,j}j∈P), and output ⊥ if the result is ⊥.

• For each i ∈ P , compute shi ← Reconstruct2-2(|qshi⟩ , cshi).

• Output s← CReconstructS({shi}i∈P).

DeleteS(Si)

• Parse Si as |qshi⟩ , {cshj,i}j∈[n] and output cert← Delete2-2(|qshi⟩).

VerifyS(vk, i, cert)

• Parse vk = (vk1, . . . , vkn) and output Verify2-2(vki, cert).

Figure 15.1: Secret sharing with no-signaling certified deletion security for any access structure S.

Claim 15.0.2. TD [H1(s0),H1(s1)] = nonnegl(λ) · 2−n.

Proof. This follows directly from the fact that H1(s)’s guess for C is correct with probability 1/2n, and,
conditioned on the guess being correct,H1(s) is identical to SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s).

Now, for s ∈ {s0, s1} and k ∈ [0, . . . , n], define a sequence of hybridsH2,k(s) as follows.

H2,k(s)

1. Sample C ← P([n]).

2. Sample (sh1, . . . , shn)← CSplitS(s).

3. Set κ = max{λ, n}2 and for each i ∈ [n], if i ≤ k and i ∈ C, sample (|qshi⟩ , cshi, vki) ←
Split2-2(1

κ,⊥), and otherwise sample (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

4. For each i ∈ [n], sample (cshi,1, . . . , cshi,n)← CSplitS(cshi).

5. Set vk = (vk1, . . . , vkn), and initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

6. For each t ∈ [ℓ], run ({certi}i∈Pt ,R′t)← Advt({Si}i∈Pt ,Rt).

104

7. Let C∗ := {i : Verify2-2(vki, i, certi) = ⊤}. Output (R′1, . . . ,R′ℓ) if C = C∗ and [n] \C∗ /∈ S, and
otherwise output ⊥.

First, note thatH1(s0) = H2,0(s0) andH1(s1) = H2,0(s1). Next, we show the following claim.

Claim 15.0.3. H2,n(s0) ≡ H2,n(s1).

Proof. In each experiment, if the output is not ⊥, then we know that [n] \ C is an unauthorized set.
Moreover, the experiments do not depend on the information {shi}i∈C . Thus, the claim follows by the
perfect privacy of (CSplitS,CReconstructS), which implies that

{{shi}i∈C\[n] : (sh1, . . . , shn)← CSplitS(s0)}
≡ {{shi}i∈C\[n] : (sh1, . . . , shn)← CSplitS(s1)}.

Finally, we show the following claim.

Claim 15.0.4. For s ∈ {s0, s1} and k ∈ [n], it holds that TD [H2,k−1(s),H2,k(s)] = 2−Ω(κ).

Proof. The only difference between these hybrids is that if k ∈ C, we switch shk to ⊥ in the third
step. So, suppose that k ∈ C, and consider the following reduction to the certified deletion security
(definition 12.4.2) of (Split2-2,Reconstruct2-2,Delete2-2,Verify2-2). This experiment is parameterized by
a bit b which determines which one of two secrets the certified deletion challenger will share.

• The reduction samples C ← P([n]) and (sh1, . . . , shn) ← CSplitS(s), and sends {shk,⊥} to the
challenger.

• The challenger samples (|qshk⟩ , cshk, vkk) ← Split2-2(1
κ, shk) if b = 0 or (|qshk⟩ , cshk, vkk) ←

Split2-2(1
κ,⊥) if b = 1, and sends |qshk⟩ to the reduction.

• For each i ∈ [n]\{k}, if i < k and i ∈ C, the reduction samples (|qshi⟩ , cshi, vki)← Split2-2(1
κ,⊥),

and otherwise samples (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

• Let t∗ ∈ [ℓ] be such that k ∈ Pt∗ . For each i ∈ [n]\{k}, the reduction samples (cshi,1, . . . , cshi,n)←
CSplitS(cshi). Next, the reduction samples {cshk,i}i∈Pt∗ ← Sim(Pt∗), where Sim is the simulator
guaranteed by the privacy of (CSplitS,CReconstructS).

• For each i ∈ Pt∗ , initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

• The reduction runs ({certi}i∈Pt∗ ,R′t∗)← Advt∗({Si}i∈Pt∗ ,Rt∗), and sends certk to the challenger.

• The challenger checks whether Verify2-2(vkk, certk) = ⊤. If so, the challenger returns cshk, and
otherwise the experiment aborts and outputs ⊥.

• The reduction samples {cshk,i}i∈[n]\Pt∗ conditioned on the joint distribution of (cshk,1, . . . , cshk,n)
being identical to CSplitS(cshk). This is possible due to the guarantee of Sim(Pt∗), that is,{

{cshk,i}i∈Pt∗ : (cshk,1, . . . , cshk,n)← CSplitS(cshk)
}

≡
{
{cshk,i}i∈Pt∗ : {cshk,i}i∈Pt∗ ← Sim(Pt∗)

}
.

105

• For each i ∈ [n] \ Pt∗ , the reduction initializes register Si to |qshi⟩ , {cshj,i}j∈[n].

• For each t ∈ [ℓ] \ {t∗}, run ({certi}i∈Pt ,R′t)← Advt({Si}i∈Pt ,Rt).

• Let C∗ := {i : Verify2-2(vki, i, certi) = ⊤}. The reduction outputs (R′1, . . . ,R′ℓ) if C = C∗ and
[n] \ C∗ /∈ S, and otherwise outputs ⊥.

Observe that in the case b = 0, the output of this experiment is identical to H2,k−1(s) while if b = 1,
the output of this experiment is identical to H2,k(s). Thus, the claim follows from the certified deletion
security of (Split2-2,Reconstruct2-2,Delete2-2,Verify2-2).

Thus, by combining claim 15.0.3 and claim 15.0.4, we have that

TD [H1(s0),H1(s1)] = 2n · 2−Ω(κ) ≤ 2−Ω({max{λ,n}2}).

However, this violates claim 15.0.2, since

2−Ω({max{λ,n}2}) < nonnegl(λ) · 2−n,

which completes the proof.

106

Chapter 16

Threshold Secret Sharing with Adaptive
Certified Deletion

In this section, we show how to construct a secret sharing scheme for threshold access structures that
satisfies adaptive certified deletion (Definition 14.0.4).

16.1 Construction

Our construction is given in Figure 16.2, which uses a set of parameters described in Figure 16.1. We
provide some intuition about the parameter settings here.

The secret is encoded in a polynomial f of degree p. For security, we need p to be at least as large
as the number of points of f that the adversary can learn. At most, the adversary can hold up to k − 1
intact shares and the residual states of n− k+1 deleted shares. Each of the k− 1 intact shares contains t′

evaluations of f . Additionally, the adversary may retain some small amount of information about each of
the deleted shares. We upper bound the retained information by a parameter ℓ for each share. This gives
the adversary a maximum of

(k − 1)t′ + (n− k + 1)ℓ

evaluations of f , which becomes the minimum safe setting for p.
Each share will also include a number of “check positions”, which contain Fourier basis states that

are used for verification of deletion. The number of check positions r and upper bound ℓ are set roughly
so that with overwhelming probability, the adversary can retain no more than ℓ evaluations of f when it
deletes a share (more precisely, the adversary may retain a superposition over potentially different sets of
ℓ evaluations). The reader may find it useful to think of ℓ as being the maximum number of unexamined
positions in a classical string x when an adversary successfully creates a string y that matches x on r
random verification indices. Finally, the total size t of each share is set so that k shares contain less than
(kt−p)/2 check positions, which is the maximum number of errors that can be corrected in kt evaluations
of a polynomial of degree p (see Section 12.3).

Theorem 16.1.1. There exists secret sharing for threshold access structures which satisfies adaptive cer-
tified deletion.

Proof. The construction is given in Figure 16.2. Deletion correctness is apparent from inspection of
the construction. We prove reconstruction correctness in Lemma 16.1.2 and adaptive certified deletion
security in Lemma 16.2.1.

107

The construction in Figure 16.2 uses the following parameters.a

• Each share consists of t total K-registers, where

t = (k + 1)r

(
1 +

(n− k + 1) log(λ)

λ

)
+ 1

• A share is divided into r check indices and t′ = t− r data indices, where

r = (λ+ (n− k + 1) log(λ))2

• ℓ intuitively represents an upper bound on the amount of information which is not destroyed
when an adversary generates a valid deletion certificate for a share.

ℓ = t
log(λ)√

r

See the proof of Lemma 16.2.1 for a more precise usage of ℓ.

• The secret will be encoded in a polynomial of degree

p = (k − 1)t′ + (n− k + 1)ℓ

aThe parameters provided here are slightly looser than necessary, to facilitate easier inspection. We present a tighter set
of parameters in Figure 17.1.

Figure 16.1: Parameters for Secret Sharing with Adaptive Certified Deletion

Lemma 16.1.2. The construction in Figure 16.2 using parameters from Figure 16.1 has reconstruction
correctness.

Proof. The set {(it+ j, yi,j)}i∈P ′,j∈[t] contains kt pairs which were obtained by measuring k shares. As
mentioned in Section 12.3, if all but e < (kt − p)/2 of these pairs (it + j, yi,j) satisfy yi,j = f(it + j),
then CorrectK,p recovers the original polynomial f , where f(0) = s. The only points which do not satisfy
this are the check positions, of which there are r per share, for a total of kr. Therefore for correctness, we
require that

2kr < kt− p (16.1)

= kt− (k − 1)(t− r)− (n− k + 1)ℓ (16.2)

= t+ (k − 1)r − (n− k + 1)ℓ (16.3)

Therefore t− (n− k + 1)ℓ > (k + 1)r. Substituting ℓ = t log(λ)√
r

yields

t

(
1− (n− k + 1)

log(λ)√
r

)
> (k + 1)r (16.4)

108

Parameters: Let F2 be the binary field and let K be the field with 2⌈log2(nt+1)⌉ elements. See Fig-
ure 16.1 for descriptions and settings of the parameters t, t′, r, ℓ, and p.

Split(k,n)(1
λ, s)

• Sample a random polynomial f with coefficients in K and degree p such that f(0) = s.

• For each i ∈ [n]:

1. Sample a random set of indices Ji ⊂ [t] of size t′ = t− r.

2. For each j ∈ Ji, set |ψi,j⟩ = |f(it+ j)⟩. These are the t′ data positions.

3. For each j ∈ [t]\Ji, sample a uniform element yi,j ← K and set |ψi,j⟩ =
H⊗⌈log2(n+1)⌉ |yi,j⟩. These are the r check positions.

4. Initialize register Si to
⊗t

j=1 |ψi,j⟩.

• Set vk = {Ji, {yi,j}j∈[t]\Ji}i∈[n].

Reconstruct(k,n)(1
λ, {Si}i∈P)

• If |P | < k, output ⊥. Otherwise, set P ′ to be any k shares in P .

• For each i ∈ P ′, measure Si in the computational basis to obtain yi = (yi,1, . . . , yi,t) ∈ Kt.

• Compute f ← CorrectK,p({(it+ j, yi,j)}i∈P ′,j∈[t]), as defined in Section 12.3.

• Output f(0).

Delete(k,n)(1
λ,Si)

• Parse Si as a sequence of t⌈log2(n+ 1)⌉ single qubit registers, measure each qubit register in
Hadamard basis and output the result cert.

Verify(k,n)(1
λ, vk, i, cert)

• Parse vk = {Ji, {yi,j}j∈[t]\Ji}i∈[n], and parse cert ∈ Kt as a sequence of t elements of K.
Output ⊤ if certj = yi,j for every j ∈ Ji, and ⊥ otherwise.

Figure 16.2: Construction for Secret Sharing with Adaptive Certified Deletion

t > (k + 1)r
1

1− (n− k + 1) log(λ)√
r

(16.5)

= (k + 1)r

√
r√

r − (n− k + 1) log(λ)
(16.6)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)√
r − (n− k + 1) log(λ)

)
(16.7)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)

λ+ (n− k + 1) log(λ)− (n− k + 1) log(λ)

)
(16.8)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)

λ

)
(16.9)

109

Note that Equation (16.5) requires that
(
1− (n− k + 1)t log(λ)√

r

)
> 0. Since the number of check posi-

tions is r = (λ+ (n− k + 1) log(λ))2, we have

1− (n− k + 1)
log(λ)

λ+ (n− k + 1) log(λ)
> 1− (n− k + 1) log(λ)

(n− k + 1) log(λ)
= 0 (16.10)

Finally, observe that the choice of parameters in the construction satisfies these constraints.

16.2 Proof of Security

Recall that ca is the a’th share to be corrupted (i.e. added to C) and db is the b’th share to be deleted
(i.e. added to D). Observe that if ck−1+b is corrupted before db is deleted, then C\D has size ≥ k and is
authorized, so SS-ACD(k,n) would abort.

Lemma 16.2.1. The construction in Figure 16.2 using parameters from Figure 16.1 satisfies adaptive
certified deletion for threshold secret sharing.

We begin by defining a projector which will be useful for reasoning about how many data indices were
not destroyed when an adversary produces a valid certificate for a share i. A certificate certi for share i
can be parsed as t elements certi,1, . . . , certt,i of K. Denote cert′i = (certi,j)j∈Ji to be the subtuple of
elements belonging to data indices. For any certificate cert, we define the projector1

Πcert =
∑

u∈Kt′ :hK(u)<ℓ/2

H⊗t
′⌈log2(n+1)⌉ |u+ cert′⟩ ⟨u+ cert′|H⊗t′⌈log2(n+1)⌉

Note that H is the Hadamard gate, i.e. it implements a quantum Fourier transform over the binary
field F2, and that the Hamming weight is taken over K.

Let Adv be any adversary which is initialized with a state |ψ⟩ on register R. For s ∈ {s0, s1}, define
the following n− k+3 hybrid experiments, whereH0(s) is the original SS-ACD(1λ, |ψ⟩ ,Adv, s) exper-
iment.

H1(s)

InH1(s), we sample the shares lazily using polynomial interpolation.

1. For each share i, sample the set of data indices Ji ⊂ [t]. Then for every share i and every check
position j ∈ [t]\Ji, sample the check position |ψi,j⟩ as inH0(s).

2. For each share i, divide the data indices Ji into a left set JL
i of size ℓ and a right set JR

i of size t′−ℓ.
For each j ∈ JL

i , sample f(it+ j)← K uniformly at random.

3. Until k − 1 shares are corrupted, i.e. |C| = k − 1, run Adv({Sj}j∈C ,R) as in SS-ACD, with the
following exception. Whenever Adv corrupts a new share by outputting (ca,R), finish preparing
share ca by sampling f(cat+ j)← K uniformly at random for every j ∈ JR

ci .

At the end of this step, exactly p = (k − 1)t′ + (n− k + 1)ℓ points of f have been determined, in
addition to f(0) = s. This uniquely determines f .

1This projector defines the “deletion predicate” mentioned in the technical overview (Section 11.2).

110

4. Continue to run Adv({Sj}j∈C ,R) as in SS-ACD, with the following exception. Whenever Adv
corrupts a new share by outputting (ck−1+b,R), finish preparing ck−1+b by interpolating the points
in JR

ck−1+b
using share db and any other set of p− t′ points that have already been determined on f .

Specifically, let

Intk−1+b ⊂ {0} ∪
⋃
m∈C
{mt+ j : j ∈ Jm} ∪

⋃
m/∈C

{mt+ j : j ∈ JL
m}

be any set of p+ 1 indices to be used in the interpolation, such that

{dbt+ j : j ∈ Jdb} ⊂ Intk−1+b

For each j ∈ JR
ck−1+b

, compute

f(ck−1+bt+ j)← Interpolatep (ck−1+bt+ j, {(m, f(m)) : m ∈ Intk−1+b})

See Section 12.3 for the definition of Interpolate.

Note that if SS-ACD does not abort in a round, |C\D| ≤ k − 1. In the round where Adv corrupts
ck−1+i, |C| = k − 1 + i, so di has already been determined.

H2(s)

In H2(s), we purify the share sampling using a register C = (C1, . . . , Cn) which is held by the chal-
lenger. The challenger will maintain a copy of share i in register Ci = (Ci,1, . . . , Ci,t). Both S and C are
initialized to |0⟩ at the beginning of the experiment.

1. For each share i, sample the set of data indices Ji ⊂ [t]. Then for every share i and every check
position j ∈ [t]\Ji, prepare the state

∝
∑
y∈K
|y⟩Si,j ⊗ |y⟩Ci,j

Measure Ci,j in the Hadamard basis to obtain yi,j for the verification key.

