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Abstract
Detecting individual data sequences corresponding to actionable events in large-

scale, dynamic data streams, also known as data monitoring, is a challenging com-
putational problem with applications across multiple domains. Specifically in public
health, these data sequences can correspond to events like outbreaks or quality is-
sues directly impacting downstream decision-making and outbreak response efforts.
However, as the volume of public health-related data continues to grow, traditional
machine learning algorithms for anomaly or event detection, designed for smaller
datasets, become increasingly ineffective – for example, by outputting tens of thou-
sands of uninformative alerts that lead to reviewer fatigue. These challenges are
exacerbated by the noise, non-stationarity, and incompleteness of public health data
and hinder the ability of domain experts to perform data monitoring.

My thesis enables domain experts to monitor large-scale data streams via novel
ranked-list based algorithms that address the question, “Which data should be exam-
ined first, and why?” In contrast to traditional approaches that use statistical alerts,
the output list of the top-ranked data prioritizes data reviewers’ attention so that
they remain engaged with the algorithmic outputs. These underlying algorithms, de-
signed to be simple, scalable, and generalizable, include (1) ranking outliers from
limited-history, nonstationary, noisy data streams with weekday effects, (2) rerank-
ing extreme outlier data points across large streams, and (3) ranking top anomalous
subsequences of any length from dynamic, partially observed data without sampling.

Evaluating these algorithms and the overall approach in offline and deployed
settings show strong results. For instance, when paired with custom user interfaces,
the approach enabled a 53-fold increase in monitoring efficiency for data reviewers
performing data monitoring at the Delphi Group at Carnegie Mellon University for
over two years, allowing them to detect over 200 noteworthy data issues from 15
million new data points each week. This monitoring approach directly supports
efficient and accurate public health surveillance and can readily be deployed at the
state, national, or international level to enhance the effectiveness of public health
data-driven decision-making and the core algorithms can be relevant to other critical
monitoring domains.
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Introduction

1.1 Contributions

This thesis introduces a novel approach and algorithms for monitoring large-scale data streams in

critical settings designed to better align with the needs and workflows of human data reviewers.

Existing monitoring systems often rely on human data reviewers inspecting alerts generated using

rigid statistical thresholds or heuristics. When applied to modern data volumes with complex

statistical properties, these approaches tend to fail. Instead, this thesis develops:

• a human-in-the-loop approach and fully deployed system built atop

• 3 novel interpretable and efficient algorithms that scale expert input for event detection:

1. FlaSH (Flexible outlier ranking method): A customizable algorithmic ranking ap-

proach that scales expert feedback and constraints, allowing for context-aware outlier

detection despite the data noise, nonstationarity, and incompleteness that are common

in real-world data.

2. OutsHiNes (Reranking extreme outliers): Identifies a new machine learning prob-

lem, multi-stream outlier ranking, and a solution algorithm rooted in extreme value

theory, adapted for nonstationary and noisy data.

3. Enlighten (Anomalous subsequence detection & system development): An algo-

rithm and complete system that data reviewers use to identify and analyze anomalous

data subsequences of any length.

Data monitoring is important in public health settings. It is used to detect important events,

such as disease outbreaks and data quality issues, that are important for downstream data users

like data scientists and public health decision-makers. For example, data scientists can build

better models that exclude outliers or uncover informative disease dynamics that might otherwise

1



go unnoticed. Nevertheless, the known theoretical and statistical limitations of data monitoring at

scale become apparent and pressing in public health due to the prevalence of real-world statistical

properties of the data and the critical nature of the events. Progress forward for data monitoring

at scale requires new computational approaches.

The strongest validation of the practicality of this approach is that it has been deployed in

practice for two years and counting. To ensure practical utility in this setting, the above algo-

rithms were designed, developed, and evaluated over several months in deployment with real-

world public health data reviewers at the Delphi Group at Carnegie Mellon University. By work-

ing directly with data reviewers and users, the limitations of traditional alert-based monitoring

systems became clear (see Appendix A) and inspired an approach that aligns with real-world data

review practices. The final rank-based, human-in-the-loop anomaly triage system works by scal-

ing reviewer intuition and prioritizing reviewer attention. Our evaluation includes surveys and

longitudinal deployment studies that have shown that this system significantly improves public

health data event detection processes, making it, as far as we know, the only open-source, sta-

tistically sound, scalable, and deployed approach for modern public health data monitoring. As

the proposed methods also address computational challenges of data monitoring at scale in a

statistically rigorous manner, they can also be applicable in other critical domains.

1.2 Motivation and Research Approach

Data saves lives. Better data saves more lives. -United States Centers for Disease

Control and Prevention (CDC) [40]

Background

Public health data curators, such as the CDC [40], UN [110], and WHO [2], regularly publish

aggregated population-level time series data from various traditional and public health-adjacent

sources. These data streams, referred to as indicators [41], are used for resource allocation,

disease tracking, and identifying health disparities [30]. An advantage of these data curators is

that they can monitor large volumes of data for critical events, or unexpected patterns in the data,



that may indicate system failures or meaningful shifts in public health dynamics [73].

Monitoring is particularly vital in public health, where curators are responsible for producing

high-quality data streams [21, 85] and preventing costly attribution errors from downstream data

users [87, 88]. Curators have unique advantages. They have aggregate data available at a scale

larger than individual data providers. They also can have more data and compute their their

downstream data users to detect critical events across multiple streams [2, 55, 112]. These events

tend to belong to one of the following categories:

• Data quality issues, like shifts, errors, & delays in data collection and reporting [8, 11, 29])

which can have downstream impacts.

• Changes in underlying disease dynamics, like outbreaks [19].

Figure 1.1: Examples of unexpected data points classified as events (highlighted in red)
belonging to these different categories in public health data. Delphi’s % COVID-like Illnesses
indicator is calculated from Doctor’s Visits data [96].

Plot (a) shows an increase in a respiratory illness indicator that is consistent with an out-
break, which represents a change in the underlying disease dynamics.

Plot (b) shows many days of reported data as 0 between November and December 2024,
then a few weeks of missing data in December 2024, followed by a very high value for a
respiratory illness signal.

According to one reviewer’s analysis of this geospatial region, similar data streams, and
external information, this data suggests that there was a data quality event, like delayed data
reporting from the months of November and December 2024.

These events categories and how they manifest in the data correspond to different parts of

how public health data is collected and reported (see Fig 1.1).



• Data quality issues typically stem from measurement/reporting errors in the data reporting

pipeline, which can include imperfect human recorded data, breakdowns in reporting at

multiple stages, changes in data definitions or aggregation, and data censored for individual

privacy.

• Disease dynamics can represent changes in the ground truth of illnesses transmission.
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Figure 1.2: Data quality changes in case counts, shown by the large spikes in March and July
2022, when cases were trending down, resulted in similar spikes for predicted counts (red) from
multiple forecasts that were then sent to the US CDC. This forecast is one of hundreds reported
weekly and was likely missed by most in any downstream applications.

Once the data is identified and triaged as events by a data reviewer, they can be sent to

stakeholders. However, these events are not equally relevant to all stakeholders. For example,

modeling teams may care about data quality events relevant to data preprocessing, like single

point outliers, while public health departments may care about the disease dynamics events and

do not want to misattribute a data quality issue for an outbreak, like in Fig. 1.2.

Nevertheless, these events and their relative severity to different downstream data users are

difficult to distinguish statistically through the data alone because different events can manifest

similarly in these data streams. Instead, domain experts (e.g., epidemiologists, policymakers)

need to use some type of external context (e.g., policy changes, public health reports) to triage

these unexpected data sequences as events with different severity for downstream users. Then,

these data users can readily use the classified, contextualized, and annotated data events they care



about. For example, during the COVID-19 pandemic, the modeling community used human-

reported data quality events to revise forecasts [117], and data users also wanted to use events

identify regions experiencing unexpected disease transmission, particularly in smaller geospatial

regions without local public health departments or resources to monitor newly collected data

streams.

Despite the demand and importance of event detection through data monitoring, for decades

[55], reviewers have increasingly struggled to monitor incoming public health data thoroughly.

One issue is that the data sequences corresponding to important events can be subtle [69], and

detecting them requires careful attention that quickly exhausts limited data reviewing resources.

In the current big-data setting for public health data, this constraint clarifies several limitations

in existing approaches [27]. For example, existing methods can be uninformative because their

output is highly sensitive to parameter tuning that needs to be continuously performed as the

frequency of events change over time. Or, these methods produce too many alerts to be usable in

practice. Monitoring challenges like these are likely to become more widespread as data mod-

ernization initiatives from curators [89, 118], although necessary, have consistently increased the

volume, variety, and velocity of public health data [10] (modern data).

These factors culminated in an emergency at the Delphi Group at Carnegie Mellon Univer-

sity (Delphi). Delphi is a public health data curator for indicators related to respiratory illnesses

in the United States 1. As part of its curation process to provide various aggregate data sources

free and open source to the public, Delphi monitors its data for events relevant to its users –

including public health authorities, researchers, and the public. In line with large scale public

health modernization initiatives [40], Delphi’s daily data intake has increased over 1000× in the

past three years, enabling more varied, timely, and high resolution data streams to be published

[72, 96, 119]. While curators like Delphi only work with aggregate data—meaning they cannot

detect events by analyzing individual records as some providers might, they are uniquely poised

to identify and analyze unexpected data given that they can centrally access data from multiple

1In this thesis, the data used is from the Delphi Group and can be accessed through their open-source APIs [95].

https://delphi.cmu.edu/


data sources. Historically, they’ve used standard state-of-the-art anomaly or event detection ap-

proaches on smaller data volumes. However, as multiple stakeholders have pointed out, these

existing methods are flawed. They are unable to find important ‘needles’ that users can take

action over from a very large haystack of data. This need informs the thesis research question:

Research Question: How can computational limitations in monitoring large volumes of hetero-

geneous (modern) public health data streams be addressed?

This thesis presents a computational approach that involves designing both a novel system for

data monitoring and developing new monitoring algorithms that support the system.