2. Divide each Ji into JL
i and JR

i as inH1(s). For each j ∈ JL
i , prepare the state

∝
∑
y∈K
|y⟩Si,j ⊗ |y⟩Ci,j

3. Until k − 1 shares are corrupted, i.e. |C| = k − 1, run Adv({Sj}j∈C ,R) as in SS-ACD, with the
following exception. Whenever Adv corrupts a new share by outputting (ca,R), for every j ∈ JR

ca
prepare the state

∝
∑
y∈K
|y⟩Sca,j ⊗ |y⟩Cca,j

4. Continue to run Adv({Sj}j∈C ,R) as in SS-ACD, with the following exception whenever Adv cor-
rupts a new share by outputting (ck−1+b,R). Let Intk−1+b be the set of indices to be used in
interpolation for share ck−1+b, as inH1(s). For each j ∈ Jck−1+b

, compute

Cck−1+b,j ← Interpolatep

(
ck−1+bt+ j, (mt+ j,Sm,j)mt+j∈Intk−1+b

)
Finally, copy Cck−1+b,j into Sck−1+b,j in the computational basis, i.e. perform a controlled NOT
operation with source register Cck−1+b,j and target register Sck−1+b,j .

111

We emphasize that the timing of initializing each Si,j is the same as in H1(s). Note that since H2(s)
outputs either ⊥ or Adv’s view, register C never appears in the output of the experiment.

H2+i(s) for i ∈ [n− k + 1]

The only difference between H2+i and H3+i is that when the i’th share di is deleted in H3+i (i.e. D
reaches size i), the challenger performs a “deletion predicate” measurement on register Cdi . Specifically,
let certdi be the certificate output by Adv for share di. Immediately after verifying certdi and adding di
to D, the challenger measures the data positions in register Cdi (i.e. register (Cdi,j)j∈Jdi) with respect
to the binary projective measurement {Πcertk+i

, I − Πcertk+i
}. If the measurement result is “reject” (i.e.

I − Πcertk+i
), immediately output ⊥ in the experiment. The difference between H2 and H3 is the same,

for i = 1.

In addition to hybrids H0 through H3+n−k, we define a set of simulated experiments. Each Simi

will be useful for reasoning about hybrid H2+i. Simi is similar to H2+i except that all of the shares are
randomized, whereas inH2+i, shares corrupted after ck−1+i are interpolated.

Simi for i ∈ [n− k + 1]

Run the SS-ACD(1λ, |ψ⟩ ,Adv, s) experiment, with the following exceptions.

• Do not initialize (S1, . . . ,Sn, vk)← SplitS(1
λ, s) in step 1.

• Whenever Adv corrupts a new share by outputting (ca,R), prepare the state

∝
∑
y∈Kt

|y⟩Sca ⊗ |y⟩Cca

Then, sample the set of data indices Jca ⊂ [t] of size t′ and for each check index j ∈ [t]\Jca
measure Cca,j in the Hadamard basis to obtain ya,j for the verification key.

• For the first i deletions db where b ≤ i, immediately after the challenger verifies certdb and adds db
toD, it measures the data positions in register Cdb with respect to the binary projective measurement
{Πcertdb

, I−Πcertdb
}. If the measurement result is “reject”, immediately output⊥ in the experiment.

Claim 16.2.2. For every secret s,
TD[H0(s),H2(s)] = 0

Proof. It is sufficient to show that TD[H0(s),H1(s)] = 0 and TD[H1(s),H2(s)] = 0. The former is true
by the correctness of polynomial interpolation (see Section 12.3). To see the latter, observe that steps 1,
2, and 3 in H2(s) are equivalent to sampling a uniformly random state (in any basis) in register Si,j by
preparing a uniform superposition over the basis elements in Si,j , then performing a delayed measurement
from Si,j to Ci,j in that basis. Observe that steps 1, 2, and 3 inH1(s) also sample uniformly random states
in Si,j . Now consider step 4. InH2(s), step 4 performs a (classical) polynomial interpolation using copies
of points (it+ j, f(it+ j)) that are obtained by measuring Si,j . This is equivalent to directly interpolating
using Si,j if Si,j contained a computational basis state, which is the case inH1(s).

We show thatH2 has negligible trace distance fromH3+n−k in Claim 16.2.4. To prove Claim 16.2.4,
we will need an additional fact which we show in Claim 16.2.3. Claim 16.2.3 will also show that the final
hybridH3+n−k has zero trace distance from Simn−k+1, which is independent of the secret s.

112

LetHi[ca](s) denote the truncated game whereHi(s) is run until the end of the round where the a’th
corruption occurs, i.e. when |C| reaches a. At this point, Hi[ca](s) outputs the adversary’s register R
and the set of corrupted registers {Sj}j∈C , unless the game has ended earlier (e.g. from an abort).2 Let
Hi[db](s) similarly represent the truncated game where Hi(s) is run until the end of the round where the
b’th deletion occurs, i.e. when |D| reaches b. Define Simi[ca] and Simi[db] similarly.

Observe that after the n’th corruption in any hybrid experiment, the rest of the challenger’s actions
in the experiment is independent of the secret s. Therefore for every hybrid Hi and every pair of secrets
(s0, s1),

TD[Hi[cn](s0),Hi[cn](s1)] = TD[Hi(s0),Hi(s1)]

Claim 16.2.3. For every i ∈ [0, n− k + 1] and every secret s,

TD[H2+i[ck−1+i](s),Simi[ck−1+i]] = 0

Combining this claim with the previous observation about the relation of a truncated experiment to its
full version, it is clear that

TD[H3+n−k(s0),H3+n−k(s1)] = TD[H3+n−k[cn](s0),H3+n−k[cn](s1)]

= TD[Simn−k+1[cn],Simn−k+1[cn]]

= 0

By Claim 16.2.4, we have

TD[H2(s0),H2(s1)] ≤ TD[H3+n−k(s0),H3+n−k(s1)] + negl(λ)

Therefore, combining claims Claim 16.2.2, Claim 16.2.3, and Claim 16.2.4, we have

TD[H0(s0),H0(s1)] ≤ TD[H3+n−k(s0),H3+n−k(s1)] + negl(λ)

≤ 0 + negl(λ)

which completes the proof. All that remains is to prove Claim 16.2.3, and Claim 16.2.4.

Proof of Claim 16.2.3. We proceed via induction. This is clearly true for i = 0, since the first k−1 shares
to be corrupted are prepared as maximally mixed states in bothH2(s) and Sim.

Before addressing the case of i > 0, we define some notation for our specific application of interpola-
tion. When preparing a share ck−1+i after it is corrupted, the challenger interpolates evaluations of f into
a register

CRck−1+i
:= (Cck−1+i,j)j∈JR

ck−1+i

CRck−1+i
consists of the right data positions of share ck−1+i and contains t′ − ℓ K-qudits. To do the

interpolation, the challenger uses evaluations of f contained in registers

C′di := (Cdi,j)j∈Jdi
2The truncated version of the game outputs both the set of corrupted registers and R, while the full version only outputs R.

In the full version, the adversary can move whatever information it wants into R. However, the truncated game ends early, so
the adversary may not have done this when the game ends. Outputting the corrupted registers directly ensures that they appear
in the output in some form if the game does not abort.

113

and some other registers which we group as I. C′di consists of the data positions in share di and contains
t′ K-qudits. Since polynomial interpolation is a linear operation over K, the system immediately after
ck−1+i is prepared can be described as a state∑
x1∈Kt′

x2∈Kd−t′

αx1,x2 |x1⟩
C′di ⊗ |x2⟩I ⊗ |R1x1 +R2x2⟩

CRck−1+i ⊗ |R1x1 +R2x2⟩
SRck−1+i ⊗ |ϕx1,x2⟩

C′,S′,R

where R1 ∈ K(t′−ℓ)×t′ and R2 ∈ K(t′−ℓ)×(d+1−t′) are submatrices of the interpolation transformation,
where SRck−1+i

contains the copy of the evaluations in CRck−1+i
, where C′ and S ′ respectively consist of the

unmentioned registers of C and S, and whereR is the adversary’s internal register.
Now we will show that the claim holds for i + 1 if it holds for i. Define the following hybrid experi-

ments.

• H3+i[ck+i]: Recall that the only difference between H2+i and H3+i is an additional measurement
made in the same round that the (i+ 1)’th share is deleted, i.e. when |D| reaches i+ 1.

• H′3+i[ck+i]: The only difference from H3+i[ck+i] occurs when the adversary requests to corrupt
share ck+i. When this occurs, the challenger prepares the right data positions of share ck+i as the
state

∝
∑
y∈Kt′

|y⟩C
R
ck+i ⊗ |y⟩S

R
ck+i

• Simi[ck+i]: The only difference from H′3+i[ck+i] is that Simi[ck+i] is run until ck+i is corrupted,
then the experiment is finished according toH′3+i[ck+i].

We first show thatH′3+i[ck+i] and Simi[ck+i] are close. By the inductive hypothesis,

TD[H2+i[ck−1+i](s), Simi−1[ck−1+i]] = 0

Note thatH2+i(s) andH′3+i(s) are identical until the (i+1)’th deletion di+1. Similarly, Simi−1 and Simi

are identical until the (i+ 1)’th deletion. Therefore

TD[H′3+i[di](s),Simi[di]] = 0

Finally, observe that if the experiment does not abort, then di is deleted before ck+i is corrupted (otherwise
|C\D| = k during some round). Because of this, H′3+i[ck+i] and Sim[ck+i] behave identically after the
round where di is corrupted. Therefore

TD[H′3+i[ck+i],Sim[ck+i]] = 0

It remains to be shown that
TD[H3+i[ck+i],H′3+i[ck+i]] = 0

The only difference between H3+i[ck+i] and H′3+i[ck+i] is at the end of the last round, where ck+i

is corrupted.3 If the experiment reaches the end of this round without aborting, then di has already been
corrupted, since otherwise at some point |C\D| = k. Furthermore, the deletion predicate measurement

3In the definition of the SS-ACD experiment, the corruption set C is updated in between adversarial access to the corrupted
registers, which occur once at the beginning of each round. The truncated game outputs according to the updated C, including
Sck+i .

114

on Cdi must have accepted or else the experiment also would have aborted. It is sufficient to prove that the
two experiments have 0 trace distance conditioned on not aborting.

In H′3+i[ck+i], if the experiment does not abort then its end state (after tracing out the challenger’s C
register) is ∑

x1∈Kt′

x2∈Kd−t′

x3∈Kt′−ℓ

|αx1,x2 |2 |x3⟩ ⟨x3|
SRck−1+i ⊗ TrC

′
[
|ϕx1,x2⟩ ⟨ϕx1,x2 |

C′,S′,R
]

We now calculate the end state of H′3+i[ck+i], conditioned on it not aborting. In this case, the chal-
lenger forH′3+i[ck+i] prepares the next corrupted register Sck+i

by a polynomial interpolation which uses
registers Cdi and I. The deletion predicate measurement on Cdi must have accepted to avoid an abort, so
before performing the interpolation, the state of the system is of the form

|γ⟩A,C′,Int2,Cdk+i =
∑

u∈Kt′ :hK(u)<ℓ/2

αu |ψu⟩S,C
′,I ⊗H⊗t′⌈log2(n+1)⌉ |u+ certk+i⟩Cdi

We will apply Theorem 13.0.1 with input size t′ and output size t′ − ℓ to show that share di contributes
uniform randomness to the preparation of ck+i. Observe that Cdi contains t′ K-qudits and the interpolation
target CRck+i

contains t′ − ℓ K-qudits. Furthermore, [R1|R2] ∈ K(t′−ℓ)×(d+1) is an interpolation matrix
for a polynomial of degree p. By Fact 12.3.1, any t′ − ℓ columns of [R1|R2] are linearly independent. In
particular, any t′ − ℓ columns of R1 are linearly independent. Finally, note that (t′ − (t′ − ℓ))/2 = ℓ/2.
Therefore by Theorem 13.0.1, the state of the system after preparing register CRck+i

and tracing out Cdi
when the experiment ends at the end of this round is∑

x3∈Kt′−ℓ

TrCdi
[
|γx3⟩ ⟨γx3 |

C,S,R
]

where

|γx3⟩ =
∑

x1∈Kt′

x2∈Kd−t′

αx1,x2 |x1⟩Cdi ⊗ |x2⟩I ⊗ |x3 +R2x2⟩Cck+i ⊗ |x3 +R2x2⟩Sck+i ⊗ |φx1,x2⟩
C′,S′,R

After this round,H3+i[ck+i] ends and register C is traced out. This yields the state∑
x3∈Kt′−ℓ

TrC
[
|γx3⟩ ⟨γx3 |

C,S,R
]

=
∑

x1∈Kt′

x2∈Kd−t′

x3∈Kt′−ℓ

|αx1,x2 |2 |x3 +R2x2⟩ ⟨x3 +R2x2|
SRck+i ⊗ TrC

′
[
|ϕx1,x2⟩ ⟨ϕx1,x2 |

C′,S′,R
]

=
∑

x1∈Kt′

x2∈Kd−t′

x4∈Kt′−ℓ

|αx1,x2 |2 |x4⟩ ⟨x4|
SRck+i ⊗ TrC

′
[
|ϕx1,x2⟩ ⟨ϕx1,x2 |

C′,S′,R
]

where x4 = x3 + R2x2. This state is identical to the state at the end of H′3+i[ck+i] conditioned on the
experiments not aborting.

115

Claim 16.2.4. For every i ∈ [0, n− k] and every secret s,

TD[H2+i(s),H3+i(s)] = negl(λ)

Proof. The only difference betweenH2+i(s) andH3+i(s) is an additional deletion predicate measurement
Πcertdi+1

during the round where di+1 is corrupted. Say the deletion predicate accepts with probability
1 − ϵ. Then the Gentle Measurement Lemma (Lemma 2.3.1) implies that, conditioned on the deletion
predicate accepting, the distance betweenH2+i(s) andH3+i(s) is at most 2

√
ϵ. We upper bound the case

where the deletion predicate rejects by 1 to obtain

TD[H2+i(s),H3+i(s)] ≤ (1− ϵ)2
√
ϵ+ ϵ

Thus, it is sufficient to show that ϵ = negl(λ), i.e. the deletion predicate accepts with high probability
on Cdi+1

inH3+i. To show this, we consider the following hybrids, and claim that the probability that the
deletion predicate accepts on Cdi+1

is identical in each of the hybrids.

• H3+i

• H3+i[di+1]: The only difference is that the game ends after the round where di+1 is deleted.

• Simi+1[di+1]: Recall that the only difference between H3+i and Simi+1 is that every share j is
prepared as the maximally entangled state∑

x∈Kt

|x⟩Cj ⊗ |x⟩Aj

• Sim′i+1[di+1]: The same as Simi+1[di+1], except that after preparing the maximally entangled state
for each share j, we delay choosing Jj and measuring the check indices Ci,j for j ∈ [t]\Jj . These
are now done immediately after Adv deletes j by outputting (certj , j,R), and before the challenger
verifies certj .

Observe thatH3+i andH3+i[di+1] are identical until the deletion predicate measurement in the round
where di+1 is deleted, so the probability of acceptance is identical. By Claim 16.2.3,

TD[H3+i[ck+i](s), Simi+1[ck+i]] = 0

Share di+1 is deleted before share ck+i is corrupted in both H3+i(s) and Simi+1, unless they abort.
Therefore

TD[H3+i[di+1](s), Simi+1[di+1]] = 0

and the probability of acceptance is identical in H3+i[di+1](s) and Simi+1[di+1]. Finally, the probability
of acceptance is identical in Sim′i+1[di+1] because the register C is disjoint from the adversary’s registers.

Thus, it suffices to show that ϵ = negl(λ) in Sim′i+1[di+1]. Since K forms a vector space over F2,
the certificate verification measurement and Πcertdi+1

are diagonal in the binary Fourier basis (i.e. the
Hadamard basis) for every cert. Therefore the probability that Verify accepts certdi+1

but the deletion
predicate measurement rejects Cdi+1

is

ϵ = Pr
cert,y∈Kt

J⊂[t]:|J |=t′

[
certJ = yJ ∧∆K(certJ ,yJ) ≥

ℓ

2

]

116

where J is the set of data indices for share di+1, where J is the set complement of J (i.e. the set of
check indices for share di+1), and where ∆K(certJ ,yJ) = hK(certJ − yJ) is the Hamming distance of
certJ from yJ . Here, the probability is taken over the adversary outputting a certificate cert for dk+i, the
challenger sampling a set of check indices J , and the challenger measuring all of register Cdi+1

in the
Hadamard basis to obtain y ∈ Kt.

This value can be upper bounded using Hoeffding’s inequality, for any fixed cert and y with ∆K(certJ ,yJ) ≥
ℓ/2. Note that the probability of acceptance is no greater than if the r check indices J are sampled with
replacement. In this case, the expected number of check indices which do not match is

≥ ℓr

2t
=

t log(λ)

λ+ (n− k + 1) log(λ)

(λ+ (n− k + 1) log(λ))2

2t
(16.11)

=
log(λ)

2
(λ+ (n− k + 1) log(λ)) (16.12)

Therefore Hoeffding’s inequality (Claim 12.2.1) implies that

ϵ ≤ 2 exp

−2
(
log(λ)

2 (λ+ (n− k + 1) log(λ))
)2

(λ+ (n− k + 1) log(λ))2

 (16.13)

= 2 exp

(
− log2(λ)

2

)
(16.14)

= negl(λ) (16.15)

117

118

Chapter 17

Tighter Parameters for the Threshold
Construction

In this section, we give alternate parameter settings for the construction in Figure 16.2 that result in slightly
smaller share sizes. The parameters are described in Figure 17.1. The main difference from Figure 16.1
is that r is slightly smaller, which also impacts t.

The construction in Figure 16.2 uses the following parameters.

• Each share consists of t total K-registers, where

t = (k + 1)r

(
1 +

(n− k + 1) log(λ)√
r − (n− k + 1) log(λ)

)
+ 1

• A share is divided into r check indices and t′ = t− r data indices, where

r = λ+ (n− k + 1)2 log2(λ)

• ℓ intuitively represents an upper bound on the amount of information which is not destroyed
when an adversary generates a valid deletion certificate for a share.

ℓ = t
log(λ)√

r

See the proof of Lemma 16.2.1 for a more precise usage of ℓ.

• The secret will be encoded in a polynomial of degree

d = (k − 1)t′ + (n− k + 1)ℓ

Figure 17.1: Alternate Parameters for Secret Sharing with Adaptive Certified Deletion

Lemma 17.0.1. The construction in Figure 16.2 has reconstruction correctness with the parameters in
Figure 17.1.

119

Proof. The set {(it+ j, yi,j)}i∈P ′,j∈[t] contains kt pairs which were obtained by measuring k shares. As
mentioned in Section 12.3, if all but e < (kt − d)/2 of these pairs (it + j, yi,j) satisfy yi,j = f(it + j),
then CorrectK,d recovers the original polynomial f , where f(0) = s. The only points which do not satisfy
this are the check positions, of which there are r per share, for a total of kr. Therefore for correctness, we
require that

2kr < kt− d (17.1)

= kt− (k − 1)(t− r)− (n− k + 1)ℓ (17.2)

= t+ (k − 1)r − (n− k + 1)ℓ (17.3)

Therefore t− (n− k + 1)ℓ > (k + 1)r. Substituting ℓ = t log(λ)√
r

yields

t

(
1− (n− k + 1)

log(λ)√
r

)
> (k + 1)r (17.4)

t > (k + 1)r
1

1− (n− k + 1) log(λ)√
r

(17.5)

= (k + 1)r

√
r√

r − (n− k + 1) log(λ)
(17.6)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)√
r − (n− k + 1) log(λ)

)
(17.7)

Note that Equation (17.5) requires that
(
1− (n− k + 1)t log(λ)√

r

)
> 0. Since the number of check posi-

tions is r = λ+ (n− k + 1)2 log2(λ), we have

1− (n− k + 1)
log(λ)√

λ+ (n− k + 1)2 log2(λ)
> 1− (n− k + 1) log(λ)

(n− k + 1) log(λ)
= 0 (17.8)

Finally, observe that the choice of parameters in the construction satisfies these constraints.

Lemma 17.0.2. The construction in Figure 16.2 has adaptive certified deletion security with the parame-
ters in Figure 17.1.

Proof Sketch. The proof is almost the same as that of Lemma 16.2.1, except for the application of Hoeffd-
ing’s inequality in Claim 16.2.4. The expected number of check indices which do not match becomes

≥ ℓr

2t
=

t log(λ)√
λ+ (n− k + 1)2 log2(λ)

λ+ (n− k + 1)2 log2(λ)

2t

=
log(λ)

2

√
λ+ (n− k + 1)2 log2(λ)

120

Then Hoeffding’s inequality implies

ϵ ≤ 2 exp


−2
(

log(λ)
2

√
λ+ (n− k + 1)2 log2(λ)

)2

λ+ (n− k + 1)2 log2(λ)


= 2 exp

(
− log2(λ)

2

)
= negl(λ)

121

122

Part III

Certified Deniability

123

In this part, we put forth an application-independent paradigm for certified deletion. We call this
paradigm certified deniability in reference to its connections with the classical notion of deniability [DDN91,
CDNO97, DNS98, Pas03]. Intuitively, certified deniability aims to embody the comprehensive philosophy

Once a user deletes the delegated information, it is as if they never received it in the first
place.

In comparison with other notions of certified deletion, including those presented in this thesis, certified
deniability offers a more wholistic approach to deletion. Previous definitions, such as obfuscation, are
tailored carefully to the chosen primitive.

This tailoring can allow behaviors that not explicitly considered in the definition, but that should
still be considered “attacks”. For example, [MPY24] defines revocable signatures so that no adversary
can simultaneously produce a valid certificate and a signatures that is valid with respect to the honest
verification procedure. This does not rule out the possibility of an adversary simultaneously producing
a valid certificate along with irrefutable proof of the message having been signed; in fact, we show that
MPY24’s construction admits such a strategy. Presumably, anyone who wants a signature to be deleted
would desire that all evidence of their signing is removed.

In contrast, certified deniability uses a simulation-style approach that rules out even attacks that are
not explicitly considered.

125

126

Chapter 18

Results

We study certified deniability for two primitives: signatures and non-interactive zero-knowledge argu-
ments (NIZKs). We lay the definitional groundwork for adding certified deniability to these primitives
and study what assumptions enable them.

Simulation-Based Deniability. To define certified deniability, we use the simulation paradigm to cap-
ture the comprehensive deletion philosophy mentioned before. We require that the state of the adversary
after producing a valid deletion certificate can be simulated without having received a signature (or NIZK)
in the first place. This gives us a guarantee of the form “anything an adversary could learn from a deleted
signature/NIZK, they could learn without it.”

To achieve this notion for signatures and NIZKs, we augment the Fiat-Shamir transform to add certi-
fied deniability in the quantum random oracle model (QROM).

Theorem 18.0.1 (Informal; theorem 22.0.4, theorem 22.0.2). There exist NIZKs with certified deniability
in the QROM. Furthermore, if one-way functions exist, then there exist signatures with certified deniability
in the QROM.

Notably, this result bypasses [Pas03]’s impossibility for deniable NIZKs in the random oracle model.
This can be seen as a unique application of quantum mechanics to force a user to “forget” information in
a quantifiable way. For more discussion, see the technical overview.

Evidence Against Plain Model Constructions. Since our results are in the QROM, a natural next
question is whether we can hope to achieve certified deniability (of either variety) in the plain model.
Unfortunately, it appears that there are significant barriers to doing so. We show that if the security proof
treats the adversary as a black-box, then it cannot hope to show either of the above notions.

Theorem 18.0.2 (Informal). There is no signature/NIZK with certified deniability in the plain model with
a security proof that makes black-box use of the adversary.

Thus, any valid proof of security for a plain-model construction must be non-black-box. Although
there have been many improvements in non-black-box techniques in the past decade, e.g. [BKP18, BS20],
the technique we use for the barrier is particularly amenable to obfuscation, which has also seen vast
improvements recently [JLS21, JLS22, JLLW23]. We leave a more definitive answer to the question of
certified deniability in the plain model to future work.

127

128

Chapter 19

Technical Overview

Evidence-Collection Strategies. We begin by discussing how an adversarial verifier can retain irrefutable
evidence of a signature even after it has been revoked in the existing revocable signature constructions.
We will consider MPY24’s construction as an example, though the same approach works for other exist-
ing constructions (such as the public-key quantum money based approach). MPY24 begins by defining
and constructing a new primitive called 2-tier tokenized signatures. This primitive enables a simple con-
struction for revocable signatures that can sign only the message “0”. Using Lamport signatures, these
can be extended to sign any message, but the key cannot be re-used to sign a second message (“no-query”
security).

Finally, they achieve revocation security even when the adversary receives additional signatures (“multi-
query” security) by having a single master signing key. When the signer wishes to sign a new message
m, they generate a fresh one-time key pair (skR, vkR) together with a revocable signature |ψR⟩. Then, the
signer signs vkR∥m under their global signing key to associate the new key with m.

The problem lies in this final step. Every signature on a message m consists of a classical signature
σ on vkR∥m, together with the revocable signature |ψR⟩. However, ignoring |ψR⟩ completely, σ is al-
ready irrefutable proof that the signer signed m. (We note that this simply shows that their construction
cannot satisfy our stronger notion and does not constitute an attack on the MPY construction as per their
definition.)

19.1 Definitions: Simulation-Style

Since it is possible for constructions to satisfy prior definitions, but still admit evidence-collection attacks,
we need new definitions. In this section, we provide an in-depth discussion of our definitions and their
merits. We use a simulation-style definition, which offers a robustness even against classes of attacks
that have not yet been explicitly considered. As demonstrated by the evidence-collection on MPY24’s
revocable signatures, such robustness is invaluable for avoiding subtleties that creative attackers might
take advantage of.

Signatures. In certified deniability for signatures, we consider the following scenario that might happen
in the real world:

1. The adversarial verifier V ∗ receives a public verification key vk.

2. V ∗ receives some signatures (possibly including on the same message multiple times) on some
multi-set of message M over a period of time.

129

3. Over time, V ∗ outputs a list of certificates for some set of signatures. The signer decides whether
to accept or reject each one.

To transform this scenario into a security experiment Sig-CDen-ExpV ∗(sk, vk), we consider outputting
V ∗’s view along with some additional information. Let D be the set of messages associated with the
signatures which the signer received valid certificates for. The experiment also outputs the multi-set of
messages M\D which V ∗ for which received signatures but did not present a valid certificate.

Certified deniability requires that there exists a simulator Sim which receives vk and access to whichever
signatures it wants, then produces a view that is indistinguishable from Sig-CDen-ExpV ∗(sk, vk) even
when the list of messages Sim queries for is included in the output:

{(vk,M\D,Sig-CDen-Exp(sk, vk))}(sk,vk)←Gen(1λ) ≈
{
(vk,MSim, Sim

Sign(sk,·)(vk)
}
(sk,vk)←Gen(1λ)

Since the real adversary gets “free signatures” on messages in D, but all of Sim’s queries are recorded,
Sim must be able to produce its view without receiving the additional signatures in D.

A useful property of this definition is that it hides the number of messages which have been signed
and subsequently deleted. To illustrate this, consider a scenario where V ∗ asks for a single signature
on m∗, then deletes it honestly; the corresponding simulator receives no signatures. Intuitively, to be
indistinguishable, the simulator must somehow convince the adversary that it has seen a valid signature,
without actually forging one. A more relaxed definition might make this task easier by giving the simulator
a signature σ⊥ on ⊥. In this case, the simulator must only convince the adversary that σ⊥ is in fact a
signature onm∗. This corresponds to revealing that some message was signed, if not which one. However,
because our definition does not give any signatures to the simulator, it requires that after deletion, a third
party cannot even tell whether a single signature was given out.

NIZKs. Certified deniability for NIZKs is defined similarly. In the real execution NIZK-CDen-Exp,
the prover uses a witness w to prove the truth of some statement x. The simulator must reproduce the
(adversarial) verifier’s view given only x, without a witness w.1 The reader may notice that this definition
seems almost identical to the standard zero knowledge definition. Indeed, Pass [Pas03] points out that zero
knowledge is inherently deniable in the plain model; it is indistinguishable whether the transcript given
to you was the result of an honest execution, or the result of running the simulator. In the case where the
statement is hard to decide, a simulator could even “prove” a false statement. Of course, NIZKs do not
exist in the plain model [GO94]. Instead, we must consider the deniability of NIZKs in the random oracle
model or the common reference string model.

Certified Deniability in the QROM. Traditionally for NIZKs in the random oracle model, the simulator
is allowed to choose the random oracle, or similarly it is allowed to choose common reference string in
the CRS model. However, Pass points out that in the real world, the random oracle is fixed once and for
all. It is not realistic to believe that an arbitrary prover backdoored the random oracle. So, they could not
have run the simulator.

Following Pass, we define certified deniability in the QROM so that the simulator does not have the
ability to choose the random oracle. Specifically, in the ideal world, the simulator has access to a truly
random oracle H , which also appears in the experiment output:

{(H,NIZK-CDenH(x,w))}H←H ≈ {(H,SimH(x))}H←H
1We remark that this only considers a single NIZK, in contrast with the signature definition which considered multiple

signatures at a time. The difference between these is due to the need to sample a vk at the start of the signature experiment. Since
NIZKs do not have secret information like this, they have better composeability properties.

130

whereH is the set of all functions {0, 1}p(λ) → {0, 1}q(λ).
The inclusion of the original oracle H prevents a simulator from reprogramming the random oracle.

For example, if it were to reprogram the oracle to H ′(y) = v′, instead of H(y) = v, then a distinguisher
who queries the real H on y would immediately catch it. Without programmability, the task of simulating
a NIZK becomes much harder. In fact, Pass utilizes the non-programmability enforced by this definition
to show that (in the classical setting) deniable NIZKs are in fact impossible even with a random oracle.

The Power of Forgetting. We show that it is possible to avoid this issue in the quantum setting. Quan-
tum mechanics offers the intriguing capability to force the adversary to forget information it queried
on when it produces a valid deletion certificate. This enables the simulator to internally pretend that
H(y) = v′ without later being detected by the distinguisher querying the real H on y, since the distin-
guisher never learns y.

We remark that in real world, where H is heuristically implemented, the third party does not actually
believe that the implementation changed to be H(y) = v. However, we can heuristically say that if they
do not know y, then they do not know anything about H(y), so they have no evidence against H(y) = v
in the actual implementation either.

Relation to Other Primitives with Certified Deletion. Our new simulation-based certified deletion ap-
proach is stronger than some existing revocability definitions, but equivalent to others. For example, in
revocable encryption, the simulator could simply encrypt 0 instead of m, since the storage provider any-
way does not have the decryption key before deletion time. However, the existing revocability definition
for revocable signatures is weaker than our simulation definition.

Broadly, we can categorize revocable primitives as “passive” or “active”. Passive primitives, such as
encryption or commitments, do now allow a user who holds the revocable object to utilize it even be-
fore revocation. Because they do not reveal information before deletion, existing definitions are generally
equivalent to their simulation-based counterparts. On the other hand, active primitives, such as signa-
tures [MPY24], arguments [HMNY22], or obfuscated programs [BGK+24], allow the user who holds a
revocable object to utilize it until revocation. For these primitives, extra care must be taken to control
exactly what information is retained after revocation. The simulation-based approach ensures that only the
information which the user is intended to receive (e.g. a single bit indicating whether the signature was
valid) is retained after revocation.

Before-the-Fact Coercion. [CGV22] previously introduced the idea of “before-the-fact” coercion for
deniable encryption. This notion considers a coercer who approaches a victim before the victim computes
a ciphertext (e.g. to cast a vote), then forces them to encrypt a particular message by requiring them to
produce evidence that they encrypted that message. Even with this modification, the coercer should not be
able to identify whether the encryptor encrypted a desired message m, or something else. Coledangelo,
Goldwasser, and Vazirani showed that this notion is classical impossible, but possible to achieve using
quantum techniques.

Signatures and NIZKs with certified deniability are naturally deniable even against before-the-fact
coercion of the verifier. Even if the victimized verifier is forced to use a special device or obfuscated
program to collect evidence about the received signature/NIZK, this evidence is rendered useless after
the verifier produces a valid certificate. Classically, this notion is not possible even in the random oracle
model, since the auxiliary program could record any ROM input-output behavior when run by the victim,
enabling the coercer to check its correctness later. However, in the quantum setting, any such record might
prevent the verifier from outputting a valid certificate since the certificate generation requires “forgetting”

131

QROM queries. Furthermore, if the victim is forced to collect evidence anyway by not giving a valid
certificate, then the authority can at least identify that they have been subject to coercion!

Does No-Query [MPY24] Satisfy the Simulation Definition? The reader might observe that the evidence-
collection attack described earlier only applied to their multi-query-secure construction. For technical rea-
sons related to a parallel repetition amplification step (see the next section), their no-query construction
also allows evidence-collection.