Preliminaries

The data monitoring system design must account for several nuances. For example, the moni-

toring process must provide flexibility to accommodate user and context preferences regarding

“unexpected” or anomalous data [101] that correspond to data events. In fact, rigid systems,

which fail to adapt to evolving user needs for event detection over time, are a primary limita-

tion of prior approaches [15, 17], as described by public health experts [50], because they fail

to adapt to evolving user needs for event detection over time without considerable effort. The

proposed approaches should also focus on unexpected data patterns instead of data validation

or algorithms that need external labels/metadata that are quickly outdated given the nonstation-

arity of public health data [105]2. Additionally, all incoming data should be processed directly,

rather than using sampling techniques, to prevent a common issue where regions with lower

populations have fewer of their events detected due to sample size and noise. Beyond regional

variability, the framework must be robust to changes in indicator sets, regional data quality [74],

and shifting correlation structures as public health conditions evolve [43, 57]. This ensures the

system remains useful to a large set of public health data curators, including USAFacts, JHU

CSSE, The New York Times COVID Data, and the CDC. Finally, practical constraints—such

2Labeled data is also highly subjective and tends to only available in small samples [103].



as finite reviewer attention, computational resources, and data update cycles that limit real-time

processing—must be addressed in the approach design.

Research Approach: Continuous, human-in-the-loop, anomalous subsequence monitoring sys-

tem across all data streams to identify, “Which events should be examined first, and why?”

Continuous data monitoring involves (1) running a detection algorithm per data stream, [20, 59],

like a control chart method, that (2) produces an alert, like when the method’s resulting p-value

falls below a threshold [18], that (3) reviewers inspect [126]. Continuous approaches are used in

a number of domains to find real time anomalies in data streams (instead of identifying anoma-

lous times or historical anomalies) [25, 36] . However, these alerting algorithms break down in

modern public health data settings, as supported by attempts detailed in [19] and discussed in the

Acute Phase Approach section.

Prior works are fundamentally limited or not applicable in this setting. First, similar ap-

proaches in networks, systems, and IoT literature rely on assumptions that do not necessarily

hold for public health data. Public health data is incomplete and often an estimate, making

it incompatible with many root cause analysis or formal verification methods. Further, other

approaches focus on edge/node computing or sampling strategies because of limitations on com-

munication protocols and privacy constraints [123, 124, 127]. In contrast, public health curators

receive all their data over the course of a day and have no such limitations. These curators also

need to process all their data, including streams aggregated at higher resolutions, because differ-

ently aggregated streams may include additional individuals that were not available or accounted

for at more granular resolutions. Finally, by processing all the data they receive and not sam-

pling, curators can be sure that all available data points are considered and identify problems in

the data curation pipelines that are geography independent [2, 35, 55, 102]. So, popular methods

that rely on dimension reduction [43, 57] or identify entire streams as anomalous are not relevant

for this type of data-level monitoring.

Still, approaches for data-level monitoring do not scale with or perform well on modern pub-



lic health data. These approaches, including those embedded in public health monitoring systems
3, like ESSENCE [18, 79] system4, are variations of the standard outlier detection method pro-

cess. Take the World Health Organization’s District Health Information System (DHIS) [3]. It

produces an alert when a summary statistic (min, max, z-score) exceeds a baseline (determined

by a stream’s own history, the national stream, or streams from similar indicators at that geogra-

phy) by a static value, like 10 %. While this approach is mathematically straightforward [121],

using it in practice requires considerable manual effort for parameter tuning and data review as it

is only intended for use across a limited number of streams (e.g. limited its intended use case in

districts or counties). At scale across millions of heterogeneous and nonstationary streams, these

approaches introduce multiple hypothesis testing errors [51]and necessitate manually updating

thousands of thresholds and rules before new data arrives for the continuous setting. Even more

statistically sophisticated alerting approaches, such as RAMMIE [83] and its extensions5, can

generate an extremely high and highly variable number of alerts when deployed across a large

geography.

The challenges of these approaches, both statistically and in practice, have been documented

by public health practitioners in papers like “What can you really do with 35,000 alerts a week

anyway” [27, 50] , and tutorials/research from the International Society For Disease Surveillance

through efforts from Michael Coletta, Wayne Loschen, and Howard Burkom. Yet, a statistically

sound solution for data-level monitoring is needed.

Acute Phase Approach

The above limitations of existing approaches were validated after implementing and testing his-

torical monitoring and surveillance algorithms on Delphi’s data.

3[24] overviews biosurveillance systems, including ESSENCE, RODS, INFERNO, BioSense, BioPortal, and
NYC Syndromic Surveillance Systems. Others, including [44, 48], WHO’s DHIS2, SAGES, and EARS, are also
notable

4ESSENCE is the premier tool for Syndromic Surveillance (public health monitoring) in the United States [38,
39], and is widely used, even in local public health organizations.

5These methods are used by Public Health England to monitor national public health data.



During the acute phase of the COVID-19 pandemic, Delphi’s data users wanted to surface

unexpected data corresponding to important events (“finding a needle in a haystack.”) Over two

years, I served as a developer, engineer, and data reviewer to adapt existing approaches for mon-

itoring with no sustained success. For example, a straightforward approach involves adding

outlier scores directly to the data [107] using the standard Gaussian outlier detection equation.

Yet, this approach not flexible enough to accommodate users’ varying preferences for identifying

underlying events and it was unclear what these scores meant in practice– an important require-

ment to stakeholders [19, 55]. It would have also doubled the size of our database. Another

approach was similar to the DHIS approach, where our implementation set alerts for z-scores

calculated using a rolling window that were above an adaptive threshold. This resulted in tens of

thousands of daily alerts that, when reviewed, tended to contain few events and take up consid-

erable human reviewer time. While we used the aggregate total number of alerts per provider as

a heuristic of processes gone awry (similar to [27]), these alerts were eventually turned off after

several months of parameter tuning, and other reviewers reverted to sporadic, manual inspection

of the data.

The fundamental failures of existing monitoring approaches for modern public health data

highlighted methodological gaps, as previously noted by practitioners and biostatisticians [19,

20]. These challenges include statistical issues, such as excessive false positives; computational

issues, such as processing time and storage constraints; and practical issues, such as the inability

of data reviewers to prioritize data for event detection, leading to delayed responses.

Approach Design

Based on the background and preliminaries, the three challenges this approach needed to address

are:

C1: Informative Detection Algorithm: The underlying algorithm for ranking is central to sep-

arating random variation from substantive changes, but finding approaches flexible enough to

meet the needs of different users is challenging. In addition, the “correct” event detection algo-

rithm is dependent on the current state of public health (e.g., at the start of an influenza wave)

[17]. Because updating the algorithms manually is costly, and parameter tuning requires long



data history that may not be available, the current best approaches are manual review or review

based on multiple generic outlier detection algorithms [18].

C2: Addressing Overwhelming Alerts: These occur when multiple possible temporal, spa-

tial, and value-range rules (explicitly or via a model) are applied to millions of data points,

resulting in tens of thousands of alerts. Reviewing these alerts is taxing for reviewers because

they are difficult to prioritize and focus on, which may undermine trust in the alerting algorithm

itself. Manually tuning thresholds is labor-intensive, and increasing the thresholds using mul-

tiple hypothesis corrections [20] or waiting for consecutive days of alerting [1] produces data

point outliers independent of relevant context, which rarely require human review. Moreover, the

subtle anomalies that indicate important events are often missed [18, 91].

C3: Identifying Anomalous Subsequences: Data reviewers need relevant context (situational

awareness) to identify consistent and actionable changes across and within multiple data streams.

Specifically for anomalous subsequence detection, existing approaches include trying to find

consensus for the anomaly across different data sources by combining p-values [19] or splitting

a sequence into distinct subsequences based on data drift. However, these methods and their

parameters (1) can be meaningless to domain-expert data reviewers, (2) do not necessarily work

on non-iid streaming data, (3) may rely on consistent relationships between different streams,

and (4) are susceptible to the data quality issues and unique statistical properties that characterize

public health data.

These challenges are the root of the growing disconnect between public health surveillance

systems and those they are meant to serve. For nearly two decades, practitioners have found that

these monitoring systems fail to meet the needs of the individuals they were built for , from [55]

to a recent survey from over 90 health practitioners [50]. Further, as many of these systems were

built from a statistician’s point of view, over time, they were not able to retrospectively account

for engineering challenges in data processing and computational complexity, or for the system

users’ needs, such as transparency through clearly declared thresholds, parameters, and a desire

to have an understanding of their data (situational awareness) [6, 36]. In fact many practitioners

[19, 126] share sentiments like:



The current disconnect among algorithm developers, implementers, and users

has ... foster[ed] distrust in statistical monitoring and in biosurveillance itself [103].

When looking to the future of data monitoring systems, building one that supports triaging

events that correspond to changes in public health dynamics and data quality changes while im-

plicitly accounting for statistical, engineering, and reviewer perspectives may be able to address

the widening gap between theory and practice for public health monitoring [126].

Outside of these methodological challenges, there is little consensus on evaluating monitoring

systems or methods [126]. Most public health monitoring system guidelines [6, 17, 19, 20, 113,

126] emphasize evaluation using realistic data and practical metrics. Yet, many evaluations,

especially related to respiratory illness, have started to rely on synthetic data. In fact, because

identifying outliers in large volumes of data requires substantial domain expert effort it is often

assisted by the very algorithms that are meant to be evaluated (circularity problem) [17, 126].

Practical evaluation metrics also differ based on the perspectives of developers, engineers, and

reviewers, who each have different needs from a public health data monitoring system. Finally,

some types of evaluation are not possible or can be difficult in big data settings, where humans

are not able to review and label millions of data streams [86] (e.g. generating recall bounds).

Accordingly, metrics and evaluation strategies meaningful for modern public health data surveil-

lance were designed with domain experts, which are synthesized into the following evaluation

criteria: [37, 103, 126]:

E1: Correctness How valuable is the approach and its evaluation [50, 126]?

E2: Feasibility Can it run over all recent production data for data curation organizations in a

timely manner [21, 50]?

The primary metric reviewers care about is efficiency, or the number of events detected

per minute. Given the large volume of data and the limited time/attention of human reviewers,

surfacing more events for reviewers to triage and publish than the status quo is a considerable
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Figure 1.3: The redesigned monitoring approach takes advantage of method, engineering, and
reviewer experts strengths. This design necessitates novel algorithms described in this thesis.

improvement in increasing the data utility. This metric is tied to precision and directly informs

the method’s design and evaluation criteria.

1.3 System and Algorithms Overview

This approach and underlying methods are inspired from the failures of the Acute Phase Ap-

proach, data characteristics from other completed projects in Sec. 5 and, weekly interactions

with domain experts in public health – especially observing, surveying, and interacting with

Delphi staff.

The redesigned system is a human-in-the-loop data monitoring workflow/system (Fig. 1.3),

that combines novel analytic methods, engineering design, visualization techniques, and insights

from human-computer interaction to help reviewers analyze unexpected data patterns (anoma-

lies) in public health-related data. Instead of an alerting system, where users are only shown

values that cross a p-value threshold (alerts), this approach ranks the most extreme of all re-

cently updated data by how much it warrants reviewer attention. Reviewers can then decide

how many data points they want to investigate, which prioritizes a reviewer’s time and does not

require them to review a certain number of alerts flagged via a (somewhat arbitrary) threshold.