19.2 Constructions

We now give an overview of our constructions, starting with signatures. For signatures, we will consider
a selective notion of security where the adversary V ∗ must specify whether it later intends to delete each
signature when it queries for that signature.

Starting Point. We start by recalling how [MPY24] constructs revocable signatures for the message “0”
(i.e. 2-tier tokenized signatures). The signer samples a random pair of values (x0, x1) and a random phase
c← {0, 1}. Then, they compute one-way function images f(x0) and f(x1) and output

vk := (f(x0), f(x1)), sk := (x0, x1, c), |ψsig⟩ := |x0⟩+ (−1)c |x1⟩

Given this, a verifier can measure |ψ⟩ and check the result matches either f(x0) or f(x1). This operation
can be done coherently to avoid disturbing the state, enabling the verifier to delete after it verifies. The
deletion certificate is obtained by measuring |ψ⟩ in the Hadamard basis, which results in a vector d such
that c = d · (x0 ⊕ x1). Using the secret key, the signer can verify this certificate.

[MPY24] shows that the adversary cannot produce both such a d and one of x0 or x1, except with
probability 1/2. Then, they show that repeating the scheme in parallel amplifies the difficulty of this task
to a negl(λ) success rate; no adversary can obtain both a Hadamard basis measurement of every index and
a string containing one element from every pair (x0, x1).

Attempt at a Fix. As discussed previously, a weakness in MPY24’s multi-query construction is that
it directly signs the message m under the global verification key. We can avoid this issue by directly
associating the local verification key with m using H(x∥m) instead of f(x) in the key vkm. This is
binding on m, but if the adversary “forgets” x after deletion, then H(x∥m) looks uniformly random and
independent of m. Now we can safely sign vkm using the master signing key to validate fresh signatures
|ψvkm⟩.

Of course, the underlying scheme only ensures 1/2 “forgetfullness”. We cannot amplify security using
parallel repetition because even a single retained instance, which can be cheated with probability 1/2, is
still irrefutable evidence. Instead, we secret share m using the additive λ-of-λ threshold secret sharing
scheme, obtaining m1, . . . ,mλ such that m1⊕ · · · ⊕mλ = m, and sign each share mi using the modified
scheme:

Sign
(
sk, H

(
xi0∥mi

)
∥H
(
xi1∥mi

))
, mi, |ψi⟩ := |xi0⟩+ (−1)ci |xi1⟩

If the adversary forgets even a single pair (x0i , x
1
i), they would be unable to verify mi. However, changing

any mi changes the signed message m.

132

Proof Technique: Forgetful Local Programming. Although this construction turns out to not fully
satisfy certified deniability, it will be helpful in demonstrating our new technique: forgetful local pro-
gramming. The simulator will require a signature σ0 on any message, say on “0” (note that giving this to
the simulator leaks the number of messages signed, if not which ones). It will attempt to locally convince
the verifier that this signature is actually for m.

To do so, it picks a random index i and computes m′i = mi⊕m. If m′i were swapped for mi, then the
secret-shared message becomes (m1⊕· · ·⊕mλ)⊕m = 0⊕m = m. To create this change, the simulator
creates a modified oracle H ′, which swaps the behavior of xib∥mi with xib∥m′i, i.e.

H ′(xib∥m′i) := H(xib∥mi)

H ′(xib∥mi) := H(xib∥m′i)

Then, it runs the adversarial verifier V ∗ using H ′ and σ0. If H ′ were the true oracle, then σ0 is actually a
signature on m.

The crux of the argument comes down to showing that any third party distinguisher cannot distinguish
whether it has access to H or H ′. Since σ0 is a signature on 0 under H , but is a signature on m under H ′,
it therefore cannot tell which message σ0 was originally associated with. To argue the crux, we will show
that if V ∗ produces a valid certificate, then the distinguisher cannot find either xi0 or xi1.

The Need for a New Approach. Unfortunately, this approach only achieves 1/poly(λ) security.2 The
issue is that the adversary could simply guess i, and is correct with inverse polynomial probability. If
it deletes the other indices honestly, then it can keep one of xi0 and xi1 with probability 1/2 even while
providing a valid deletion certificate. Then, given xib, the distinguisher could immediately detect the local
reprogramming. Without the forgetful local programming technique, the tools of constructing certifiably
deniable NIZKs becomes very close to what is available in the classical setting, where we know the task
is impossible.

One might hope that by increasing the number of values in superposition, e.g. by constructing∑
i(−1)ci |xi⟩ instead of |x0⟩±|x1⟩, the likelihood that the adversary can keep an xi while simultaneously

producing a valid deletion certificate can be decreased. While this is true, a superposition over many xi re-
quires a proportionate number of signed random oracle images H(xi∥m). Increasing the “forgetfulness”
of the adversary to overwhelming probability would blow up the size of the signature super-polynomially.

Another issue is that this approach allows the adversary to collective evidence that at least one message
was signed, if not which message it was. In other words, the approach does not ensure that the number of
signatures is deleted. This appears in the security sketch as the requirement that the simulator receives a
post-quantum signature σ0, which it cannot forge on its own.

Idea 1: Subspace States. To increase the “forgetfulness” of the adversary beyond polynomial factors,
we turn to subspace states [AC12a]. A subspace state |A⟩ ∝

∑
a∈A is a uniform superposition over

elements of an λ/2-dimensional subspace A of Fλ
2 . Using them, we can avoid the exponential blow-up by

signing the random oracle images in superposition:

|σm⟩ :=
∑

a∈A\{0}

|a⟩ ⊗ |Sign(sk, H(a∥m))⟩

2Actually, this cannot be black-box reduced to the hardness of finding xi
0 or xi

1 discussed above, because of a large loss that
occurs when extracting QROM queries. This problem can be fixed by outputting the whole signature as the certificate and doing
some additional technical work, though we omit the details since it is subsumed by our later construction.

133

The verifier can check such a state by (1) coherently running the signature verification procedure in
the computational basis and (2) coherently checking that the signed message matches H(a∥m). To delete
the signature, they can simply return the whole state. If the signing algorithm is deterministic, then the
signer can check the certificate by uncomputing the signature and random oracle image, then checking
that the certificate is now |A⟩ using a projection onto |A⟩. We note that it is possible to make the signing
algorithm deterministic by coherently deriving its randomness from a PRF evaluated at a, e.g. H(k∥a)
for random k.

We argue that this deletion check enforces “forgetfulness”. Due to the direct product hardness prop-
erty [BS23], we know that given a random subspace state |A⟩, it is hard to find both a vector in A\{0}
and a vector in A⊥\{0}, even given access to an oracle which decides membership in A and A⊥. The
membership oracle can be used to check if the returned certificate indeed contains an intact copy of |A⟩.
If the signer is able to recover |A⟩ from the certificate, then it could obtain a vector in A⊥ by measuring it
in the Hadamard basis. Whenever this happens, the verifier cannot also remember any vector in A, other
than 0. Thus, we can use the forgetful local programming technique to obtain negl(λ) security loss.

Idea 2: Fiat-Shamir in Superposition. This still leaves the issue of leaking the number of signatures.
To solve this, we use the Fiat-Shamir paradigm in superposition. Fiat-Shamir transforms a sigma protocol3

into a signature scheme. The signer samples a random secret key sk and gives out vk = f(sk) as the
verification key, where f is a one-way function. To sign a message me, the signer computes a sigma
protocol proving knowledge of an sk matching vk. Fiat-Shamir uses the first message s1 of the sigma
protocol to derive the second message s2 as H(m∥vk∥s1).

Performing the Fiat-Shamir signature in superposition yields:

|σm⟩ :=
∑

a∈A\{0}

|a⟩ ⊗ |sa1, sa2 = H(a∥m∥vk∥s1), sa3⟩

where (sa1, s
a
3) are the prover’s messages in the sigma protocol using randomness H(k∥a). Verification

and deletion are defined similarly to the signature construction above.
Also similarly to the previous construction, if the certificate is valid, then the verifier must have “for-

gotten” every element of A\{0}. Thus, even if it knew some transcript (sa1, s
a
2, s

a
3) of the sigma protocol,

it could not prove to a third party that sa2 was really derived using H(a∥m∥vk∥s1).4 Instead, the third
party would suspect that sa2 was chosen carefully to match a faulty s1.

Crucially, by locally programming H at points that include some a ∈ A, the simulator can simulate
every Fiat-Shamir transcript (sa1, s

a
2, s

a
3) only using knowledge of vk (or of the statement x). Thus, in the

signature case, it no longer needs to receive anything signed under vk to do its job.

NIZKs. A useful consequence of using Fiat-Shamir to construct signatures is that the Fiat-Shamir trans-
form can also be used for turning a sigma protocol into a NIZK. The construction is similar to the signature
case, except that sa2 = H(a∥m∥vk∥sa1) is replaced with H(a∥x∥sa1), where x is the NP statement being
proven.

3A sigma protocol is a 3-message public-coin argument of knowledge which is zero-knowledge against an honest verifier
whose second message is known ahead of time.

4It is tempting to try to use a single first message s1 and derive the second and third messages of the sigma protocol in
superposition using a. However, this would lead to answering multiple challenges using the same first message, which may not
be possible with a simulated s1.

134

Other Technical Challenges. We briefly mention two additional technical challenges that appear in
our construction. First, it is not immediately obvious that Fiat-Shamir can be simulated in superposition,
even if it is post-quantum secure. Previous works have addressed such issues by using collapsing proto-
cols [Unr16b] or small-range distributions [Zha12]. However, both of these techniques require collapsing
the argument/signature to a large degree, which is at odds with deletion: if a superposition state is in-
distinguishable from a a measured state, we are almost back to the classical case and there is no way to
delete! To avoid this issue, we use complexity leveraging to switch each of the superposed transcripts to
be simulated, one at a time.

Second, it is not immediately obvious that Fiat-Shamir is sound in a structured superposition as above.
The soundness of Fiat-Shamir in the quantum setting is a highly nontrivial task, but has been shown
under certain conditions in the case where the resulting argument is classical [DFMS19, LZ19]. To argue
soundness of Fiat-Shamir in superposition, we actually use coset states. We show that if the coset offset is
not known, then the coset state appears to have been measured in the computational basis. Thus, we can
treat our construction as having a classical argument/signature when proving soundness.

19.3 Black-Box Barriers to Plain Model Constructions.

Finally, we give an overview of the black-box barrier for the plain model. We model the simulator as
having black-box access to the unitary dilation of the adversary and its inverse, but it may not directly
access the adversary’s internal registers, e.g. its auxiliary input.

Consider an adversaryA and a distinguisherD which, as part of their auxiliary input, share a program
that includes a key pair (s̃k, ṽk) for an internal (post-quantum) signature scheme. The program on some
input an alleged signature |σ⟩ for a message m under key vk, verifies it and if the check passes, it signs
m∥vk using the internal signature key s̃k. This operation to create a proof that m was signed is gentle
because of the correctness of the candidate scheme, so A can still generate a valid certificate using the
honest deletion algorithm, after it has obtained a proof for the distinguisher that m was signed. Now it
has produced both a valid certificate and a post-quantum signature onm∥vk. The distinguisher can simply
check the latter using ṽk.

Observe that in the real world, D will almost always obtain a valid signature on m∥vk. On the other
hand, the simulator cannot hope to extract such a signature using black-box access to A, unless it is able
to forge signatures for the candidate scheme.

On a technical level, the analysis requires generalizing a technique introduced by [BBBV97] for an-
alyzing the behavior of an oracle algorithm with a reprogrammed classical oracle to handle oracles that
do quantum computation instead. Roughly, we show that if an oracle algorithm is able to distinguish
between oracle access to two unitaries U0 and U1, then outputting its query register at a random timestep
produces a mixed state with noticeable probability mass on pure states |ψ⟩ where U0 |ψ⟩ and U1 |ψ⟩ are
proportionally far in trace distance. The generalized technique may be of independent interest.

Relation to Program Obfuscation. The above sketch considers a model where the simulator has black-
box access to the unitary dilation of the adversary, but cannot access the adversary’s auxiliary input, except
indirectly by querying the adversary. We could also consider a model where the simulator can access the
auxiliary input. In this case, if the auxiliary input consists of a ideally-obfuscated program which has the
signing key hard-coded, then the simulator’s access to the signing key becomes identical to the model
where the auxiliary input cannot be directly accessed. The fact that ideal obfuscation causes the two
models to become identical suggests that any plain model construction would need to use non-black-box
techniques to bypass potentially obfuscated auxiliary input.

135

Avoiding the Barrier with QROM. The quantum random oracle bypasses the black-box issue for a
few reasons. First, reprogramming a random oracle is, in a sense, a non-black-box operation. Second,
the black-box issue arises because the simulator needs to somehow trick the adversary into thinking it
has received a signature on m∗, without actually receiving a signature. However, in the plain model,
the simulator does not seem to have more power than a real adversary, who should not be able to forge
signatures. Introducing the ability to temporarily reprogram the oracle via the forgetful reprogramming
technique restores the necessary asymmetry between the simulator and a real adversary.

19.4 Related Works

Concurrent Work. [AK24] concurrently proposed NIZKs with certified deletion. Their definition en-
sures that no man-in-the-middle can receive a NIZK and simultaneously produce a valid certificate along
with a NIZK that is accepting with respect to the honest verification procedure unless they already know
a witness. This definition has similarities to [MPY24]’s revocable signature definition in that it only con-
siders third party verifiers who run the honest verification procedure. Their construction does not satisfy
certified deniability, in part due to the use of a parallel amplification step (see the technical overview).
They do achieve classical certificates in their construction, which we leave open for certified deniability.

Quantum Deniability. [CGV22] revisit the problem of deniable encryption in the quantum setting. In
classical deniability, the encryptor should be able to produce “fake” proof to the adversarial coercer how a
given ciphertext is actually an encryption of some other message. Coledangelo, Goldwasser, and Vazirani
propose a uniquely quantum spin on the task: by computing the ciphertext, any explanation for it is
destroyed. Although this has similarities to our setting, their result is quite different. They ensure that
the third-party coercer never sees the explanation. In contrast, the adversarial verifier necessarily sees the
“explanation” for signatures/NIZKs - the signature/NIZK itself - but later is forced to “forget” it.

Certified Deletion. Certified deletion was first proposed by Broadbent and Islam for encryption [BI20b].
It has since been generalized to a variety of other primitives, e.g. [HMNY22, HKM+24, Por23, APV23,
AKN+23, BK23, BGK+24, BR24, MPY24]. To the best of our knowledge, the only two works to
have considered any notion of simulation in defining certified deletion are [HMNY22] and [BGK+24].
[HMNY22] considers certified everlasting zero knowledge, which uses a simulation definition as a result
of standard definitions for zero knowledge. [BGK+24] consider a simulation-style definition of obfusca-
tion with certified deletion in the structured oracle model as a side result, inspired by definitions of ideal
obfuscation. In contrast, signatures are not typically considered to be a “simulation primitive”, and NIZKs
require either the random oracle or CRS models, which require special care for deniability.

Unclonability. Unclonability prevents an adversary from transforming an object (such as a program)
into two functioning copies of the object [Aar09]. It is closely related to certified deletion, since a
functional copy of the object can be considered as the “certificate”. Previously, Goyal, Malavolta, and
Raizes [GMR24] considered a related notion to certified deniability under the name of “strongly unclon-
able proofs”. In a strongly unclonable proof, an adversarial man-in-the-middle (MiM) who receives a
simulated proof of some (potentially false) statement x, then interacts with two sound verifiers to prove
statements x̃1 and x̃2. Strong unclonability guarantees that no MiM can convince both verifiers of false
statements. GMR showed that in general, strongly unclonable NIZKs do not exist. Fortunately, their
techniques do not extend to certified deniability. GMR’s impossibility relies on an interactive verification,
during which the MiM can forward messages between the two verifiers. In certified deniability, the NIZK

136

is deleted before any messages reach the second verifier. In general, our definition is also more robust; for
example, it rules out the possibility of the third-party verifier who accepts false statements with probability
1/2 from being convinced by a deleted NIZK with even probability 1/2 + ϵ.

137

138

Chapter 20

Preliminaries

We write Func(X ,Y) to be the set of all functions f : X → Y .

20.1 Quantum Computation

Quantum Oracles. We recall a result from [BBBV97] that aids in reasoning about reprogrammed or-
acles. Consider a quantum adversary who has quantum query access to one of two classical oracles H
and H ′. They bound the ability of the adversary to distinguish between the two oracles in terms of the
amplitude with which it queries on (classical) inputs x whereH(x) ̸= H ′(x). As a simple corollary, if the
adversary is able to distinguish the two oracles in a polynomial number of queries, then measuring one of
its queries at random produces an x such that H(x) ̸= H ′(x) with noticeable probability.