Then, novel algorithms for each of the listed challenges [C1-3] were developed and evaluated

across relevant metrics as described next.



FlaSH: Flexible Outlier Detection Method

Full paper in IJCAI ’23 [65]

Most outlier detection methods (e.g. Gaussian outlier detection) have a recombinant structure

[14, 84] with the following steps: data processing, baseline creation, test-statistic/residual gen-

eration, threshold setting, and alert generation. The differences in the vast majority of these

methods can be attributed to changes in the baseline creation step (e.g. underlying forecasting

method) than any other step. Additionally, domain experts are tasked with setting thresholds,

which can be more unintuitive at scale than knowing the appropriate baseline to use. This dis-

crepancy provides a unique opportunity to rely on experts to inform baseline creation, and instead

develop new methods to scale expert intuition.

FlaSH is a customizable outlier detection method that incorporates reviewer data expectations

in the form of a model and difference metric for the baseline creation and test-statistic generation

step. Then, these distances and expectations are used to quantify ‘unexpected’ data.

The core method is about scaling expert intuition – which needed a new approach. For ex-

ample, model-based residual thresholding methods can be useful to generate alerts and rankings.

Standard approaches use parametric models of the residual distribution to return p-values sensi-

tive enough to meet thresholds like < 0.01. However, using parametrized models for residuals

across millions of data streams likely results in many streams where the model is inaccurate.

On the other hand, empirical residual distributions can be more robust across millions of data

streams. Still, the empirical residual models are limited by the data history available in nonsta-

tionary public health settings.

FlaSH overcomes this data history limitation to scale intuition, and makes a model-based

approach feasible in public health data streams, by pooling together historical empirical test

statistic distributions from streams that share the same indicator, geographic level (e.g., county,

state, nation), and geographic parent (e.g., all states in a country). Then, new test statistics (ϕ)

are ranked in comparison to their respective sibling-stream empirical test statistic distributions.

I conducted two rounds of evaluation using a custom evaluation interface In this setting, all

data points were evaluated from chosen data streams over time. I started with a binary clas-

sification evaluation (IRB 1; Appendix) but, the thresholds for outlier classification varied by

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462284/


reviewer, which inspired the ranked list (vs. alert classification) approach. These studies were

preregistered (Preregistration 1, IRB 2) and evaluated using a revised FlaSH approach. FlaSH

met targets for feasibility, outperformed 13+ outlier detection methods on standard binary and

ranking metrics, as well as metrics important to Delphi members, and, crucially – like how many

additional points were identified using the algorithm over what would have been obvious to a

human in the first place (Assistive Rank).

OutsHiNes: Addressing Overwhelming Top-Ranked Outliers

Full Paper at AAAI ’24

FlaSH was initially deployed on only a handful of indicators, so only a few points were tied

as top-ranked outliers. However, when we expanded FlaSH over all indicators and all recently

updated data (which includes recently updated historical data), reviewers were suddenly over-

whelmed by the thousands of tied, top-ranked outliers that resulted from the FlaSH approach. To

address this problem, I first formalized the problem as a new machine learning task, which we

called the multi-stream outlier ranking task. In this task, an algorithm takes as input values from

univariate outlier detection methods and outputs rankable scores over all recently updated data

per day. Because this is a new problem, there are no directly related existing works, and existing

approaches adapted to this setting performed poorly.

OutsHiNes tackles the multi-stream outlier ranking task and identifies the most extreme out-

liers given test statistics from a univariate outlier detection algorithm, like FlaSH. In this setting,

the top-ranked data points were evaluated for precision per day, over time. I conducted ablation,

correctness, and deployment evaluations [IRB 3 and Preregistration 2] and OutsHiNes led to a

9.2x speedup over the manual investigation in identifying data quality changes.

Enlighten: Surfacing Anomalous Subsequences

After OutsHiNes was deployed, reviewers, for the first time, could find the point data quality

and public health changes they most cared about from all of Delphi’s data. Yet, investigating

changes, especially if they occurred over multiple days, and understanding any higher-level in-

sights from the outliers still required a lot of effort from reviewers. To more directly support



process assurance for reviewers, (1) with the data monitoring time, we designed a novel interface

for data review using participatory design, and (2) I developed new complementary methods to

detect and aggregate anomalous sequences.

For (1), the interface and visualizations alone improved the efficiency of reviewers by 6x

over the 9.2x previously documented using the OutsHiNes algorithm, as detailed by a 3-month

longitudinal study and survey [IRB 4 and Preregistration 3]. Additionally, the novel Enlighten

method to identify anomalous subsequences was evaluated in an (a) offline survey, (b) in online

reviewer performance, and (c) against the outputs from OutsHiNes. The final results support

a 1.7x improvement in the number of higher-level events detected across multiple geographies,

indicators, or time, and an overall 288x increase in reviewer efficiency over the deployed manual

baseline as calculated using data points reviewed/minute. In another evaluation focused on pre-

cision and recall, scores were evaluated considering the a) top-k listed rows b) random sampling

conditioned on output Enlighten scores, and c) a uniform random sampling (given that the scores

are zero-inflated by design).

Summary and Impact: This thesis’ system and methods considerably improved data moni-

toring processes in theory and practice. The overarching system re-envisioned how engineers,

method developers, and public health data experts interact for data monitoring, and the resulting

novel methods are applicable to monitoring and surveillance processes across domains. As a

testament to its practicality, this system has been deployed for at least two years for the Delphi

Group at Carnegie Mellon University.

FlaSH

This section is adapted from [65], which appeared in IJCAI ’23.

Summmary: FlaSH (Flagging Streams in public Health) ranks the most recent real-time out-

liers from data streams corresponding to a public health indicator (appx. 3000 streams) that

15



are relevant to data quality reviewers. FlaSH accomplishes this through simple, scalable, and

intuitive models that explicitly capture the statistical properties of public health data, like nonsta-

tionarity, noise, and weekday effects. To address challenges in evaluating unsupervised outlier

detection methods in time series data, I also developed and conducted a classification and ranking

evaluation of FlaSH’s performance using input from several data reviewers. In these evaluations,

FlaSH matches or outperforms standard outlier detection methods, including recent deep learn-

ing baselines, using only a lightweight autoregressive (AR) model for forecasting.

Inputs:

1. Geospatial streams from one indicator at different granularities (county, state, national).

2. Univariate point prediction method (that may have multivariate inputs)

Outputs: Ranking outlier detection score, ϕ as an intermediate output

Evaluation: Binary and ranking expert feedback using a custom user interface on Delphi’s data

streams.

Open Source Code, Preregistration[67]

2.1 Background

Prior Work: Detecting data irregularities that correspond to events across many sources is

uniquely challenging for typical outlier detection methods, leading to a range of failure modes

observed in our experiments. First, deep learning outlier detection methods struggle with the

large number of time series, each with a short history and rapid distribution shifts [90] typical

in public health settings. Moreover, high computational costs mean these methods scale poorly

to real-time operation over thousands of distinct time series. Second, simpler statistical meth-

ods [15] are not attuned to the specific structure of public health data and struggle to accurately

identify events [120]. Third, neither class can leverage features of public health data streams that

could assist with diagnosing events. Some source-specific public health outlier detection meth-

ods [34] that operate on data streams before Delphi receives them do not have publicly available

methods, but the continued presence of important events in those streams that impacts down-

stream data stakeholders, especially related to data quality or errors from the curator, highlights

https://github.com/cmu-delphi/covidcast-indicators/tree/main/_delphi_utils_python/delphi_utils/flash_eval
https://osf.io/2v8f5
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Figure 2.1: In the FlaSH outlier ranking method, data stream inputs are processed through FlaSH
to generate informational outlier scores. FlaSH itself has three steps. The raw data (gray) is
processed [S1] (purple), and model m is used to predict future values [S2] (blue). Then, the
historical performance of model m is captured with the test statistic distribution (gold), and this
distribution is used to compare predicted and actual values [S3].

their limitations.

User Preferences Based on our exploratory analysis on data streams1 from different sources

at different geographic resolutions until December 2021, I identified that Delphi’s stakeholders

care about data that deviate strongly from the recent trends (e.g. case counts were rising last

week, but today’s count is low) or from the recent trends of close geographic regions. These

phenomena, which we call trendline outliers, are the most difficult for humans to detect and can

indicate critical irregularities in the context of recent data.

1The streams were from National, Texas, New York, LA County (CA), and Loving County (TX) sourced from
JHU CSSE, Department of Health and Human Services, Google, and USA Facts.



2.2 Formulation and Method

Problem Formulation We denote a single data stream as a time series Xt, t = s...T . Here, s

is the starting time for the stream analysis2, and T is the current time. When discussing multiple

geographic regions, we use Xr to denote the stream for a given quantity in geographic region r

(e.g. the stream of COVID cases in a given US county).

Suppose that Xs:T−1 ∼ m for some m ∈ M, where M is a set of models. We test the

hypothesis that the most recent point in the stream is drawn from the same model (H0 : XT ∼ m).

If the observed data has a low probability under this hypothesis, it means that XT was likely

not generated from the same model m as the historical data. This sudden shift from the data-

generating distribution indicates a potential irregularity that signifies a notable event (e.g. disease

dynamics change or data quality issue). We conduct the hypothesis test by first calculating a test

statistic measuring the discrepancy between observed values and values predicted by m. We

then obtain a p-value by comparing the real-time test statistic value to a historical distribution

of test statistics P . FlaSH instantiates this entire method via 3 steps: data processing, obtaining

predicted values, and comparing predicted and observed values (Fig. 2.1).

S1: Process Data. We want to fit a model m such that points with irregularities appear in the

most extreme tails of the m’s predictive distribution. However, training m on less subtle outliers

both distorts the model and inflates the tails of the distribution of prediction error so that more

subtle deviations no longer stand out. We process the data to identify and impute these outliers

before training. The key challenge in this step is to accommodate the statistical properties of

public health data (see paper for more details).

S2: Obtain Predicted Values. After processing, we fit a parametric model m from a model

classM that uses the history of the stream to predict future values. Choosing an appropriateM

is nontrivial. Heavily parameterized models are unsuitable because of the limited data history

available to tune the model and the rapid distribution shifts in the data. FlaSH usesM : Linear

Autoregressive (AR) models (lag=7) , where m is characterized by the linear weights, β̂, fit

2Often, there is a ramp-up period before streams report reliable measurements, so we do not start at t=0.



during training. This class of models is preferred in public health applications for its simplicity

and performance with limited historical data [81]. The remaining processed historical data (not

used to fit the model) is used to generate predictions X̂t.