Lemma 20.1.1 ([BBBV97], Paraphrased). Let H and H ′ be oracles which differ on some set of inputs X .
Let |ψi⟩ =

∑
y αy,i |ϕy,i⟩ ⊗ |y⟩Q be the state of AH at time i, where Q is the query register. Let |ψ′i⟩ be

the state of AH′
at time i. Then for all T ∈ N,

TD(|ψT ⟩ , |ψ′T ⟩) ≤

√√√√T

T∑
i=1

∑
x∗∈X

|αx∗,i|2

where TD denotes the trace distance.

Quantum Random Oracles. In the quantum random oracle model, all parties have access to an oracle
H ← Func(X ,Y) implementing a random function. To ease notation, we implicitly pad inputs to the
random oracle: given x ∈ X1, where X = X1 ×X2, we denote H(x∥⃗0) as H(x).

It will be useful to sometimes be able to derive large amounts of randomness from the oracle as if it
were a PRF. The following lemma formalizes this treatment.

Lemma 20.1.2. Let H : X1 × X2 → Y and G : X2 → Y be random oracles. Define Hk : X2 → Y by
Hk(v) := H(k∥v). If 1/|X1| = negl(λ), then{

(OH , OHk
) :

H ← Func(X1 ×X2,Y)
k ← X1

}
≈c

{
(OH , OG) :

H ← Func(X1 ×X2,Y)
G← Func(X2,Y)

}
where Of denotes oracle access to a function f .

139

Proof. For any k ∈ X1, define Hk,G as

Hk,G(x) =

{
G(x′) if x = k∥x′ for some x′

H(x) else

The right distribution is identically distributed to{
(OHk,G

, OHk
) :

H ← Func(X1 ×X2,Y)
G← Func(X2,Y)

}
By lemma 20.1.1, any distinguisher who distinguishes (OHk,G

, OHk
) from (OH , OHk

) with advantage ϵ
in q queries can produce some x∗ such that OHk,G

(x∗) ̸= OH(x∗) with probability ϵ2/q2. Whenever this
occurs, x∗ = k∥x for some x. Since k is drawn uniformly at random from X1, it must be the case that
ϵ2/q2 ≤ 1/|X1| = negl(λ). If q is poly(λ), then ϵ must be negl(λ).

Z-Twirl. It is well-known that adding a random phase to a state is equivalent to measuring the state in
the computational basis. Here we present a slightly generalized form of this.

Lemma 20.1.3. Let |ψ⟩ =
∑

x∈X αx |x⟩ ⊗ |ϕx⟩ be a quantum state where X is a vector space. Denote
|ψs⟩ :=

∑
x∈X αx(−1)s·x |x⟩ ⊗ |ϕx⟩ for any s ∈ X . Then

1

|X |
∑
s∈X
|ψs⟩ ⟨ψs| =

∑
x∈X
|αx|2 |x⟩ ⟨x| ⊗ |ϕx⟩ ⟨ϕx|

Proof. We compute

1

|X |
∑
s∈Xn

|ψs⟩ ⟨ψs| =
1

|X |
∑
s∈X

αx1αx2

∑
x1,x2∈X

(−1)(x1−x2)·s |x1⟩ ⟨x2| ⊗ |ϕx1⟩ ⟨ϕx2 |

=
1

|X |
∑

x1,x2∈X
αx1αx2 |x1⟩ ⟨x2| ⊗ |ϕx1⟩ ⟨ϕx2 |

∑
s∈X

(−1)(x1−x2)·s

=
∑
x∈X
|αx|2 |x⟩ ⟨x| ⊗ |ϕx⟩ ⟨ϕx|

20.2 Argument Systems

Definition 20.2.1 (Argument). An argument system (P, V) for an NP language L is a (potentially inter-
active) protocol between a prover P and a verifier V where P inputs a statement and a witness and V
outputs accept or reject. It should satisfy two properties:

• Correctness. If w is a witness for x ∈ L, then at the end of the execution, V outputs accept.

• Soundness. For every adversarial prover P ∗, if x /∈ L, then at the end of an execution ⟨P ∗, V ⟩,
V outputs reject with probability 1 − negl(λ). If this holds for QPT P ∗, we call the soundness
computational. If it holds for unbounded P ∗, we call the soundness statistical.

If the argument system is non-interactive, we consider P and V to consist of single operations Prove
and Verify.

140

Definition 20.2.2 (Zero-Knowledge). An argument system (P, V) for an NP languageL is zero knowledge
if there exists a QPT algorithm Sim such that for all QPT adversaries V ∗ with auxiliary input register RV∗

and all statement/witness pairs (x,w) where x ∈ L,

{⟨P (x,w), V ∗(RV∗⟩} ≈c {Sim(V ∗,RV∗}

A NIZK is simply a zero-knowledge argument with only a single message (i.e. it is non-interactive).

Another useful property for argument systems to hold is to be a proof of knowledge. This ensures that
the prover must “know” a witness for the statement it is proving. Since we do not directly use the proof
of knowledge property in this work, we refer the reader to [Unr12, LZ19].

A frequently useful class of argument arises from sigma protocols. Sigma protocols are three round,
public-coin arguments with relaxed zero-knowledge properties. In a public-coin protocol, the verifier’s
messages are truly random.

Definition 20.2.3 (Sigma Protocol). A Sigma protocol for an NP language L with relation RelL is a
three-message public-coin argument system Σ = (P1, P3,VerifyΣ) for L with the following properties:

• Special Soundness. There exists an extractor E which, given two transcripts (s1, s2, s3) and
(s1, s

′
2, s
′
3) for the same statement x with the same first message s1 and different verifier challenges

s2 ̸= s′2, extracts a witness for x.

• Special Honest-Verifier Zero Knowledge (HVZK). There exists a QPT simulator SimΣ such that
for every (x,w) ∈ RelL and every second message s2,

{(s1, s2, s3) : s1 ← P1(x,w), s3 ← P3(x,w, s2)} ≈c {SimΣ(x, s2)}

We say Σ is ϵ-secure if no QPT distinguisher has greater than ϵ advantage in distinguishing these
two distributions.

Fiat-Shamir Transform. The Fiat-Shamir transform [FS87, BG93] modifies a sigma protocol to be-
come non-interactive by using a random oracle H . Specifically, the prover first computes s1 ← P1(x,w),
then computes the verifier’s challenge s2 ← H(x∥s1), and finally computes s3 ← P3(x,w, s2) and out-
puts (s1, s2, s3). To verify a transcript, the verifier checks that s2 = H(s1), then verifies the transcript
using VerifyΣ. Given a sigma protocol Σ, we denote the Fiat-Shamir transform of Σ as FSHΣ (x,w). We
extend the notation as FSHΣ (x,w; r) when specifying the prover’s randomness r for Σ.

Although the analysis of Fiat-Shamir is more complicated in the quantum setting, a series of works
have shown that, under mild assumptions on the sigma protocol, post-quantum Fiat-Shamir is sound even
with quantum access to H , culminating in [DFMS19, LZ19].

Theorem 20.2.4 ([LZ19]). If a post-quantum sigma protocol has (1) perfect completeness, (2) quantum
proof of knowledge, and (3) unpredictable first messages, then the Fiat-Shamir heuristic gives a quantum
NIZKPoK.

Their result requires that the sigma protocol has unpredictable first messages, which requires that the
probability of two executions having the same first message is negligible for all (x,w):

Pr[s1 = s′1 : s1 ← P1(x,w), s2 ← P1(x,w)] = negl(λ)

Fiat-Shamir can also be used to create a signature scheme from a sigma protocol by using an NP
instance x where finding the witness is hard (e.g. the image of a one-way function) as the public key and

141

its witness w as the secret key. A signature on a message m is obtained by computing FS
H(m∥·)
Σ (x,w),

where H(m∥·) denotes H with the first portion of the input fixed to m.
[DFMS19, LZ19] also showed that if the underlying sigma protocol is collapsing,1 then the Fiat-

Shamir transform gives a secure signature scheme in the quantum random oracle model.

Definition 20.2.5 (Collapsing for Sigma Protocols [Unr16a, DFMS19, LZ19, CMSZ22]). We say a pro-
tocol ⟨P, V ⟩ is collapsing if for every polynomial-size interactive quantum adversary P ∗ and polynomial-
size quantum distinguisher A,

|Pr[1← CollapseExp(0, P ∗,A)]− Pr[1← CollapseExp(1, P ∗,A)]| ≤ negl(λ)

For b ∈ {0, 1}, the experiment CollapseExp(b, P ∗,A) is defined as follows:

1. The challenger executes ⟨P ∗, V ⟩, storing the result in registers (R1, . . . ,Rn). It measures every
register Rn in the computational basis.

2. The challenger coherently evaluates V (|m1, . . . ,mn⟩) and measures the result. If it is reject, the
experiment aborts by outputting a random bit.

3. If b = 0, the challenger does nothing. If b = 1, the challenger measures Rn in the computational
basis.

4. The challenger sends (R1, . . . ,Rn) to A. The experiment outputs A’s output bit.

Theorem 20.2.6 ([LZ19]). If a post-quantum sigma protocol is collapsing, then the Fiat-Shamir heuristic
gives a secure post-quantum digital signature scheme in the quantum random oracle model.

We note that natural sigma protocols satisfying the requirements of both theorems 20.2.4 and 20.2.6
are known. For instance, Unruh [Unr12] shows that a slight modification of Blum’s Hamiltonian path
argument is a quantum proof of knowledge. It also has perfect completeness and unpredictable first
messages. Furthermore, if the commitments in the first round are implemented via a random oracle, then
it has subexponential HVZK.

20.3 Revocable Signatures and NIZKs

Definition 20.3.1. A digital signature is a tuple of algorithms (Gen, Sign,Verify) with the following be-
havior:

• Gen(1λ) takes in the security parameter and outputs a key pair (sk, vk).

• Sign(sk,m) takes in a signing key sk and a message m, then outputs a (potentially quantum) signa-
ture σ.

• Verify(vk, σ,m) takes in a verification key vk, an alleged signature σ, and a message m, then
outputs accept or reject.

A digital signature must statisfy the following properties:

1[DFMS19] refers to this property as “computational unique responses”.

142

• Correctness. For every message m:

Pr

[
Accept← Verify(vk, σ,m) :

(sk, vk)← Gen(1λ)
σ ← Sign(sk,m)

]
≥ 1− negl(λ)

• Existential Unforgeability under Chosen Message Attack (EUF-CMA). For all QPT adversaries
A,

Pr

 m /∈M
∧

Accept← Verify(vk,Rsig,m)
:

(sk, vk)← Gen(1λ)

ASign(sk,·)(vk)

 ≤ negl(λ)

where M is the list of messages that the adversary queries to the signing oracle Sign(sk, ·).

Revocable Signatures. A revocable signature scheme [MPY24] augments the signature scheme syntax
with two additional algorithms Del and DelVer. Additionally, Sign(sk,m) is modified to output both a
signature register Rsig and a deletion verification key dk. The new algorithms act as follows:

• Del(Rsig) takes in a register containing a signature, then outputs a certificate register Rcert.

• DelVer(dk,Rcert) takes in the deletion verification key and a certificate register, then outputs accept
or reject.

Additionally, a revocable signature scheme should satisfy deletion correctness and a notion of re-
vocation security. We omit [MPY24]’s notion of revocation security here. Instead, we define certified
deniability for (revocable) signatures in section 21.1.

Definition 20.3.2 (Deletion Correctness). For all messages m,

Pr

Accept← DelVer(dk,Rcert) :
(sk, vk)← Gen(1λ)

(Rsig, dk)← Sign(sk,m)
Rcert ← Del(Rsig)

 ≥ 1− negl(λ)

Revocable NIZKs. Although these have not be explicitly defined before, they follow similar syntax to
revocable signatures, so we include the description in this section. A revocable NIZK is augmented with
two additional algorithms Del and DelVer, which act similarly to their signature counterparts. Addition-
ally, a revocable NIZK must satisfy deletion correctness. We define certified deniability for (revocable)
NIZKS in section 21.2.

143

144

Chapter 21

Definitions of Certified Deniability

21.1 Signatures

Deniable authentication was initially defined by Dwork, Naor, and Sahai [DNS98] using the simulation
paradigm. Informally, a signature is deniable if it could be simulated by using only public information.

We follow a similar simulation-based paradigm which uses a real experiment Sig-CDenA(RA)(vk).
This experiment is parameterized by a QPT adversary A who receives auxiliary input in register RA and
a key pair (sk, vk). It is defined as follows.

1. A is initialized with register RA and vk. The challenger is initialized with sk.

2. A gets access to a signing oracle for sk. Each time the signing oracle is queried for some mi

(including duplicates), it adds mi to a multi-set M and appends the deletion verification key dki for
the signature it gives out to an internal log.

3. The adversary outputs a list of certificate registers {Rcert,i}i and register Rout.

4. For each i where DelVer(dki,Rcert,i) = Accept, add mi to a multi-set D.

5. Output (M\D, Rout).

If working in an oracle model where the parties have access to an oracleH , then we denote the experiment
as Sig-CDenHA(RA).

Definition 21.1.1 (Certified Deniability for Signatures: Plain Model). A revocable signature scheme (see
section 20.3) (Gen, Sign,Verify,Del,DelVer) is certifiably deniable if for every QPT adversary A, there
exists a QPT simulator Sim such that for every QPT adversary A with poly-size auxiliary input register
RA, {

(vk, Sig-CDenA(RA)(sk, vk)) : (sk, vk)← Gen(1λ)
}

≈c{
(vk,MSim,Sim

Sign(sk,·)(A,RA, vk)) : (sk, vk)← Gen(1λ)
}

where MSim is the set of messages on which Sim queries Sign(sk, ·).
We say that the scheme has selective certified deniability if this condition holds for the following mod-

ified Sig-CDenA(RA)(sk, vk) experiment. At the start of the experiment, after receiving vk, the adversary

145

declares the set of messages it will delete. Additionally, each time it queries the signing oracle for mi,
it declares whether it intends to delete the signature for mi. At the end of the experiment, if the multi-
set D does not match the set of declared signatures, then the experiment outputs (M\D,⊥) instead of
(M\D,RA).

The set M acts as a way to restrict Sim from querying on signatures which A decides to delete
(potentially after seeing vk and other signatures). A gets to remove signatures from M in the experiment
output by deleting them, but all of Sim’s queries are recorded.

In the selective case, the adversary only has to declare the messages/signatures it intends to delete. It
is free to receive other signatures, even adaptively. However, if it does not delete the signatures which it
says it will delete, then the experiment aborts.

Certified Deniability in the QROM. We may also define certified deniability in the CRS model or the
QROM model. Following [Pas03]’s definition from the classical setting, a deniable simulator does not
have the ability to program the global random oracle; this is enforced by sampling a fresh random oracle
before the experiment and including its description in the output of the experiment. Thus, any simulator
which attempts to pretend that the oracle had different behavior is will be caught.

Definition 21.1.2 (Certified Deniability for Signatures: QROM). A revocable signature scheme (Gen,
Sign,Verify,Del,DelVer) is certifiably deniable in the quantum random oracle model if there exists a
QPT simulator Sim such that for every QPT adversary A with poly-size auxiliary input register RA,{

(OH , vk,Sig-CDenHA(RA)(sk, vk)) :
H ← Func(X ,Y)

(sk, vk)← GenH(1λ)

}
≈c{

(OH , vk,MSim,Sim
H,SignH(sk,·)(A,RA, vk)) :

H ← Func(X ,Y)
(sk, vk)← GenH(1λ)

}
whereOH denotes oracle access toH andMSim is the set of messages on which Sim queries SignH(sk, ·).

We say that the scheme has selective certified deniability in the QROM if this condition holds for the
following modified Sig-CDenHA(RA)(sk, vk) experiment. At the start of the experiment, after receiving vk,
the adversary declares the set of messages it will delete. Additionally, each time it queries the signing
oracle for mi, it declares whether it intends to delete the signature for mi. At the end of the experiment,
if the multi-set D does not match the set of declared signatures, then the experiment outputs (M\D,⊥)
instead of (M\D,RA).

We show in chapter 22 how to obtain signatures with certified deniability by adding certified deniabil-
ity to the Fiat-Shamir transformation.

A Composeable Definition. We also give a definition where the adversary only receives a single signa-
ture, but the definition has the ability to compose with itself. We give the definition in the QROM, but it
can be straightforwardly moved to the plain model.

Define the following security game Sig-CDen-1HA(RA
(sk, vk,m):

1. Sample (|σ⟩ , dk)← Sign(sk,m) and send |σ⟩ to the adversary.

2. The adversary outputs a certificate register Rcert and an output register Rout.

3. If DelVer(dk,Rcert) = Accept, output Rout. Otherwise output ⊥.

146

Definition 21.1.3 (Composeable Certified Deniability for Signatures). A revocable signature scheme
(Gen,Sign,Verify,Del,DelVer) has composeable certified deniability in the quantum random oracle model
if there exists a QPT simulator Sim such that for every QPT adversary A with poly-size auxiliary input
register RA, every message m, and every (sk, vk) in the support of Gen(1λ),{

(OH , vk, Sig-CDen-1HA(RA)(sk, vk,m)) : H ← Func(X ,Y)
}

≈c{
(OH , vk, Sim

H(A,RA, vk,m)) : H ← Func(X ,Y)
}

whereOH denotes oracle access toH andMSim is the set of messages on which Sim queries SignH(sk, ·).

There are a few main differences from Definition 21.1.2. First, the adversary only ever gets one sig-
nature, which they have promised to delete. Accordingly, the simulator gets no signatures/does not get
access to a signing oracle. Second, the difference that makes this definition composeable is the quantifi-
cation over all vk, rather than requiring that security holds over a randomly generated vk. As such, we can
rely on deletion even when the adversary already holds information that depends on vk — such as another
signature.1 More formally, we show that the composeable definition implies the selective definition which
explicitly gives multiple signatures to the adversary.

Proposition 21.1.4 (Composeability). Any revocable signature scheme with composeable certified denia-
bility (Definition 21.1.3) also has selective certified deniability (Definition 21.1.2). This holds both in the
QROM and in the plain model.

Proof. Let Sim+ be the simulator for the composeable definition. We show how to build a simulator Sims

for the selective definition.
Any adversary A for the selective definition makes at most q = poly(λ) queries to the signing oracle.

We define a series of q hybrid adversariesAi which do not perform queries ≤ i which it intends to delete.

• Hyb0 is the selective experiment run on the following adversaryA0, except omitting the final check
that D matches the pre-declared multi-set of messages. It still includes the check that A presents
valid certificates for queries it declared that it would delete.

A0 has sk hard-coded. It runs A(RA, vk). During this, it answers all of A’s queries using sk. Then,
it checks the deletion certificates for the declared queries and outputs ⊥ if any are rejected.

• Hybi is the selective experiment run on the following adversary Ai, except omitting the final check
that D matches the pre-declared multi-set of messages. It still includes the check that A presents
valid certificates for queries it declared that it would delete.

ASign(sk,·)
i has sk hard-coded and also has query access to Sign(sk, ·). It runs ASign(sk,·)

i−1 until Ai−1
submits query i formi. LetAi−1[i :] be the rest of its code and Ri−1 contain its current state. IfAi−1
declares that it will delete the result of query i, run SimH

+ (Ai−1[i],Ri−1,mi) by internally answering
all of its queries to the signing oracle using sk. Otherwise, forward the i’th query to Sign(sk, ·) and
continue running Ai−1 while answering all further queries using sk instead of directly querying
Sign(sk, ·).

Note that sk is only used for queries ≥ i+ 1.

1This quantification over all vk is possible because unforgeability is defined separately from certified deniability.

147

• Sim
Sign(sk,·)
s (A) is the same as Aq, except for the following changes. First, it does not use a hard-

coded sk, since Aq does not require it either. Second, at the end of the game it checks that the
pre-declared multi-set of messages matches the signatures for which it received a valid certificate;
if not, it outputs ⊥ instead of its view.

A0’s output is clearly identical to running the selective experiment with ASign(sk,·)(RA, vk) and omit-
ting the final check that D matches the pre-declared multi-set of messages. Observe that if the com-
poseable experiment on query i would abort for Ai, then the selective experiment would also abort for
Ai. Therefore Hybi is indistinguishable from Hybi−1 by the composeable security of the revocable sig-
nature scheme. Finally, SimSign(sk,·)

s (A) matches the full selective experiment by adding the check that D
matches the pre-declared multi-set of messages.

The proof is essentially identical for the plain model.

21.2 NIZKs

Previously, we saw a composeable definition for signatures which implies selective certified deletion when
receiving multiple signatures. Since NIZKs are similar to signatures, we directly define certified denia-
bility in the composeable style. If one were to define a similar multi-proof definition for NIZKs, then the
following definition would imply the selective version of it in the same manner as for signatures.

Certified Deniability: Real Experiment. Certified deniability follows the standard real/ideal paradigm
of simulator-based definitions. The real experiment NIZK-CDenA(RA)(s, w) is parameterized by an adver-
sarial QPT algorithm with auxiliary input RA and some NP statement and witness pair (s, w). NIZK-CDenA(RA)(s, w)
consists of the following distribution:

1. Sample (|π⟩ , dk)← Prove(s, w) and send |π⟩ to the adversary.

2. The adversary outputs two registers (Rcert,RA)← A(RA, |π⟩).

3. If DelVer(dk,Rcert) outputs accept, then the experiment outputs the adversary’s residual state reg-
ister RA. Otherwise, it outputs ⊥.

If working in an oracle model where the parties have access to an oracleH , then we denote the experiment
as NIZK-CDenHA(RA)(s, w).

Definition 21.2.1 (Certified Deniability for NIZKs: Plain Model). A revocable non-interactive argument
system (see section 20.3) (Prove,Verify,DelVer) is certifiably deniable if there exists a QPT simulator
Sim such that for every QPT adversary A with poly-size auxiliary input register RA and every NP state-
ment/witness pair (s, w), {

NIZK-CDenA(RA)(s, w)
}
≈c {Sim(s,A,RA)}

We may also define certified deniability in the CRS model or the QROM model. Following [Pas03]’s
definition from the classical setting, a deniable simulator does not have the ability to program the global
random oracle; this is enforced by sampling a fresh random oracle before the experiment and including its
description in the output of the experiment. Thus, any simulator which attempts to pretend that the oracle
had different behavior is likely to be caught.

148

Definition 21.2.2 (Certified Deniability for NIZKs: QROM). A revocable non-interactive argument sys-
tem (Prove,Verify,DelVer) is certifiably deniable in the quantum random oracle model if there exists a
QPT simulator Sim such that for every QPT adversary A with poly-size auxiliary input register RA and
every NP statement/witness pair (s, w),{(

NIZK-CDenHA(RA)(s, w), OH

)
: H ← Func(X ,Y)

}
≈c{(

SimH(s,Adv,RA), OH

)
: H ← Func(X ,Y)

}
where OH denotes oracle access to H .

We show in chapter 22 how to obtain NIZKs with certified deniability by adding certified deniability
to the Fiat-Shamir transformation.

149

150

Chapter 22

Fiat-Shamir with Certified Deniability

In this section, we show how to modify the Fiat-Shamir transform to add certified deniability. As a result
of this general paradigm, we obtain both signatures with certified deniability (see section 21.1) and non-
interactive zero knowledge with certified deniability (see section 21.2).

Let Σ be a Sigma protocol, and denote FSHΣ as its Fiat-Shamir transform with oracle access to H . We
denote an oracle with the first part of the input fixed to v as H(v∥·). On query w, it returns H(v∥w).

Construction 22.0.1 (NIZK with Certified Deniability). The construction, which we call FS-CDenΣ for
easy reference later, is as follows.

• Prove(x,w):

1. Sample a subspace A ⊂ {0, 1}λ of dimension λ/2 and an offset s ← {0, 1}λ, then pre-
pare the coset state |A0,s⟩ ∝

∑
a∈A(−1)a·s |a⟩ in register RA. Initialize register RΣ =

(RΣ,1,RΣ,2,RΣ,3) to |0⟩.
2. Sample a key k ← {0, 1}λ and apply the isometry

|a⟩RA
⊗ |⃗0⟩RΣ

7→ |a⟩RA
⊗ |FSH(a∥·)

Σ (x,w;H(k∥a))⟩RΣ

to registers RA and RΣ. This results in a state

|π⟩ :∝
∑
a∈A

(−1)s·a |a⟩RA
⊗ |sa1, sa2, sa3⟩RΣ

where sa2 = H(a∥sa1) and (sa1, s
a
3) are the prover’s messages from Σ using randomness

H(k∥a).
3. Output |π⟩ as the argument and dk := (A, k,w, s) as the deletion key.

• Verify(x,Rarg):

1. Parse Rarg = (RA,RΣ).

2. Coherently evaluate FSΣ.Verify on register RΣ, then measure and output the result.

• Del(Rarg): Output Rarg.

• DelVer(dk,Rcert):

1. Parse dk = (A, k,w). Parse Rarg = (RA,RΣ).

151

2. Apply the isometry

|a⟩RA
⊗ |y⟩RΣ

7→ |a⟩RA
⊗ |y ⊕ FS

H(a∥·)
Σ (x,w;H(k∥a))⟩RΣ

3. Measure register RA with respect to the PVM {|A0,s⟩ ⟨A0,s| , I−|A0,s⟩ ⟨A0,s|}. Output accept
if the result is the former, and reject if it is the latter.

Theorem 22.0.2. If Σ is a 2−λ-secure sigma protocol for a language L with (1) perfect completeness and
(2) quantum proof of knowledge, then FS-CDenΣ (Construction 22.0.1) is a NIZKPoK for L with certified
deniability in the QROM.

Remark: As mentioned in section 20.2, such sigma protocols exist unconditionally in the QROM.

Proof. We prove certified deniability in claim 22.1.1. Correctness of deletion follows from inspection and
the fact that |A0,s\{0}⟩ is negligibly close in trace distance to |A0,s⟩.

By lemma 20.1.3, any NIZK |π⟩ is perfectly identical, from the verifier’s point of view, from whether
the first register RA has been measured in the computational basis. Thus, construction 22.0.1 is sound and
zero-knowledge if sampling a random a and outputting a∥FSH(a∥·)(x,w) is sound and zero-knowledge.
Observe that a can be considered to be part of the first message of underlying sigma protocol, which makes
the sigma protocol have unpredictable first messages. Then theorem 20.2.4 implies that a∥FSH(a∥·)(x,w)
is a NIZKPoK, which implies it is sound and zero-knowledge.

Construction 22.0.1 is already a NIZK, if instantiated with an appropriate sigma protocol. To obtain a
signature scheme, a few more details are needed.

Construction 22.0.3 (Signature with Certified Deniability). Let f : {0, 1}λ 7→ {0, 1}poly(λ) be a one-way
function and let Σ be a sigma protocol for the language

Lf =
{
x ∈ {0, 1}poly(λ) : ∃w ∈ {0, 1}λ s.t. f(w) = x

}
• Gen(1λ) : Sample w ← {0, 1}λ. Output vk = f(w) and sk = w.

• Sign(sk,m) : Evaluate (|π⟩ , dk)← FS-CDenΣ.ProveH(m∥·)(vk, sk) and output the result.

• Verify(vk,m,Rarg) : Evaluate FS-CDenΣ.VerifyH(m∥·)(vk,Rarg).

• Del(Rarg) : Output FS-CDenΣ.DelH(m∥·)(Rarg).

• DelVer(dk,Rcert): Output FS-CDenΣ.DelVerH(m∥·)(dk,Rcert).

Theorem 22.0.4. If f is a one-way function and Σ is a collapsing, 2−λ-secure sigma protocol for Lf ,
then construction 22.0.3 is a signature scheme with selective certified deniability in the QROM.

Proof. We prove certified deniability in claim 22.1.1. Correctness of deletion follows from inspection and
the fact that |A0,s\{0}⟩ is negligibly close in trace distance to |A0,s⟩.

By lemma 20.1.3, any NIZK |π⟩ is perfectly identical, from the verifier’s point of view, from whether
the first register RA has been measured in the computational basis. Thus, construction 22.0.1 is existen-
tially unforgeable if sampling a random a and outputting a∥FSH(m∥a∥·)

Σ (x,w) is existentially unforgeable.
Observe that a can be considered to be part of the first message of the underlying sigma protocol without
affecting its properties. Then theorem 20.2.6 implies that a∥FSH(m∥a∥·)

Σ (x,w) is existentially unforge-
able.

152

22.1 Proof of Certified Deniability

Claim 22.1.1. If Sigma is a 2−λ-secure sigma-protocol for a language L, then Construction 22.0.1 sat-
isfies certified deniability for NIZKs in the QROM (definition 21.2.2). Furthermore, assuming the same,
Construction 22.0.3 satisfies selective certified deletion for signatures in the QROM (definition 21.1.2).

Proof. The proofs of the two sub-claims are almost identical, except for a slight difference in the simu-
lators. The NIZK simulator Sim uses statement x and is given below. The signature simulator uses the
verification key vk instead of x, and additionally forwards any adversarial queries for signatures to the
signing oracle, except if the adversary would query for m∗. Furthermore, in the case of signatures, we
regard H(m∥·) to be the random oracle, so we omit explicitly prepending m to the random oracle queries
below.

On input a statement x, the adversary’s code A and auxiliary input register RA, the simulator Sim
works as follows:

1. Sample a subspace A ⊂ {0, 1}λ of dimension λ/2 and sample an offset s ← {0, 1}λ,then pre-
pare the coset state |A0,s\{0}⟩ ∝

∑
a∈A\{0}(−1)a·s |a⟩ in register RA. Initialize register RΣ =

(RΣ,1,RΣ,2,RΣ,3) to |0⟩.

2. Sample keys kch, k ← {0, 1}λ. Apply the isometry

|a⟩RA
⊗ |0⟩RΣ

7→ |a⟩RA
⊗ |SimΣ(x,H(kch∥a);H(k∥a)⟩RΣ

to registers RA and RΣ.

|π̃⟩ :∝
∑

a∈A\{0}

(−1)a·s |a⟩RA
⊗ |s̃a1, s̃a2, s̃a3⟩RΣ

where s̃a2 = H(kch∥a) and (s̃a1, s̃
a
3) are obtained by running the honest verifier zero knowledge

simulator SimΣ for Σ.

3. Define the random oracle H ′ as follows:

H ′(q1∥q2∥q3) :=

{
H(kch∥q1) if q1 ∈ A \ {0} and q2∥q3 = x∥s̃q11
H(q1∥q2∥q3) else.

(22.1)

where
(
s̃a1, s̃

a
2, s̃

a
3

)
= SimΣ(x,H(kch∥a);H(k∥a)) for all a ∈ A\{0}. Note that this may be

efficiently evaluated on any computational basis queries using the description of A, and thus on any
quantum queries in general.

4. Compute the adversary’s output (Rcert,RA)← AH′
(RA, |π̃⟩).

5. Parse Rcert = (RA,RΣ) and compute the isometry

|a⟩RA
⊗ |y⟩RΣ

7→ |a⟩RA
⊗ |y ⊕ SimΣ(x,H(kch∥q2);H(k∥a))⟩RΣ

on registers RA and RΣ.

6. Measure register RA with respect to the PVM {|A0,s⟩ ⟨A0,s| , I − |A0,s⟩ ⟨A0,s|}. If the result is the
former, output RA. Otherwise output ⊥.

153

We now show that this simulator satisfies definition 21.2.2, i.e. the joint distribution over the output of
the simulator and the description of H is indistinguishable from the real certified deniability experiment.
Consider the following hybrid experiments:

• Hyb0(w): The real certified deniability experiment NIZK-CDenHA(RA)(x,w). Note that this does
not encompass the whole output distribution from the certified deniability definition in the QROM
(definition 21.1.2); it is missing the OH output.

• Hyb1(w): The only difference from Hyb1 is that we replace the oracle H with a reprogrammed
oracle H ′1, defined as1

H ′1(q1∥q2∥q3) :=

{
H(kch∥q1) if q1 ∈ A\{0} and q2∥q3 = x∥sq11
H(q1∥q2∥q3) else.

(22.2)

where sa1 = PΣ,1((x,w);H(k∥a)).2 In the security game Hyb1(w) = NIZK-CDenH
′
1

A(RA)(x,w),
this results in a NIZK

|π⟩ ∝
∑

a∈A\{0}

(−1)a·s |a⟩ ⊗ |sa1, s̃a2, s
a
3⟩

where s̃a2 = H(kch∥a) and (sa1, s
a
3) are computed honestly using the witness w.

We briefly comment on the relation between H ′, which is used by the simulator, and H ′1. Both
oracles can be viewed as the same parameterized oracle, where the parameters are every sa1. In H ′1,
the sa1 are honestly generated, whereas in H ′ they are generated by the HVZK simulator for Σ.