S3: Compare Predicted and Observed Values. Finally, FlaSH compares the observed and

predicted values to test if XT could have been generated from m given the historical performance

of observed and predicted values. The critical decision in this step is the choice of the test statistic

and construction of its distribution under the null hypothesis, which are complicated by short

training histories and the resulting need to share information across geographic regions.

Test Statistic: To quantify the discrepancy between predicted and observed values, let N r

denote the total population of geographic region r. The day of week corrected observed values

(w(Xr
t ), corrected to be comparable to the predicted values) and the predicted values (X̂r

t =

β̂ ∗ w(Xr
t−1:t−7)) are used to calculate the test statistic ϕt:

ϕt = (P (w(Xr
t ) < D))

D ∼ Bin

(
n = N r, p =

X̂r
t

N r

)

Extreme values of the test statistic indicate that the observations were much bigger or smaller

than expected, given the predictions.

Comparison Distribution: Each stream model’s typical performance discrepancy is specified

by a distribution Pr, composed of test statistics kr
30:T−1, that compares observed values and the

predicted values for the out-of-sample historical data Xr
30:T−1. However, there is often too little

history to approximate the null distribution of an individual stream effectively. Accordingly,

we define the pooled test statistic distribution P , specified by
⋃

r∈R kr
30:T−1, where R is all the

counties in a state if r is a county, else R is all states and territories in a nation because these

streams share geographic context and tier (sibling streams). Note that pooling is enabled by

the design of our test statistic, which is chosen to ensure comparable distributions across regions

(e.g. via normalizing by the population).

The final output is a list of real-time points ranked by how extreme their test statistic is via
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Figure 2.2: Example of a Survey Task. Respondents click on the time series plot to mark points
as unevaluated, uninteresting, or warrants investigation. They also rank points that warrant in-
vestigation, and these rankings appear on the plot in yellow. Respondents could zoom, pan, and
see a 7-day average per graph.

the transformation |2p − 1|, where p is the p-value for the real-time test statistic in the pooled

historical test statistic distribution P . This transformation ensures that the most outlying points

(from either distribution tail) will top the ranked list.

2.3 Survey and Analysis

To understand FlaSH’s performance on empirical data, I designed an interactive web survey (Fig.

2.2) for Delphi’s engineers and researchers to evaluate data points with enough context to triage

and categorize data as events. First, respondents classified candidate data points from a public

health stream as ‘warrants human investigation’ or ‘uninteresting.’ Then, they ranked (with pos-

sible ties) the subset of these candidates they think would warrant additional human inspection.

They were also asked how likely they would have flagged each point for human review had it

not been identified by an algorithm (‘unlikely,’ ‘somewhat unlikely,’ ‘neither,’ ‘somewhat likely,’

or ‘likely’). This allowed us to measure the value added by the algorithm over what would have

been obvious to a human (Assistive Rank).

To form a candidate set of evaluation points, I took the union of the top outlying points output

https://github.com/Ananya-Joshi/IJCAI23_Supplemental


by both FlaSH and 8 previously proposed outlier detection methods 3 given all historical data so

that the candidate set is limited to points that are considered anomalous by some method. This

empirically meant the candidate set comprised of points that were at least interesting enough

to classify and rank. I evaluated the algorithm’s performances in a realistic setting of only 60

days of history for training (12/21/2021-1/31/2022). Our test set was the following 100 days

(2/1-5/12/2022).

We compare FlaSH off-the-shelf outlier detection algorithm baselines implemented in TODS,

which have in-built data processing [S1] and prediction comparison [S3] steps, just like FlaSH.

Additionally, for an ablation study, I compared results from the TODS AR model implementa-

tion, which has the same model classM as FlaSH, to a mixed implementation (Mixed), where

the processing step [S1] is the same as FlaSH, and the prediction comparison step [S3] is from

TODS.

FlaSH is computationally scalable per indicator. Each algorithm was trained on the full

3341 JHU CSSE COVID-19 case streams with 60 days of history on our deployment hardware.

Deep learning algorithms did not finish training within one day (DNF), which is when the data

would be updated. Training time can only increase for these deep learning implementations as

historical data increases, and while GPU acceleration may benefit deep learning models, such

specialty hardware may not be available in many public health settings.

FlaSH performs well on outlier detection metrics. Table 2.1 shows the 95% CI of vari-

ous traditional binary and ranking outlier detection metrics across all participants per algorithm.

In the binary analysis, points identified by the majority of respondents as to-investigate were

marked as outliers (ground truth). To calculate binary labels from each algorithm, I took the top

k points per algorithm, where k denotes the number of human-identified outliers for a stream,

ranked according to the algorithm’s outlier scores, as the predicted outliers for binary classifi-

cation tasks and compared these results to the ground truth labels. On average, FlaSH meets or

exceeds the performance of all baselines in the binary analysis. FlaSH performs slightly bet-

3DeepLog [35], Telemanom (Telem.) [54], Variational Autoencoder (VAE) [7], Local Outlier Factor (LOF) [16],
Lightweight Online Detector of Anomalies (LODA) [92], Isolation Forest (IF) [78], k-Nearest Neighbors (KNN)
[9], and Linear AR Model [47]



Model Class AR
Implementation TODS Mixed† FlaSH

Training (s) 10.1±0.3 169±0.8

B
in

ar
y Accuracy 0.78±0.02 0.71±0.04 0.8±0.03 ✓

Bal.Acc. 0.68±0.02 0.59±0.06 0.73±0.05✓
F1 0.54±0.05 0.43±0.09 0.64±0.08✓
ROCAUC 0.79±0.02 0.73±0.06 0.75±0.06

R
an

ki
ng Distance 0.66±0.39 1±0 0.62±0.39✓

RBO 0.84±0.1 0.89±0.08 0.84±0.1
Corr. 0.2±0.63 0.42±0.45 0.37±0.57

Assistive Rank* 8.00±6 3.66±1 1.33±0.7 ✓

Model Class DeepLog Telem. VAE LOF LODA IF KNN
Implementation TODS

Training (s) DNF DNF DNF 8±0.2 71±0.1 DNF 7±0.08 ✓

B
in

ar
y Accuracy 0.8±0.04✓ 0.6±0.04 0.76±0.04 0.69±0.01 0.68±0.04 0.79±0.04 0.74±0.03

Bal.Acc. 0.72±0.05 0.42±0.03 0.67±0.07 0.55±0.03 0.54±0.05 0.7±0.07 0.62±0.05
F1 0.63±0.07 0.19±0.07 0.53±0.12 0.33±0.08 0.34±0.09 0.56±0.11 0.42±0.09
ROCAUC 0.82±0.05✓ 0.42±0.07 0.68±0.06 0.62±0.04 0.44±0.07 0.66±0.08 0.65±0.07

R
an

ki
ng Distance 0.63±0.36 0.83±0.24 0.66±0.37 0.66±0.39 0.7±0.39 0.67±0.39 0.66±0.39

RBO 0.84±0.1 0.84±0.1 0.89±0.07 0.88±0.08 0.93±0.06✓0.91±0.11 0.88±0.08
Corr. 0.43±0.54✓ −0.13±0.710.18±0.64 0.21±0.67 0.24±0.69 0.17±0.68 0.22±0.66

Assistive Rank* 2.33±0.7 41.33±38 32.00±57 24.00±40 70.67±51 47.33±39 5.33±5

* Mean rank of points somewhat unlikely or unlikely to be caught by human
† Mixed model with FlaSH data processing [S1] and TODS comparison of predicted and observed values
[S3].

Table 2.1: Summary of algorithm comparison with 60 days of historical data. ✓marks the best algorithm
in each row.



ter than DeepLog, an unusable but performant deep learning method. Some model classes like

Telemanom and LODA performed poorly on the ROC-AUC score because while they identified

global outliers very clearly, they failed to capture trendline outliers. For the ranking analysis,

each algorithm’s ranking of the subset points available that a majority of participants marked as

warrants suspicion was compared to each respondent’s rankings using Hamming distance (lower

is better), Ranked-Biased Overlap (RBO) [115], and swap correlation (corr). Once again, FlaSH

performs comparably to DeepLog and is competitive with the other algorithms. Finally, FlaSH

shows strong improvements over the TODS AR implementation. By using data processed using

FlaSH’s first step (Mixed) [S1], the AR model can better build a null model of the data. Still, be-

cause the TODS outlier scoring uses the absolute difference between the predicted and observed

values to rank points, the mixed approach performs poorly on streams with small case counts

[S3], as reflected in the results.

FlaSH can complement human judgment. FlaSH ranks useful points that were unlikely to

have been inspected without computational assistance (via an algorithm identifying the point),

as shown in the Assistive Rank row of Table 2.1. This metric is computed from the set of points

that (a) the majority of humans rated as warranting investigation after a full examination, and

(b) at least 40% of such respondents said that they were “unlikely” or “somewhat unlikely” to

have identified the point without algorithmic assistance. We reported the mean rank assigned

to such points, where a smaller rank indicates that the algorithm would prioritize those points

more for human inspection. FlaSH consistently ranks these points near the top of its list (more

so than other methods), indicating that FlaSH can usefully direct human attention to points that

would have been missed otherwise. This is a result of FlaSH’s emphasis on discovering trendline

outliers, which our prototyping showed are difficult for humans to recognize in public health data

streams.

Conclusion: FlaSH can scale to the data streams per indicator required, perform well on tradi-

tional outlier detection metrics, especially compared to the best-performing deep learning mod-

els, and crucially, prioritize points for human review that would not have been discovered other-

wise. Based on FlaSH’s empirical performance and design, it was deployed as part of Delphi’s



daily workflow in February 2023. It ran on selected streams, and a data reviewer inspected the

ranked, outlying points. As reviewers prioritized different events, I modified the point prediction

method to FlaSH to detect those respective outliers as seen next in the OutsHiNes work, where

the predictions came from an Exponentially-Weighted Moving Average model.

The next challenge was to generalize this approach to the 100+ indicators with real-time updates

to historical data that Delphi receives per day via OutsHiNes.



OutsHiNes

This section is adapted from [68], which appeared in AAAI ’24.