• Hyb2 = Sim: The only differences from Hyb1 are for each a ∈ A\{0}, we replace (sa1, s
a
3) with an

honest-verifier simulated transcript
(
s̃a1, s̃

a
3

)
from

(
s̃a1, s̃

a
2, s̃

a
3

)
= SimΣ(x,H(kch∥a);H(k∥a))

and update the random oracle accordingly, as defined in eq. (22.2) with sa1 = s̃a1. This results in the
oracle H ′.

In the security game, this modification results in a NIZK

|π̃⟩ ∝
∑

a∈A\{0}

(−1)a·s |a⟩ ⊗ |s̃a1, s̃a2, s̃a3⟩

Note that the definition of
(
s̃a1, s̃

a
3

)
is implicit, and they are only computed coherently as necessary:

(1) in answering queries to H ′2, (2) in computing |π̃⟩, and (3) in applying the isometry |a⟩ ⊗ |y⟩ 7→
|a⟩ ⊗ |y ⊕

(
s̃a1, s̃

a
2, s̃

a
3

)
⟩ to check the deletion certificate.

1Note that queries to H ′
1 can be answered lazily, preventing an exponential blow-up from reprogramming an exponential

number of positions. Since H ′
1 is implicitly pre-defined in terms of H , which is fixed, this does not require maintaining state,

e.g. through the compressed oracle technique.
2We abstract the expansion of sa1 out of the definition of H ′

1 to emphasize that sa1 is treated as an implicitly defined parameter
to the reprogrammed oracle.

154

We now show in Claims 22.1.2 to 22.1.4 that

(Hyb0, OH) ≈c

(
Hyb1, OH′

1

)
≈c (Hyb2, OH′)

≈c (Hyb2, OH)

over the choice of the random oracle H .

Claim 22.1.2.

{(Hyb0, OH) : H ← Func(X ,Y)} ≈
{(

Hyb1, OH′
1

)
: H ← Func(X ,Y)

}
Proof. Consider the sub-hybrid experiment Hyb′0:

• Hyb′0 : This hybrid is identical to Hyb0, except that H is replaced with a reprogrammed oracle H ′0,
defined as

H ′0(v) :=

{
G(v′) if v = kch∥v′ for some v′

H(v) else.

where X = {0, 1}λ ×X2 and G← Func(X2,Y) is a fresh random oracle.

• Hyb1 : The only difference between Hyb′0 and Hyb1 is the challenger samples a key kch ← {0, 1}λ
and G is defined by G(v) = H(kch∥v).

Since G is a truly random function and is only used in the definition of H ′0,

{(Hyb0, OH) : H ← Func(X ,Y)} =
{(

Hyb′0, OH′
0

)
: H ← Func(X ,Y)

}
Furthermore, lemma 20.1.2 implies3{(

Hyb′0, OH′
0

)
: H ← Func(X ,Y)

}
≈c

{(
Hyb1, OH′

1

)
: H ← Func(X ,Y)

}

Claim 22.1.3. If Sigma is a sigma-protocol for a language L with 2−λ-security, where ν(λ) is a negligible
function, then {(

Hyb1, OH′
1

)
: H ← Func(X ,Y)

}
≈ {(Hyb2, OH′) : H ← Func(X ,Y)}

Proof. Let aj be the j’th lexicographically least element of A. We define a series of 2 · |A| = 2 ·
2λ/2 intermediate hybrid experiments Hyb1,i,1 and Hyb1,i,2 for i ∈ [|A|], as well as an additional hybrid
experiment Hyb′1.

• Hyb′1 : This hybrid is identical to Hyb1, except that the challenger uses an additional random oracle
G ← Func({0, 1}λ,Y). Whenever it would evaluate H(k∥v) for some v, it instead (coherently)
evaluates G(v).

3Since G is used to define H ′
0, changing G to match H(kch∥·) causes H ′

0 to become H ′
1.

155

• Hyb1,i,1 : This identical to Hyb′1, except for the following changes. First, for every j < i, the

honestly computed (s
aj
1 , s

aj
3) are replaced by (s̃

aj
1 , s̃

aj
3), which are generated by SimΣ using ran-

domness G(aj). Since saj1 is modified, the random oracle is also updated accordingly to become

H ′1,i, as defined by eq. (22.2) with saj1 := s̃
aj
1 for j < i.

The second difference is purely syntactic. Instead of getting access to G, the challenger gets access
to Gai , which is identical to G except that Gai(ai) = ⊥. Additionally, it receives a classical copy
of (sai1 , s

ai
3), which are computed by the honest Σ prover using (x,w) and randomness G(ai).

• Hyb1,i,2 : This is identical to Hyb1,i,1, except that the honestly computed (sai1 , s
ai
3) are replaced by

(s̃ai1 , s̃
ai
3), where (

s̃ai1 , s̃
ai
2 , s̃

ai
3

)
= SimΣ(x,H(kch∥ai);G(ai))

• Hyb2 : The only difference between Hyb2 and Hyb1,imax,2, where imax = 2λ/2, is the challenger
samples a key k ← {0, 1}λ and G is defined by G(v) = H(k∥v).

lemma 20.1.2 implies{(
Hyb1, OH′

1

)
: H ← Func(X ,Y)

}
≈c

{(
Hyb′1, OH′

1

)
: H ← Func(X ,Y)

}
Observe that Hyb1,0,1 makes only syntactic changes from Hyb′1, so for all H ,

Hyb′1 = Hyb1,0,1

The same observation holds for every Hyb1,i,2 and Hyb1,i+1,1, so for all H ,

Hyb1,i,2 = Hyb1,i+1,1

We now show that4

{(Hyb1,i,1, OH′
1,i
) : H ← Func(X ,Y)} ≈2−λ

c {(Hyb1,i,2, OH′
1,i+1

) : H ← Func(X ,Y)}

by reducing to the 2−λ-security of Σ. The reduction simulates the random oracles H and Gai using the
compressed oracle technique [Zha19a],5 then declares H(kch∥ai) as its challenge sai2 in an honest-verifier
execution of Σ. It receives either (sai1 , s

ai
3) generated by an honest prover, or (s̃ai1 , s̃

ai
3) generated by the

HVZK simulator SimΣ. Using these, it can compute the rest of the experiment according to the description
of Hyb1,i,1. In the former case, the resulting distribution is Hyb1,i,1; in the latter, it is Hyb1,i,2. Therefore,
if the two distributions above were distinguishable with advantage ϵ, then applying that same distinguisher
would distinguish an honest Σ prover’s messages from the output of the honest-verifier simulator SimΣ

also with advantage ϵ. The 2−λ-security of Σ implies that ϵ ≤ 2−λ for all QPT distinguishers.
lemma 20.1.2 implies{(

Hyb1,imax,2, OH′
1,i+1

)
: H ← Func(X ,Y)

}
≈c {(Hyb2, OH′) : H ← Func(X ,Y)}

By the triangle inequality, the distinguishing advantage between
{(

Hyb1, OH′
1

)
: H ← Func(X ,Y)

}
and {(Hyb2, OH′) : H ← Func(X ,Y)} for any QPT distinguisher is bounded by negl(λ) + 2λ/2 · 2−λ +
negl(λ) = negl(λ).

4As before, H1,i is defined using sai
1 , so modifying it to become simulated changes H ′

1,i to H ′
1,i+1.

5If Σ is HVZK in the QROM, e.g. because it is designed for the QROM, then this step is unnecessary.

156

Claim 22.1.4.

{(Hyb2, OH′) : H ← Func(X ,Y)} ≈ {(Hyb2, OH) : H ← Func(X ,Y)}

Proof. We reduce to the direct product hardness of subspace states (lemma 2.3.3). Assume, for the sake
of contradiction, that some QPT distinguisher D with auxiliary input register RD were able to distinguish
between these two distributions.

Before describing the reduction, we claim that D has noticeable advantage conditioned on Hyb2 not
outputting⊥, i.e. conditioned on the simulator’s certificate check passing. We also claim that Hyb2 outputs
⊥ with at most 1 − 1/p probability for some polynomial p. We reduce these claims to direct product
hardness (lemma 2.3.3). The reduction takes in a subspace state |A⟩ and membership oracles OA, OA⊥ .
If either of the claimed conditions do not hold, then D must have noticeable advantage conditioned on
Hyb2 outputting⊥. By lemma 20.1.1, measuring one of D’s queries at random produces a point x∗ where
H(x∗) ̸= H ′(x∗) with noticeable probability. These are exactly values of the form a∥b for a ∈ A\{0}.
Since H ′ can be implemented using OA, this procedure finds an element of A with noticeable probability
using only a polynomial number of queries toOA, without using |A⟩. Combining this with a measurement
of |A⟩ in the Hadamard basis, the reduction obtains a pair of vectors in A\{0}×A⊥\{0} with noticeable
probability, breaking direct product hardness.

Next, we show how to break direct product hardness of subspace states using aD which has noticeable
distinguishing advantage between (Hyb2, OH′) and (Hyb2, OH), conditioned on Hyb2 not outputting ⊥.
The reduction takes as input a random subspace state |A⟩ and oracle access to membership oracles OA,
OA⊥ . It runs the simulator (i.e. Hyb2) using |A⟩. Whenever it would check that a vector v is in A
(respectively, A⊥), it queries v to OA (respectively, OA⊥). To implement step 6 (the certificate check),
it first applies the following operations to register RA: (1) a Hadamard operation, (2) the isometry |y⟩ 7→
|y − s⟩, and (3) a Hadamard operation. Then, it uses OA and OA⊥ to implement the PVM {|A⟩ ⟨A| , I −
|A⟩ ⟨A|} on register RA, as described by lemma 2.3.2. If the result of the simulator is RA ̸= ⊥, then it
runs the distinguisher DH′

(RD,RA) and measures a random query that D makes to H ′. Let q = q1∥q2 be
the query measurement result. Finally, the reduction measures RA in the Hadamard basis to obtain a value
v and outputs (q1, v).

Recall that Hyb2 outputs RA ̸= ⊥ with noticeable probability. Condition on this case occurring. This
happens exactly when the measurement on RA returns result |A⟩ ⟨A|, in which case RA collapses to |A⟩.
Therefore the measurement result v ∈ A⊥ and is not 0 with overwhelming probablity. Furthermore,
we previously established that D has noticeable advantage in this case; therefore lemma 20.1.1 implies
that H(q1∥q2) ̸= H ′(q1∥q2) with noticeable probability. Whenever this occurs, q1 ∈ A. Therefore
(q1, v) ∈ A\{0} ×A⊥\{0} with noticeable probability, violating lemma 2.3.3.

157

158

Chapter 23

Negative Results

In this section, we give evidence that certifiable deniability is in fact impossible in the plain model. Specif-
ically, we show a black-box barrier against obtaining signatures with certified deniability in the plain
model; any work achieving this must use non-black-box techniques in their security proof.

23.1 Distinguishing Between Unitary Oracles.

Before proving the main result of this section, we introduce a supporting lemma that generalizes a result
from [BBBV97] about reprogramming quantum-accessable oracles. This lemma may be of independent
interest.

In their original version, they consider a quantum adversary who has quantum query access to one of
two classical oracles H and H ′. They bound the ability of the adversary to distinguish between the two
oracles in terms of the amplitude with which it queries on (classical) inputs x where H(x) ̸= H ′(x). As a
simple corollary, if the adversary is able to distinguish the two oracles in a polynomial number of queries,
then measuring one of its queries at random produces an x such that H0(x) ̸= H1(x) with noticeable
probability.

We observe that a similar statement holds for quantum oracles, i.e. oracles which take in a quantum
input, perform quantum computation, and produce quantum output. If the adversary is able to distinguish
the two oracles in a polynomial number of queries, then outputting the query register at a random query
produces a mixed state with noticeable probability mass on states |ψ⟩ where H(|ψ⟩) is far from H ′(|ψ⟩).

Lemma 23.1.1. Let H and H ′ be oracle-accessible unitaries and let A(·) be a quantum oracle algorithm
with auxiliary input |ψ0⟩. Let

|ψt⟩ =
∑
i

αt,i |ϕt,i⟩RA
⊗ |qt,i⟩RQ

be a Schmidt decomposition of the state of AH on submitting query t, where RA is the internal register of
A and RQ is the query register. Let ψ′t similarly be the state of AH′

on submitting query t. Then for all
T ∈ N,

TD[|ψT+1⟩ ⟨ψT+1| , |ψ′T+1⟩ ⟨ψ′T+1|] ≤

√√√√4T

T∑
t=1

∑
i

|αt,i|2TD[H(|qt,i⟩), H ′(|qt,i⟩)]2

Proof. The oracle algorithm AH can be expressed as sequence of unitaries At interleaved with unitary

159

oracle operations H , i.e.

|ψT+1⟩ = AT+1

(
T∏
t=1

HAt

)
|ψ0⟩

Note that |ψt+1⟩ is prepared by applying At+1 to the result H |ψt⟩ of the prior query. Define |Et⟩ to be
the error term resulting from answering the t’th query of AH using H ′ instead of H , i.e.

|Et⟩ = H ′ |ψt⟩ −H |ψt⟩

Then we can express the state of AH(|ψ0⟩) on submitting the (T + 1)’th query (before it is answered) as

|ψT+1⟩ = ATH |ψT ⟩ (23.1)

= AT (H
′ |ψT ⟩ − |ET ⟩) (23.2)

Applying this decomposition recursively on |ψT ⟩ yields

|ψT+1⟩ = AT+1

(
T∏
t=1

H ′At

)
|ψ0⟩ −

T∑
t=1

(
T∏

i=t+1

HAi

)
At |Et⟩ (23.3)

= |ψ′T+1⟩ −
T∑
t=1

(
T∏

i=t+1

HAi

)
|Et⟩ (23.4)

Thus we have

TD[|ψT+1⟩ ⟨ψT+1| , |ψ′T+1⟩ ⟨ψ′T+1|]

=
√
1− | ⟨ψT ⟩ψ′T |2 (23.5)

≤
√
1− | ⟨ψT ⟩+ (⟨ψ′T | − ⟨ψT |) |ψT ⟩ |2 (23.6)

≤
√
|(⟨ψ′T | − ⟨ψT |) |ψT ⟩ |2 (23.7)

≤
√∥∥|ψ′T ⟩ − |ψT ⟩

∥∥2
2

(23.8)

=

√√√√√∥∥∥∥∥
T∑
t=1

(
T∏

i=t+1

HAi

)
|Et⟩

∥∥∥∥∥
2

2

(23.9)

≤

√√√√√T
T∑
t=1

∥∥∥∥∥
(

T∏
i=t+1

HAi

)
|Et⟩

∥∥∥∥∥
2

2

(23.10)

=

√√√√T

T∑
t=1

∥|Et⟩∥22 (23.11)

=

√√√√T

T∑
t=1

∥H ′ |ψt⟩ −H |ψt⟩∥22 (23.12)

=

√√√√√T
T∑
t=1

∣∣∣∣∣∣
∑
i,j

αt,iαt, j ⟨ϕt,i⟩ϕt,j ⟨qt,i| (H −H ′)†(H −H ′) |qt,j⟩

∣∣∣∣∣∣
2

(23.13)

160

≤

√√√√T
T∑
t=1

∑
i

|αt,i|2∥(H −H ′) |qt,i⟩∥22 (23.14)

≤

√√√√T

T∑
t=1

∑
i

|αt,i|2∥(H −H ′) |qt,i⟩∥21 (23.15)

=

√√√√4T
T∑
t=1

∑
i

|αt,i|2TD[H(|qt,i⟩), H ′ |qt,i⟩]2 (23.16)

where eq. (23.8) follows from Cauchy-Schwarz; eq. (23.10) follows from Jensen’s inequality; eq. (23.11)
follows from the invariance of the ℓ2 norm under unitaries; eq. (23.14) follows from Jensen’s inequality.

Corollary 23.1.2 (One-Way to Hiding for Unitary Oracles). Let H and H ′ be oracle-accessible unitaries
and let A(·) be a quantum oracle algorithm with auxiliary input |ψ0⟩ that uses at most T queries. Denote
the mixed state resulting from measuring AH ’s query register at a random time t as

1

T

T∑
t=1

|t⟩ ⟨t| ⊗
∑
i

|αt,i|2 |qt,i⟩ ⟨qt,i|

For 0 < δ ≤ 1, denote the set Sδ as being the subset of (t, i) pairs such that TD[H(|qt,i⟩), H ′(|qt,i⟩)] ≥ δ.
If A(·) distinguishes between H and H ′ with advantage ϵ in T queries, then

1

T

∑
(t,i)∈Sδ

|αt,i|2 ≥
ϵ2

4T 2 − δ2

1− δ2

If ϵwere noticeable, T were polynomial, and δ were set to (1/2)·ϵ/(2T), then this immediately shows
that the probability mass on pure states whereH andH ′ differ by a noticeable trace distance is noticeable.

23.2 Plain Model Black-Box Barrier

For our black-box barrier, we model the simulator as having access to the adversary’s unitary dilation and
its inverse. However, we do not allow the simulator direct access to the adversary’s internal registers,
including its auxiliary input. As we discuss later, this is equivalent to a model where the simulator can
directly access the internal registers, but they are ideally obfuscated.

Theorem 23.2.1. There do not exist signatures with certified deniability in the plain model whose security
proof makes only black-box use of the adversary’s unitary dilation and its inverse.

Remark 23.2.2. We note that a similar statement holds for NIZKs with certified deniability as well. The
proof is almost identical, so we omit it here.

Proof. Let Sig-CDen = (Gen,Sign,Verify,Del,DelVer) be a candidate signature scheme with a black-
box proof of certified deniability, i.e. which gives a simulator Sim that uses the adversary’s unitary dilation
as a black-box. We give a QPT adversary Adv together with a QPT distinguisher D that distinguishes Sim
from the real experiment.

161

Adv receives as auxiliary input a post-quantum signing key k̃, which we denote as Adv
k̃
. During the

certified deniability game, Adv
k̃

receives a verification key vk, a state |σ⟩, and a message m, then runs

Verify(vk, |σ⟩ ,m), and if it accepts, outputs a post-quantum signature σ(k̃)m,vk ← PQSig.Sign(k̃, vk∥m)

on the verification key concatenated with the message. It measures the result of this to get σ(k̃)m,vk, which
it writes to register RA, then uncomputes the program. By the correctness of Sig-CDen, this is gentle.
Finally, it runs Del(|σm⟩) to obtain a valid deletion certificate in register Rcert and outputs Rcert along with
RA.

The distinguisher receives as auxiliary input the corresponding post-quantum verification key ṽk. On
input RA, it runs the post-quantum signature verification PQSig.Verify(ṽk,RA) to check if A obtained a
signature on vk∥m. If so, it outputs 1, and otherwise, outputs 0.

We now show that this adversary and distinguisher pair achieves noticeable advantage against any
simulator Sim. Observe that in the real certified deniability experiment, D outputs 1 with overwhelming
probability, due to the correctness of the signature and obfuscation schemes. Conversely, we claim that
against any QPT simulator, D outputs 0 with overwhelming probability.

Consider the following sequence of hybrid experiments:

• Hyb0: The simulated certified deniability experiment. In more detail, sample (sk, vk) ← Gen(1λ).
Run SimAdv

k̃ to obtain an output register RA.

• Hyb1: This experiment is the same as Hyb0, except that Adv
k̃

is replaced by Adv⊥, which immedi-
ately honestly deletes the signature and always outputs ⊥ in register RA.

Hyb0 ≈ Hyb1 from the unforgeability of the candidate signature scheme; otherwise, corollary 23.1.2
implies that outputting SimAdv

k̃ ’s query register on a random query produces a mixed state with noticeable
probability mass on an input |ψ⟩ where A

k̃
(|ψ⟩) and A⊥(|ψ⟩) are noticeably far, which is is exactly the

set of points where |ψ⟩ passes signature verification with noticeable probability.
We now claim that the original distinguisher D(ṽk) outputs 0 with overwhelming probability in Hyb1.

Otherwise, SimA⊥ must output a valid signature under ṽk, which it is independent of, which would violate
the unforgeability of the post-quantum signature scheme. Since Hyb1 is indistinguishable from Hyb0 for
all QPT distinguishers,D(ṽk) must also output 0 with overwhelming probability in Hyb0, which is simply
the output distribution of the certified deniability simulator.

Obfuscated Auxiliary Input. One could also consider implementing the adversary described above
using an obfuscated program which A receives as auxiliary input. If the obfuscation was ideal, then even
allowing the simulator direct access to the adversary’s auxiliary input would be equivalent to the model
above. Even with a weaker form of obfuscation, it still might not be possible to extract a signature from
the obfuscated program even using non-black-box techniques.

162

Bibliography

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual IEEE
Conference on Computational Complexity, pages 229–242, 2009.

[ABF+19] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing
schemes for general and uniform access structures. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 441–471. Springer, Cham,
May 2019.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.

[ABKK23] Amit Agarwal, James Bartusek, Dakshita Khurana, and Nishant Kumar. A new frame-
work for quantum oblivious transfer. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part I, volume 14004 of LNCS, pages 363–394. Springer, Cham, April 2023.

[AC02] Mark Adcock and Richard Cleve. A quantum goldreich-levin theorem with cryptographic
applications. In Helmut Alt and Afonso Ferreira, editors, STACS 2002, 19th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Antibes - Juan les Pins, France, March
14-16, 2002, Proceedings, volume 2285 of Lecture Notes in Computer Science, pages 323–
334. Springer, 2002.

[AC12a] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Proceed-
ings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’12, page
41–60, New York, NY, USA, 2012. Association for Computing Machinery.

[AC12b] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Howard J.
Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 41–60. ACM Press, May 2012.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 308–326. Springer, Berlin, Heidelberg, August 2015.

[AK21] Prabhanjan Ananth and Fatih Kaleoglu. Unclonable encryption, revisited. In Kobbi Nis-
sim and Brent Waters, editors, TCC 2021, Part I, volume 13042 of LNCS, pages 299–329.
Springer, Cham, November 2021.

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. A note on copy-protection from random oracles.
Cryptology ePrint Archive, Paper 2022/1109, 2022. https://eprint.iacr.org/
2022/1109.

163

https://eprint.iacr.org/2022/1109
https://eprint.iacr.org/2022/1109

[AK24] Kasra Abbaszadeh and Jonathan Katz. Non-interactive zero-knowledge proofs with certified
deletion. IACR Cryptol. ePrint Arch., page 1848, 2024.

[AKL23] Prabhanjan Ananth, Fatih Kaleoglu, and Qipeng Liu. Cloning games: A general frame-
work for unclonable primitives. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 66–98. Springer, Cham, August 2023.

[AKN+23] Shweta Agrawal, Fuyuki Kitagawa, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Public key encryption with secure key leasing. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part I, volume 14004 of LNCS, pages 581–610. Springer, Cham, April
2023.

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 501–530. Springer, Cham, October 2021.

[APV23] Prabhanjan Ananth, Alexander Poremba, and Vinod Vaikuntanathan. Revocable cryptogra-
phy from learning with errors. In Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023,
Part IV, volume 14372 of LNCS, pages 93–122. Springer, Cham, November / December
2023.

[BB84] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. Proceedings of the IEEE International Conference on Computers, Systems, and
Signal Processing, page 175–179, 1984.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Berlin, Heidelberg,
February 2014.

[BF10] Niek J. Bouman and Serge Fehr. Sampling in a quantum population, and applications. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 724–741. Springer, Berlin,
Heidelberg, August 2010.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Berlin, Heidelberg,
August 1993.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Berlin, Heidelberg, August
2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Berlin, Heidelberg, March 2014.

[BGK+24] James Bartusek, Vipul Goyal, Dakshita Khurana, Giulio Malavolta, Justin Raizes, and
Bhaskar Roberts. Software with certified deletion. In Marc Joye and Gregor Leander, editors,

164

EUROCRYPT 2024, Part IV, volume 14654 of LNCS, pages 85–111. Springer, Cham, May
2024.

[BI20a] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In Rafael Pass
and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference,
TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume 12552
of Lecture Notes in Computer Science, pages 92–122. Springer, 2020.

[BI20b] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 92–122.
Springer, Cham, November 2020.

[BK23] James Bartusek and Dakshita Khurana. Cryptography with certified deletion. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS,
pages 192–223. Springer, Cham, August 2023.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm
for keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, 50th ACM STOC, pages 671–684. ACM Press, June 2018.

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 27–35. Springer, New
York, August 1990.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. 1979 International Workshop on Managing
Requirements Knowledge (MARK), pages 313–318, 1979.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately.
In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer,
Berlin, Heidelberg, March 2017.

[BR24] James Bartusek and Justin Raizes. Secret sharing with certified deletion. In Leonid Reyzin
and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings,
Part VII, volume 14926 of Lecture Notes in Computer Science, pages 184–214. Springer,
2024.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, 52nd ACM STOC, pages 269–279. ACM Press, June 2020.

[BS23] Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures. Quantum, 7:901,
2023.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer
Society Press, October 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Berlin, Heidelberg, December 2013.

165

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 90–104. Springer,
Berlin, Heidelberg, August 1997.

[CGV22] Andrea Coladangelo, Shafi Goldwasser, and Umesh V. Vazirani. Deniable encryption in a
quantum world. In Stefano Leonardi and Anupam Gupta, editors, 54th ACM STOC, pages
1378–1391. ACM Press, June 2022.

[CLLZ21a] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and appli-
cations to unclonable cryptography. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 556–584, Virtual Event, August 2021. Springer, Cham.

[CLLZ21b] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and appli-
cations to unclonable cryptography. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology – CRYPTO 2021, pages 556–584, Cham, 2021. Springer International Publishing.

[CMSZ22] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum succinct
arguments: Breaking the quantum rewinding barrier. In 62nd FOCS, pages 49–58. IEEE
Computer Society Press, February 2022.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended ab-
stract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, New York, August 1990.

[DFL+09] Ivan Damgård, Serge Fehr, Carolin Lunemann, Louis Salvail, and Christian Schaffner. Im-
proving the security of quantum protocols via commit-and-open. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 408–427. Springer, Berlin, Heidelberg, August
2009.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-
Shamir transformation in the quantum random-oracle model. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 356–383.
Springer, Cham, August 2019.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th ACM
STOC, pages 409–418. ACM Press, May 1998.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS,
pages 186–194. Springer, Berlin, Heidelberg, August 1987.

[Gao03] Shuhong Gao. A New Algorithm for Decoding Reed-Solomon Codes, pages 55–68. Springer
US, Boston, MA, 2003.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

166

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its appli-
cations. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 467–476. ACM Press, June 2013.

[GMM17] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does functional en-
cryption imply obfuscation? In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 82–115. Springer, Cham, November 2017.

[GMR24] Vipul Goyal, Giulio Malavolta, and Justin Raizes. Unclonable commitments and proofs. In
22nd Theory of Cryptography Conference 2024, TCC 2024, Dec 2-6, 2024, Bocconi Univer-
sity, Milan, Italy, 2024.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[HKM+24] Taiga Hiroka, Fuyuki Kitagawa, Tomoyuki Morimae, Ryo Nishimaki, Tapas Pal, and Takashi
Yamakawa. Certified everlasting secure collusion-resistant functional encryption, and more.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part III, volume 14653 of
LNCS, pages 434–456. Springer, Cham, May 2024.

[HMNY22] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified ever-
lasting zero-knowledge proof for QMA. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 239–268. Springer, Cham, August
2022.

[Hoe94] Wassily Hoeffding. Probability Inequalities for sums of Bounded Random Variables, pages
409–426. Springer New York, New York, NY, 1994.

[ISN87] M. Ito, A. Saito, and Takao Nishizeki. Secret sharing schemes realizing general access struc-
ture. In Proc. IEEE Global Telecommunication Conf. (Globecom’87), pages 99–102, 1987.

[JLLW23] Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. The pseudorandom oracle model and
ideal obfuscation. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part IV, volume 14084 of LNCS, pages 233–262. Springer, Cham, August 2023.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC,
pages 60–73. ACM Press, June 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over
Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer, Cham, May / June
2022.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013.

[KTZ13] Jonathan Katz, Aishwarya Thiruvengadam, and Hong-Sheng Zhou. Feasibility and infeasi-
bility of adaptively secure fully homomorphic encryption. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 14–31. Springer, Berlin, Heidel-
berg, February / March 2013.

167

[LM01] J.L. Lagrange and T.J. McCormack. Lectures on Elementary Mathematics. Open Court
Publishing Company, 1901.

[Lut10] Andrew Lutomirski. An online attack against wiesner’s quantum money, 2010.

[LV18] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, page 699–708, New York, NY, USA, 2018. Association for Computing Machinery.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 326–355. Springer, Cham, August 2019.

[MPY24] Tomoyuki Morimae, Alexander Poremba, and Takashi Yamakawa. Revocable quantum digi-
tal signatures. In Frédéric Magniez and Alex Bredariol Grilo, editors, 19th Conference on the
Theory of Quantum Computation, Communication and Cryptography, TQC 2024, September
9-13, 2024, Okinawa, Japan, volume 310 of LIPIcs, pages 5:1–5:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen cipher-
text attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer, Berlin,
Heidelberg, August 2003.

[Por23] Alexander Poremba. Quantum proofs of deletion for learning with errors. In ITCS 2023,
pages 90:1–90:14. LIPIcs, January 2023.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 89–114. Springer, Cham, August 2019.

[RK05] Renato Renner and Robert König. Universally composable privacy amplification against
quantum adversaries. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 407–
425. Springer, Berlin, Heidelberg, February 2005.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

[Shm22] Omri Shmueli. Semi-quantum tokenized signatures. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 296–319. Springer, Cham,
August 2022.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press,
May / June 2014.

168

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas Johans-
son, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 135–152. Springer, Berlin,
Heidelberg, April 2012.

[Unr16a] Dominique Unruh. Collapse-binding quantum commitments without random oracles. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of
LNCS, pages 166–195. Springer, Berlin, Heidelberg, December 2016.

[Unr16b] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
497–527. Springer, Berlin, Heidelberg, May 2016.

[VZ21] Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 630–660. Springer, Cham, October 2021.

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, Decem-
ber 30 1986. US Patent 4,633,470.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, jan 1983.

[Win99] Andreas J. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans.
Inf. Theory, 45(7):2481–2485, 1999.

[WZ82] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, Oct 1982.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687.
IEEE Computer Society Press, October 2012.

[Zha19a] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiabil-
ity. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume
11693 of LNCS, pages 239–268. Springer, Cham, August 2019.

[Zha19b] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 408–
438. Springer, Cham, May 2019.

[Zha23] Mark Zhandry. Tracing quantum state distinguishers via backtracking. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 3–36.
Springer, Cham, August 2023.

169

	Introduction
	Results
	Techniques
	sec:obfs: Obfuscation
	sec:ss: Secret Sharing
	sec:cden: Signatures and NIZKs with Certified Deniability

	Preliminaries
	General Notation
	Cryptographic Notation
	Quantum Computation

	I Obfuscation with Certified Deletion
	Results
	Technical Overview
	Warm-Up Example
	Coset Framework
	Certified Deletion for Coset States
	Discussion
	Obfuscation and Applications

	Preliminaries
	Indistinguishability Obfuscation and Differing Inputs Obfuscation
	Subspace-Hiding Obfuscation
	Functional Encryption

	Coset State Framework
	Coset Representatives
	Coset Representative Properties
	Delayed Preparation of Coset States

	Certified Deletion for Coset States
	Proof with Dual Coset Leakage
	Proof with Primal Coset Leakage

	Obfuscation with Certified Deletion
	Definition
	Construction
	Variant: Nesting
	Variant: Provable Correctness

	Applications
	Encryption with Publicly Verifiable Certified Deletion
	Functional Encryption with Certified Deletion for Ciphertexts
	Definition
	Construction

	Functional Encryption with Key Revocation
	Definition
	Construction

	Strong Secure Software Leasing

	II Secret Sharing with Certified Deletion
	Results
	Technical Overview
	No-Signaling Certified Deletion
	Adaptive Certified Deletion
	High Rate Seedless Extractors from Quantum Sources of Entropy
	Open Problems

	Preliminaries
	Quantum Computation
	Statistics
	Polynomials and Reed-Solomon Codes
	Secret Sharing

	High-Rate Seedless Quantum Extractors
	Definitions of Secret Sharing with Certified Deletion
	Secret Sharing with No-Signaling Certified Deletion
	Threshold Secret Sharing with Adaptive Certified Deletion
	Construction
	Proof of Security

	Tighter Parameters for the Threshold Construction

	III Certified Deniability
	Results
	Technical Overview
	Definitions: Simulation-Style
	Constructions
	Black-Box Barriers to Plain Model Constructions.
	Related Works

	Preliminaries
	Quantum Computation
	Argument Systems
	Revocable Signatures and NIZKs

	Definitions of Certified Deniability
	Signatures
	NIZKs

	Fiat-Shamir with Certified Deniability
	Proof of Certified Deniability

	Negative Results
	Distinguishing Between Unitary Oracles.
	Plain Model Black-Box Barrier