Summary: Outlier detection methods typically return < 0.01 of the data. When they are are

applied to hundreds of indicators (data streams) with hundreds of recently revised points across

thousands of geographies, they output too many maximum-priority outliers to review (e.g. tens

of thousands ranked as number), in addition to mathematically less meaningful outputs, like an

overall ranking based on a naive combination of smaller ranked lists (with different contexts and

granularity dependent on the amount of historical data available). This task is formalized as

multi-stream outlier ranking, where algorithms rank the outputs of univariate outlier detection

methods applied to each of a large number of data streams. Our approach for this task (Out-

sHiNes) uses a combination of hierarchical networks and extreme value analysis to rank outliers

across multiple streams. In expert evaluations, the best-performing approach (across all metrics

considered) used OutsHiNes, and data reviewers report identifying noteworthy data points 9.1x

faster while using OutsHiNes than baselines.

Inputs: Test statistics for all recently acquired data from univariate outlier detection methods.

Outputs: Ranked list of Outlier Scores

Evaluations: Interactive human binary and ranking evaluation on Delphi’s data streams and de-

ployed performance.

Open Source Code, Preregistration [66]

3.1 Background

Univariate outlier detection methods, like the previously described FlaSH, identify outlier data

points in individual streams as needed, [15, 53, 94], can operate over data streams with different

25

https://anonymous.4open.science/r/OutsHiNes_Anon_Documentation-0DE8
https://osf.io/puc25
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Figure 3.1: OutsHiNes models streams as a hierarchy, applies a univariate method across all
streams to calculate ϕs, creates Pi,t via block maxima per indicator i and day t across sibling
streams, and finally, outputs the quantile of new ϕt to Pi,t to rank.

properties (e.g. scale1, noise, and outlier patterns) [28], and are fully parallelizable over large

sets of streams. Yet, as they are currently used, these methods return too many alerts (14k-20k

from 3-4m points for FlaSH in July 2023).

Motivated by this setting, we introduce a new task called multi-stream outlier ranking,

where the goal is to rank the overall highest-priority outliers across all data streams, thus pri-

oritizing expert time. Algorithms for this task take values produced by any univariate outlier

detection method applied independently to each of a large number of data streams as input and

must rank them in a way that leverages the historical behavior of the underlying univariate outlier

detection method on each stream.

As this is a new task, prior work has not explicitly considered this task. However, existing

algorithms can be adapted as baselines because they prioritize outliers within a single stream

or a small set of similar streams. Generally, these ranking algorithms are already baked into

outlier detection methods and score new data points by comparing them to an empirical reference

distribution, P , formed from historical data. As the size ofP increases, so too does the resolution

of quantiles possible that determine empirical scores used for outlier ranking. The most common

approach, which we call threshold ranking, identifies a dynamic outlier threshold per stream

and returns a binary classification based on values that exceed the threshold [53, 75]. The other

approach, which we call sibling ranking, from FlaSH, considers data from multiple, similar

streams that share a parent. Both rankings return too many alerts, among other issues, because

(1) their P is generated from only one or only a few streams, (2) they use the whole stream’s

1E.g., the raw COVID case count in a rural county (0-10) will be much differently scaled than that in a city
(0-1000)
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Figure 3.2: The geospatial hierarchy for public health streams covers 4270 regions. HRRs may
serve multiple states like HRR 112 and 225 serve both D.E. and M.D. residents.

history instead of values that share temporal context, and (3) they have only a small and varying

number of values in P because data is limited per stream and some streams have a number of

missing days.

3.2 Notation and Method

In this section, we use the following notations for clarity. Each day, T , a curator receives data

di,r(t), where i is an indicator in the set of curated indicators I, r is a region in R, where R

contains all the regions in Fig. 3.2 from different geospatial tiers (e.g. county, state or national),

and t is a historical day 0 ≤ t ≤ T . This geospatial-temporal data forms data streams, where each

stream, identified by i, r, consists of di,r(t)∀ t ∈ [0, T ]. In public health data, the number of data

streams is large (|I| × |R|) and far exceeds the history (T ) available per stream. Higher-tiered

regions (e.g., states) may include data from more people than expected by combining information

from county-level sub-regions due to data privacy reasons, so these streams must be analyzed

separately. Regions in R form a geospatial hierarchy (see Fig. 3.2). Two context-specific

tiers that capture rich geospatial and epidemiological relationships are hospital referral regions

(HRR), which are regions that share a hospital system [31], and HHS groups, which contain

nearby states [49]. Experts use these hierarchical relationships (e.g., parent, sibling (which share

a parent), and child streams) when ranking outliers by how different they are from similar points



in sibling streams.

Algorithm 1 OutsHiNes Ranking
Using Block Maxima to make Pi,t for indicator i and day t
Input:ϕ(di,r(t))∀ r ∈ R
Output:y(di,r(t))∀ r ∈ R

1: l = regime length
2: forRsib ∈ R: #Stream Aggregation Dim.
3: Pi,Rsib,t = {}
4: for h ∈ [t− l/2, t) ∪ (t, t+ l/2]: #Temporal Dim.
5: #Block Maxima
6: Pi,Rsib,t = Pi,Rsib,t ∪max(ϕ(di,r(h)|r ∈ Rsib))
7: Pi,t = ∪Rsib∈RPi,Rsib,t

8: y(di,r(t))← q(ϕ(di,r(t)), Pi,t) ∗ log(|Pi,t|)
log(max |Pi,t|) ∀ r ∈ R

Method: First, OutsHiNes (shown in Fig. 3.1) models the hierarchical relationships in data

streams per indicator i. The resulting hierarchical network implicitly captures contextual rela-

tionships across all data streams. Then, OutsHiNes inputs the test statistics output from any uni-

variate outlier detection method applied to recently updated values in these hierarchical streams

(ϕ(d)∀ d ∈ {di,r(t)∀ r ∈ R, t ∈ [0, T ]}). These test statistics (ϕ) measure the degree of agree-

ment between predicted and observed values, and extreme ϕ indicate a potential outlier. The uni-

variate outlier detection method must ensure that, per stream, the ranking of each ϕ is expected.

Yet, because ϕ is computed per stream, and some streams ill-suited to the chosen univariate out-

lier detection method may consistently return extreme ϕ, ϕ alone does not provide an informative

ranking across many data streams and must be contextualized. Finally, OutsHiNes outputs the

real-valued quantile of test statistics from all regions in the hierarchy at time t from an empirical

reference distribution generated per day, per indicator Pi,t.

OutsHiNes creates Pi,t by using hierarchical relationships and extreme value analysis on data

from time close to t. We adapt the block maxima approach from extreme value analysis, which

traditionally splits a data stream into equally-sized non-overlapping data blocks (e.g. one block

per month) and calculates the maximum value in each block to form P [42]. Highly-ranked

outliers are points d for which ϕ(d), the test statistic, is large even with respect to the reference

distribution P . The intuition is that if ϕ is miscalibrated for a particular data stream and regularly



returns ϕ with large values, P will contain many such examples, and a new data point must have

even more extreme ϕ to stand out. Yet, traditional block maxima does not apply to streams with

limited, nonstationary, non-i.i.d data [98] like public health streams.

Instead, our approach changes the block sizes, to address both limited data history and non-

stationarity in streams of ϕ. Each block has a temporal dimension (day, week, month, etc.) and

a stream aggregation dimension (typically one stream). Aggregating homogenous, or similar,

streams per block is a known way to calculate block maxima over more data, but identifying

an appropriate homogeneity test is difficult [77]. Instead, we designate homogenous streams as

those that share a parent r ∈ Rsib. Aggregating streams across Rsib creates blocks of similar

regions. Then, to address nonstationarity, we limit the range of block maxima calculations to

data that is temporally similar to the time being evaluated (a regime of length l) so that Pi,t is

generated from days that are the most similar to the time considered. The block maxima calcu-

lated over these blocks define Pi,Rsib,t, which contains the maximum ϕ per indicator, per Rsib

per t in the regime. To make an empirical reference distribution with many observations that

capture extreme ϕ from all Rsib, these Pi,Rsib,t for Rsib ∈ R can be pooled together to create

Pi,t, which represents the distribution of recent extreme ϕ equally weighted from each set of

geospatial regions, as shown in Alg. 1, lines 5 & 6.

If OutsHiNes is applied separately across different indicators, as it is for Delphi’s data, scores

from Pi,t with more observations should be weighted higher because these scores are more re-

fined. Thus, OutsHiNes scales each quantile by |Pi,t| divided by the log of the maximum possible

observations, (e.g. log(|Rsib ∈ R|∗regime)) to return a score (y) in [0, 1], as shown in Alg. 1,

line 7.

OutsHiNes is preferable to other ranking algorithms because it ensures that Pi,t does not

over-represent any region or time, it compares every ϕ(di,r(t))∀ r ∈ R to the same Pi,t, unlike

sibling or threshold ranking, and finally it has more granular output scores because it has more

observations that characterize P than alternatives.



Task Ranking Method
Thresh. Opt. Thresh.

Timing/Indicator (s) Generate ϕ

U
O

D

Delphi-Deployed 57.9 ± 35.17 * 6.71 ± 2.59 * 6.6 ± 2.51
FlaSH 458.81 ± 146.21 * 5.33 ± 2.32 * 5.2 ± 2.12
AR 36.13 ± 19.85 5.61 ± 3.92 4.32 ± 3.02
Isolation Forest 420.59 ± 270.15 65.04 ± 43.16 61.84 ± 41.92
DeepLog 6.52k ± 4.398k 53.2 ± 36.13 52.79 ± 35.95
Telemanom 6.16k ± 4.449k 64.65 ± 47.08 68.26 ± 52.38

# Ties/Indicators

U
O

D

Delphi-Deployed - *15.81k ± 1.97k * 6.05k ± 2.54k
FlaSH - * 22.02k ± 1.97k * 8.08k± 2.13k
AR - 42.11k ± 18.84k 7.02k ± 3.714k
Isolation Forest - 89.87k ± 67.23k 39.80k ± 21.93k
DeepLog - 32.29k ± 26.07k 14.24k ± 3.44k
Telemanom - 78.78k ± 39.10k 53.31k ± 32.42k

Task Ranking Method
Sibling OutsHiNes

Timing/Indicator (s)

U
O

D

Delphi-Deployed 319.67 ± 172.55 50.58 ± 46.40
FlaSH 326.54 ± 160.64 45.85 ± 46.84
AR 270.61 ± 156.14 58.97 ± 47.10
Isolation Forest 190.58 ± 104.08 39.06 ± 29.10
DeepLog 188.78 ± 102.44 38.97 ± 28.97
Telemanom 293.36 ± 159.5 57.75 ± 43.44

# Ties/Indicators

U
O

D

Delphi-Deployed 585.33 ± 549.13 6.67 ± 0.65
FlaSH 159.33 ± 23.37 7.67 ± 2.85
AR 127.67 ± 18.29 11.67 ± 10.51
Isolation Forest 3.87k ± 2.23k 20.67 ± 20.88
DeepLog 260.33 ± 63.78 18.0 ± 2.99
Telemanom 215.0 ± 89.44 14.0 ± 2.26

Table 3.1: Baseline Comparisons with the blue highlighted deployed combination.



3.3 Evaluation and Results

We calculate standard outlier detection metrics comparing the expert-labeled data to outputs of

different univariate x ranking methods we collected from a sample of 6383 streams. All streams

are from 1. Outpatient doctor visits for COVID-related symptoms, 2. % COVID-positive antigen

tests, and 3. The univariate methods (UOD) were 1. Delphi-Deployed (Described in paper):

an exponentially weighted moving average forecasting model (EWMA) we tailored for Delphi

using the FlaSH process, 2. the original FlaSH method, 3. Telemanom, 4. DeepLog, 5. Isolation

Forest (IF) and Linear Autoregressive Models (AR), with 2-6 using the TODS implementation

[75].Estimated % of new COVID hospital admissions based on claims data. The four comparison

ranking methods are: Threshold ranking [75], Optimized Threshold ranking2, Sibling ranking

[65], and OutsHiNes ranking.

Approach Feasibility As shown in Table 3.13, all tested combinations are theoretically feasible

as they executed in under a day. Of the ranking methods, OutsHiNes is more than 4.5x faster

than sibling ranking and generally faster than TODS threshold ranking. Because OutsHiNes

computes Pi,t across a l-day window (parallel) of ϕ instead of all historical ϕ in a stream (serial),

there may be more pronounced performance gains as T increases. OutsHiNes is also the only

ranking method that produced a number of maximum tied points that reviewers could investigate

daily.

Expert Evaluation In our offline expert evaluation, experts interactively inspected, classified,

and ranked a subset of points in 8 streams that were tied using Sibling Ranking (14k+) but dif-

ferentiated when using OutsHiNes. These selected streams allow us to test if OutsHiNes ranking

matches that from experts on points that would otherwise have been tied according to sibling

ranking, the previously best method. We display mean metrics per stream per person with a 95

% CI error bar for each combination of {outlier detection x ranking method} in Fig. 3.3. Binary

2The TODS threshold=0.9. The optimized threshold ranking is set to 0.99 to match the frequency outliers are
expected [121]

3Because Delphi-Deployed and FlaSH are not in TODS, we implemented a comparison ranking method (indi-
cated by *).



Figure 3.3: The red box highlights the best-performing combination of outlier detection x ranking
method for standard binary and ranking outlier detection metrics. Correlations were N/A when
the method returned all 0’s or 1’s.



metrics (Accuracy, F1, and ROCAUC) were calculated using the top-k points as the positive

class, where k is the number of streams with a ranked outlier per person, and ranking metrics

(Swap Correlation (higher is better) and Hamming Distance (lower is better)) were calculated

using the respondent’s absolute ranking. Our results show that OutsHiNes scores best match the

expert ranking of all combinations tested, as per these standard metrics.

Deployed Performance Delphi’s reviewers have used OutsHiNes in their daily outlier review

process since April 2023. We report experts’ performance metrics from using OutsHiNes from

July 10th to August 5th. During this time, the daily data volume was 3.5 million ± 280k points,

which OutsHiNes took 123.44± 189.16 minutes to process and produced 21± 5.5 ties/day (far

fewer than sibling ranking on the same data: 14k ± 1.7k). OutsHiNes increased the rate of

expert irregularity identification over the baseline of manual inspection, as shown in Fig. 3.4 by

9.13± 2.26x.

Comparing OutsHiNes to other ranking methods in deployment was not straightforward be-

cause experts felt that manual review was more fruitful than only analyzing a random sample of

thousands of outliers, like those produced by sibling ranking. Still, for experimental complete-

ness, for one week, experts split their time reviewing the top 10 data points from OutsHiNes and

10 random maximum-tied points from sibling ranking. In this direct comparison, experts found

4.02x as many outliers using the OutsHiNes points and at 3.96± 1.27x the rate.

Conclusion OutsHiNes provided the first-ever insight into outlier data points on a large scale

for Delphi. Based on self-reports, experts valued analyzing alerts prioritized by using OutsHiNes

over exploring a random subset of maximally tied outliers. Experts also felt that the feedback

cycle with the research team was crucial in updating their FlaSH-input predictive model needs

from an autoregressive model to the EWMA model.

However, it takes many individual point outliers to diagnose data quality issues, and often, multi-

ple data points together are more anomalous than individual data points. To assist data evaluators

with data diagnosis, the Enlighten approach combines visualization design and method general-

ization to improve monitoring outcomes.



Figure 3.4: Experts can identify outliers of interest more quickly with OutsHiNes output than
their alternative baseline at scale – manual review.



Enlighten

Summary: With OutHiNes, data reviewers needed to go through each ranked outlier using a

basic review interface to triage the category and severity of issue (see Fig. 4.1). However, re-

viewers needed to go through hundreds of rows that often contain subsequent or similar types

of outliers to gain situational awareness 1. To enhance situational awareness, I (a) designed an

overall incremental, participatory design approach to systematically improve the design interface

with design choices made as part of a team of methodologists, engineers, and data reviewers, and

(b) developed a method generalization to identify anomalous subsequences. Together, these ap-

proaches improve the efficiency and number of events detected.

Inputs: Test statistics (ϕ) for all recently acquired data from univariate outlier detection methods

(e.g., from first steps of FlaSH).

Outputs: Ranked list of Anomalous Segment Scores in a Dashboard and System.

Evaluations: Interactive human evaluation on Delphi’s data streams, deployed performance, and

statistical comparison to outliers detected.

Preregistration[64]

Images in this section render best on a computer (multiple layers) and may not print properly.

Please contact the author if you run into any issues.

Motivation: Providing data reviewers with situational awareness and relevant context during

data review can support efficient and effective data monitoring. However, defining and provid-

ing relevant situational awareness is difficult. A good standard is based on how epidemiologists

search for situational awareness in practice. A 2005 study had epidemiologists review 60 anoma-

lous subsequences in public health data to find outbreaks (they did not find any). As part of their

1Process-related issues impact multiple streams, from a handful to thousands

35

https://osf.io/rdhy5
https://prod-knowledge-repository.s3-us-gov-west-1.amazonaws.com/abstracts/Abstract_2011_12_finding_time_of_arrival_clusters_of_Exposure_related_visits_to_emergency_departments_in_contiguous_hospital_groups.pdf


investigation, they needed to ask questions like, ‘For how many days has the anomaly lasted?’”

[106] and ‘Are similar patterns found in adjacent regions?’. These are the types of higher-order

questions we want data reviewers to understand because they correspond with situational aware-

ness.

Towards this goal, we have two mechanisms to support situational awareness among review-

ers triaging unexpected data:

(a) User Interface and Visualizations for Triaging : Many biosurveillance systems rely on

highly customizable interfaces so that epidemiologists can quickly convey concerning as-

pects of the data [1]. I had implemented a Slack interface (Sec. A), where reviewers would

be directed to an external site to view data streams, a dynamic HTML webpage that only

showed the top 25 streams per day (OutsHiNes), and the final deployed version – a highly

interactive, record-keeping web dashboard (implemented by Nolan Gormley and Richa

Gadgil with design choices including Tina Townes and Catalina Vajiac). As part of this

dashboard, we designed and evaluated the benefit of different visualization approaches on

reviewer rates for completing data assurance tasks (via IRB 4).

(b) Methods for anomalous sequence detection within a stream: Many data quality issues

span multiple days. Current systems address this challenge by providing an alert only if

a p-value goes below the user-set threshold multiple days in a row [1]. This approach has

two issues. First, sequential points alone may not be noteworthy, but their sequence can

be concerning (anomalous sequences). Second, reviewers want to find these anomalous

sequences as contextualized by other similar streams rather than trending subsequences

within a stream (which is less indicative of a data quality issue or widespread outbreak).

Other approaches, such as those which split the stream into different independent subse-

quences or that evaluate data subsequences of different lengths are limited in theory and

practice, as explored in Sec 4.2.



(a) Dashboard

(b) Fault Record Keeper

Figure 4.1: Dashboard (a) that reviewers iterate through daily for triaging unexpected data as
events for downstream users and the Fault Record Keeper (b), which stores the notes per data
row a reviewer has inspected.



4.1 User Interface Design Process and Evaluation

The key aspect of the UI is to support data reviewer triage. More generally, triage is a form of

anomaly analysis that emphasizes a standard, structured classification. There are many cross-

domain anomaly analysis systems that support data prioritization and contextualization from

large volumes of data (e.g., [33, 82]). The core design features of these mechanisms prioritize

data discovery algorithms and visualizations. Notably, they tend to treat different dimensions

of data similarly. This dimension-agnostic segmentation is not appropriate for public health

data, where the temporal and geospatial dimensions are the most important. There are other

geospatial-temporal visualizations [22, 71]. In most of these systems, the geospatial segment of

the data is the prominent dimension (like a map) with interactive panels for temporal data as-

pects. These methods have geospatial bias stemming from how smaller populations and regions

are represented on maps, which can bias against regions with smaller geographical area or pop-

ulations. Furthermore, these methods focus on the temporal dimension of the data more than the

geospatial dimension, which is problematic for data reviewers. Regardless of the incompatibili-

ties, the individual elements in these approaches, like maps, line plots, and filters [46] informed

our initial approaches, which were limited in their speed and responsiveness.

To start, I documented and classified how data reviewers currently analyze data with and

without a ranking. Reviewers typically performed four main actions:

• Identify unexpected (outlier) data points. These outliers might correspond to either a re-

porting error or to the early stages of an outbreak.

• Contextualize outlier points. This broader analysis ensures that significant events are not

overlooked, even if they appear minor in isolation.

• Structure and record findings. These should be in a format that public health stakeholders

can readily use.

• Decide whether to continue reviewing. This decision balances the reviewing urgency with



the reviewer’s attention capacity and capability to perform high-quality event detection.

Identification was often based on recent news and exploring different data segments. Once

an anomalous data point was identified, reviewers first prioritized the temporal dimensions of the

data and analyzed individual data streams before expanding to other data dimensions. Then, they

recorded their findings in paragraphs and, based on the severity of recent classified (triaged) data

points, decided whether to keep reviewing. For reviewers to complete these actions, the system’s

UI and visualization needed to address the following considerations:

1. Analysis Support. Visualizations must provide context within a stream (including revi-

sions) and about the event detection method, meeting stakeholders’ need for transparency.

Here, it is critical to balance avoiding oversimplification and cognitive overload to prevent

misinterpretation. Some design questions we asked for this consideration are:

• How should the system segment this data’s dimensions for analysis to balance po-

tential user overwhelm with providing the needed data for the reviewer to make an

informed decision?

• What combinations of visualization and interactivity techniques [46] can we use so

that the reviewer is more aware of event detection choices (e.g., are they aware of

changes in events due to data revisions)?

2. Engagement: Engagement is critical to sustained system use but can be affected by a few

challenges. One such challenge we identified was algorithmic fatigue, where reviewers

become less engaged with the system, for example, due to the volume of alerts. Another

challenge, algorithmic over-reliance, happens when reviewers trust the system’s results

without conducting their own contextual analysis. One opportunity to address these chal-

lenges and increase engagement is to provide real-time situational awareness [128], which

can help reviewers decide whether to spend longer reviewing data (e.g., there is an out-

break) or only check a few data points. Some design questions we asked for this consider-

ation are:

• How can we provide situational awareness to data reviewers?

• How can we prioritize/filter the data we show to reviews so as not to cause algorithmic



A. Baseline 1: Spatial Segmentation B. Baseline 2: Temporal Segmentation

Figure 4.2: Previous iterations of the user interface for the reviewing system match general
classes of visualization tools for geospatial data.

A. This system focused on geospatial data segmentation and was subject to the drill-down
fallacy across dimensional layers.

B. This system focused on temporal data segmentation and displayed data streams with
some context for similar regions (e.g., sibling streams come from regions that share a spatial
parent, like states in a nation) and a map to orient the reviewer.

fatigue?

3. Structured Event Detection Information Reviewers need tools to correct or validate

events they have flagged historically, even though data is processed in real time. Repre-

senting past events in the context in which they were viewed presents an ongoing challenge

due to the revised nature of the data.

• How can we standardize the unstructured triaging process?

• How can we save past events in the context they were reviewed for quality assurance

checks?

Baseline Approaches

Baseline 1: Exploratory Interface. Identifying events in exploratory systems via visual inspec-

tion (Fig. 4.2A)) requires drilling down several clicks, and reviewers have been shown to miss

subtle but important public health data events when they rely on this type of visual inspection



[55, 65, 104]. Another challenge is that if there are several events with different strengths across

different geographic tiers, any aggregation strategy could result in a drill-down fallacy [76],

where reviewers could still end up needing to explore a combinatorial number of dimensions to

locate the data event. For 120 weeks, reviewers used this exploratory approach for triaging.

As expected, reviewers missed important events, especially those in smaller regions and out-

side of the indicators that are displayed first on the interface. Then, between a) randomly choos-

ing data filters, b) using multiple clicks to drill down to the raw data level, c) finding the appropri-

ate regional tier responsible for the event by trial and error, and d) scrolling to compare indicator

behavior across signals, whether relevant or not, reviewers became fatigued. This emphasized

the importance of designing an engaging data review system.

Baseline 2: Temporal Segementation Ablation. Based on reviewer’s emphasis on the temporal

dimension as the most important dimension to segment on, we focus on interfaces that emphasize

the time series aspect of geospatial data, like [33, 82]. In this approach, we displayed interactive

line plots in a static HTML file for the top-k data streams (Fig. 4.2B). Here, we ensured that each

data row had some relevant context for reviewers to complete their tasks. This is the starting

point for this study.

Triaging System Design

Our design needed to address the questions data reviewers face, namely around decisions on how

to segment data, acquire situational awareness, and understand data revisions. Specifically for

the UI, we also needed to reconcile the challenge that data reviewers are under pressure and have

little time for onboarding or learning about changing systems [23, 58] with the need to summarize

and present large volumes of modern data. Our sequential modification strategy described here

attempts to do both and also provide reviewers time to adjust to incremental changes and provide

feedback.

Basic Interface

The basic interface (Fig. 4.5) segments the data so the temporal dimension is emphasized in

analysis. It features a straightforward list of data points ranked only by their event score and



Data Stream
Parent 95% CI

Natl Stream
Data Point

Displays save the context 
reviewers had at the time they 

characterized the data before it 
is updated

Update history shows additional notes and if the 
reviewer characterization was updated.

Data Stream
Parent 95% CI
National Stream
Data Point

Reviewers can add meta-events as a new record if 
they notice higher-level patterns in the data that 

span multiple events

Figure 4.3: The record-keeping interface provides Delphi with enough data to understand why
the reviewer triaged a specific event and allows reviewers to add updates and notes. They can
also add a record for meta-events they notice across events.

presented in a time-series format. Reviewers can easily expand each data row, which includes

a custom map to orient the reviewer and other stream properties. Each row also contains an

interactive line plot with data streams. Our two key design elements here are: 1) any 0 values are

represented as clearly visible open circles because they may represent missing or censored data,

and 2) contextualization across tiers is controlled by legend items the reviewer can toggle to see

data streams in the same tier that share the same regional parent (i.e., a sibling stream), as well

as parent streams and child streams with a 95 % CI.

After reviewers analyze events, they triage the data by creating a record corresponding to

the type of event (e.g., a data quality issue), its severity (low, medium, or high), and if the point

identified was the source of the event (yes/no). These events themselves may lead to hypotheses

across events that reviewers want to investigate, so structures to report, parse, and push meta-

events to stakeholders are needed. These meta-events are very informative as they provide a

broader context and help in understanding the overall data trends.

Once the reviewer submits their event characterization, the results are automatically saved

in Delphi’s event recording system (Fig. 4.3) for downstream processing. This system allows

stakeholders with access to correct or update identified events because it saves the context in



which a data point was reviewed2. This is especially important as this data is revised, and over

time, the values, and thus triage values, may change (see Fig. 4.7). Reviewers also use this

interface to record meta-events that combine multiple events from individual data points into

informative, higher-level phenomena.

Then to support this segmentation strategy, situational awareness, and analysis around data

revisions, we incorporate the following modifications sequentially, as shown in Fig. 4.4.

M1: Filtering Data Points After Event Detection

Given the choice to focus on the temporal dimension of the data as the primary interaction seg-

ment, we need to design how users will access other data segments. However, preliminary analy-

sis indicated that popular complex, multi-dimensional filtering strategies brought up worries that

more complex filtering hypotheses using data fusion that intend to highlight very specific events

would mute the more important, widespread events that appear with only a few filters. Another

challenge to more popular combination filters was the number of possible filtering combinations

in this setting, especially considering the desire for multiple filters (including exclusions) per

category of data provider, indicator, and geographic region. We use this step to validate if the

performance simple filtering strategy is appropriate for data review.

M2: Displays to Inform Data Point Investigations

Reviewers brought up that the simple news-feed format, which only provides temporal context,

fails to provide them the situational context they need to triage potential events. This context

is especially important because reviews are usually completed as the reviewer’s first assignment

each day, so they are missing information about potential indicator data failures or regions with

outbreaks and may need to revise their annotations if they lack context.

Our approach supports situational awareness via two displays of OutsHiNes scores seg-

mented and aggregated across geography and indicator. This is only possible because OutsHiNes

scores can be compared across these dimensions wheras raw values cannot due to spatial hetero-

2Delphi hosts both the Record Keeper and the reviewing interface hosts these Svelte interfaces, containerized
with Docker, and served using Apache.



geneity of public health data. Scores s(x) across different spatial tiers e ∈ E , are aggregated

across indicators i ∈ I , and time (T:T-7). For the map, the choropleth color value c for each

county (on a scale of 0 to 1) is calculated using:

∀r ∈ R, c(r) =

∑
e∈E

∑
i∈I log (s̄(xi,e(r),T−7:T )+1)(/log(w)

|I|

|E|

where e(r) is the region that subregion r belongs to at tier e. The log scores make the more

extreme events appear more clearly on the map. The indicator display scores are calculated using

∑
r ∈ R(s(xi,r)(T − 7 : T ))

|R|

.

In ways, this can be thought of as a fusion strategy once the previously incomparable raw

data values have been standardized through a process contextualized for public health data.

M3: Event Evolution

Finally, as data is revised over time, the historical OutsHiNes scores also change with the addi-

tional data availability and presence of new events. Capturing this evolution of OutsHiNes scores

across historical revisions communicates the uncertainty [23] of the OutsHiNes scores over time

to reviewers. Our approach for capturing the evolution OutsHiNes scores is inspired by the

design of industrial stagger charts [45]. It involves calculating the rolling mean and standard

deviation over time, across data revisions, via Welford’s online algorithms [116]:

x̄T =
x̄T−1 × (T − 1) + xT

T

T =
T−1 − (x̄T−1 − xT )× (x̄T − xT )

T

We include a 1D heat map under the interactive time series plot to give reviewers the context

of the event history and provide the average variance score across time. These help the reviewer

understand the volatility in OutsHiNes scores over time, as shown in Figure 4.5.



M1: Data-level Filtering

M2: Display Panels for 
situational awareness


Figure 4.4: The initial displays support situational awareness and help reviewers get a sense of
where data events may be found (M2). This can help them guide their review via the data level
filters (M1). M3 captures the impact of data evolution on OutsHiNes scores for each data row,
and is shown on 4.5. Each of these modifications is used in conjunction with the basic interface’s
visualizations and after the offline event ranking to reduce data misinterpretation.

Event Severity

Event Category

Characterization Panel in 
Basic Reviewer Interface

M3: Rolling Mean HeatmapM3: Rolling Variance Tag

Data Stream
Parent 95% CI
National Stream
Data Point

Figure 4.5: The basic review interface focuses on segmenting public health data by prioritizing
the temporal dimensions. For mechanism M3, we added a tag with the rolling variance and a 1D
heatmap of the rolling mean OutsHiNes scores so that reviewers have an intuition for how event
severity changes over data revisions and time.
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Figure 4.6: A. Reviewer engagement, displayed here with 95% CI bars, increased with each
added modification. Baselines had no comparable metrics. B. Reviewers also recorded signifi-
cantly more events on average, with some natural variation, while using the triaging system than
the prior baselines. C. Finally, more meta-events were identified after displays were added.

Evaluating Actionable Data Monitoring

Evaluating public health monitoring systems remains a major challenge in the biosurveillance

literature [103], and while there have been pushes towards standardized evaluation [56], longi-

tudinal studies and sequential UI modifications remain under-discussed, reflecting the limited

interdisciplinary approaches to data reviewing historically. Longitudinal studies are especially

important for this data streaming evaluation because the daily reviewing load and the number of

daily events vary. Still, this type of system evaluation, in general, is rare [4]. Given this gap,

we design a longitudinal, sequential evaluation with metrics corresponding to key performance

indicators for data reviewers:

Data Reviewer KPIs:

• Efficiency metrics: (how quickly) time per row, number of events recorded per session

• Efficacy metrics: (how well) number of events that were later revised, number of meta-

events recorded.

• Output metrics: filter use, % of times that the algorithm identified data point was not the

source of the event, and the distribution of the reviewer characterizations.

These were preregistered on OSF before the evaluation began.



Figure 4.7: For a meta-event in Lincoln County Maine, there were 40 recorded events across 1
month and multiple signals, with a 10-day high severity warning before the peak.

To contextualize these numbers, we also include excerpts from a reflection that the data

reviewers published in a blog. Each evaluation phase took the standard public health timeline

of 3-4 weeks [13], and, for consistency we compared these metrics to the standard baselines in

public health data monitoring as implemented at Delphi, as previously discussed:

(B1) Exploratory Interface: deployed for 120 weeks

(B2) Temporal Segmentation Ablation: deployed for 30 weeks.

Efficiency/Efficacy Metrics and Analysis

Event Identification Efficiency. Our efficiency metrics quantified a) how long reviewers inter-

acted with each data row and b) the number of recorded events per day. As Fig. 4.6A. shows,

reviewers generally spent more time per row after each modification, particularly our choice of

filters and adding display panels for situational awareness. This suggests that these modifications

allowed reviewers to analyze the data deeply:

”[the system] allow[s] me to devote more of my time and efforts to assessing [events]

of interest.”

Reviewers also recorded far more events on average than with the prior baselines (Fig. 4.6B.);

reviewers were 54x faster on average than while using the exploratory system in Baseline 1, and

6x faster than the Baseline 2 when recording events/minute. Finally, incorporating the charac-



terization panel directly into the basic reviewing interface dropped the average time reviewers

spent on the system from 19.21 ± 0.41 minutes to 9.12 ± 2.7 minutes, suggesting that over half

the time data reviewers previously spent on prior systems was recording their event characteri-

zations. These metrics are contextualized by the reviewer:

”[With the prior approaches], I was spending a good amount of time scrolling, man-

ually sorting, documenting, and searching for specific [event] reports I wanted to ex-

amine rather than focusing solely on identifying, marking, and analyzing [events].”

Event Identification Efficacy. Reviewers identify high quality events using the triaging system.

If reviewers make a mistake and wish to correct a recorded event, they can easily update the

record. In the past, this was frequently used as there are multiple informative external sources

of outbreaks that reviewers contextualize against. While historically, this led to edits (Baseline

2 ’s responses had at least 3 edits across a similar experimentation timeline), there were no edits

during the duration of this experiment. More importantly, reviewers identified meta-events when

they could investigate patterns in the events that suggested higher-level phenomena. For example,

a reviewer identified the following meta-event:

”Several counties in Puerto Rico are repeatedly experiencing sudden upward trend-

ing, [respiratory illness] spikes, this month.”

Given the data, reviewers likely identified these meta-events because they had high-level

information about regions and signals with events from the situational awareness panels, which

could give them more direction to investigate using filters, as shown in Fig. 4.6. No such meta-

events were recorded for Baseline 1 and only 2 were recorded for Baseline 2. Reviewers also

seem to have a positive experience with this UI and visualization, sharing:

”the updated [triaging system] now enables me to [make meta-events] for exciting

[events], trends and other issues of importance, and maintain these notes in an orga-

nized, searchable fashion within the platform.”

In a quality assurance check, these meta events were re-analyzed and corresponded with

notable events, as shown in Fig. 4.7.
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Figure 4.8: Recorded events per session (up to 49) are far greater than the 1-2 events reviewers
would detect per session using Baseline 1. After filters were added, fewer rows were marked as a
Non-event, suggesting that reviewers knew how to exclude data that was not interesting without
complex synthesis strategies.

Output Metrics and Analysis

The resulting triaged events, as shown in Fig. 4.8, were a mix of data quality and public health

issues. Before filters were added to support the segmentation decision, there were many more

points marked as a non-event. However, after reviewers became more familiar with filters, they

could exclude data that would generate high OutsHiNes scores but were not important or mean-

ingful, like indicators that providers have stopped maintaining. Reviewers used filters on average

2.75±0.43 times per day. Each filter can have up to 4 predicates (across signal, source, geo value,

geo region), but reviewers only use an average of 1 predicate and only 1 value per predicate, once

again supporting the desire for simple segmentation strategies. The most common filters only in-

clude specific geographic tiers and exclude particular providers.

Additionally, based on the variance of the number of events detected in Fig. 4.8, we note that

online interfaces like the basic review interface are helpful because the number of rows reviewers

will process (k) is unknown and unknowable. In Baseline 2, reviewers could only review the top

25 streams. This restriction prevented them from dynamically adapting to different reviewing

needs when there were more or fewer data events - with up to 49 events were processed in a day

in this experiment, and with filters over different single-predicate slices of data.

The insights from this evaluation target data reviewer KPIs across different dimensions: effi-

ciency, efficacy, and output metrics. They demonstrate that this design, aimed to address core

challenges with data review at scale, provide promising results.



Metrics Interpretations and Ground Truth:

Contextualizing the efficacy (or power) of triaged events was important to public health experts

and statisticians [19]. Specifically, they requested guidelines on how to understand positives and

negatives from triaged events in practice.

False Positives: From the reviewer’s perspective, false positives occur when a data reviewer mis-

classifies an event. This may happen if a reviewer is biased towards the event ranking algorithm

and doesn’t thoroughly analyze or triage the data. However, such occurrences are unlikely since

reviewers need to record events and, after a quality assurance check, there were no instances of

a single recorded event being updated. From an algorithmic perspective, false positives happen

when the event detection algorithm erroneously ranks non-event data highly or when the identi-

fied data point doesn’t correspond to the event. Before our filtering, some false positives in rows

were triaged as non-events by reviewers, but there have been only a few of these since then, as

seen in Fig. 4.8. Additionally, about 14% of events evaluated by reviewers were due to data

points near the one identified, but not exactly matching the identified data point. Thus, both the

event detection algorithm and reviewer-in-the-loop approach were needed to identify the event

correctly. This insight motivates the importance of incorporating the evolving relationship be-

tween reviewer expectations and event detection algorithm output as part of the approach.

False Negatives: From the reviewer’s perspective, false negatives may occur when reviewers

incorrectly classify data as Non-events, which is uncommon, or when unreviewed data contains

events, which is likely common given the numerous events that occur in large-scale data. Still,

reviewer capacity is limited, so not all data corresponding to events will be reviewed, and the

accuracy of the presented ranking depends on the underlying event detection algorithm. Further,

humans are known to anchor on ranking [26, 111], so a reviewer may stop the investigation on

a particular day if there are several uninteresting rows. However, the thought-intensive analysis

and triaging process [111] may anecdotally reduce this anchoring effect.



Thus, false positives, or events that were incorrectly triaged, are far less common than false

negatives, which should be interpreted as events that do not get triaged. Stakeholders receiving

the triaged events should note that while presented events are likely real events, there may be

missing events that were not triaged. While public health experts emphasize reducing false

negatives, ”for outbreak and event detection, practitioners prioritize timeliness and sensitivity

over positive predictive value [50]”, doing so in a way that accounts for the human limitations of

data reviewers is a core motivator of this work.

4.2 Anomalous Sequence Detection (Enlighten)

The objective for the final method, Enlighten, was to detect anomalous subsequences in streams.

This approach is informed by two recent insights from the time-series anomaly detection/classification

community. First, design-centered methodology supports practical generalizability [121]. While

traditional anomaly detection methods are often evaluated using standard benchmarks and met-

rics, optimizing for benchmark metrics often doesn’t lead to effective practical outcomes [52].

Instead, researchers advocate for methods grounded in realistic data assumptions. These meth-

ods are better suited for deployment and evaluation in real-world settings as they are robust to

evolving data settings. Second, my approach incorporates human interaction into the monitoring

process as the monitoring task is inherently human-centered, which aligns with the growing trend

in the literature that integrates human behavior modeling into method development for informed

decision-making [32, 114, 122].

Using the setup and intuition behind OutsHiNes, this method generalizes the approach from

outliers to anomalous subsequences as follows. Instead of ϕ(di,r(t)), where each test statistic

corresponds to a single data point, we calculate test statistics across different windows, or the

number of dats in a data subsequence.

Step 1: Forecasting and Test Statistics Over Windows For Enlighten, there need to be

methods that forecast and create resulting test statistics across windows. One simple example is

taking the prediction as the linear interpolation between the endpoints of a window and a simple



Figure 4.9: Generalization Approach Behind Enlighten For Ranking Streams with Anomalous
Sequences

difference between the predicted and observed values. Thus, the test statistics per stream per

window forms a 2D matrix, as seen in the first panel of Fig 4.9.

Step 2: Calculating Pi,w,t to contextualize ϕi,t,w(dt) The input for stream d0:T are in the

form:

{{ϕt,w(dt)∀ t ∈ range(0, T )∀w ∈ range(0, win)} : ∀window ∈ windows}

For ϕ with different w in ϕt,w(dt), they come with different associated variance. For exam-

ple, the w values of 0 and win are close to the known point over which the linear interpolation is

calculated, but values in the middle of the window are more likely to deviate from the observed

values given that they are multiple forecasted points away from the endpoints. Thus, each ele-

ment of ϕt,w(dt) is compared to the same w, using each Pi,w,t, calculated per window index using

the procedure detailed in OutsHiNes.

Step 3: Aggregating Resulting Scores Over Windows

After using Pi,w,t to evaluate ϕt,w(dt), per sequence dt:t+window will have scores yt:t+window,

as contextualized by Pi,w,tw ∈ window. At this point, these scores must be aggregated into a

single score. We use the mean as the straightforward interpretation is that the anomalousness of

the sequence is the average of (the anomalousness of each data point, conditioned on its position

in the sequence), represented by y.



Step 4: Creating a Stream Aggregation Policy

Ranking the subsequences of each data stream across multiple windows results in a combina-

torial explosion of ranked sequences. Loading these sequences into the UI described in 4.1 using

an API led to long delays, and reviewers would still spend time going over similar sequences in

the same data stream across different rows.

Instead, creating a policy that selects 1) specific streams and 2) their top-ranking anomalous

subsequences reduces pressure on the application mechanics and can improve the efficiency and

analysis capabilities of reviewers who are now seeing all their anomalous subsequences in one

place.

Results and Evaluation

We perform a number of evaluations to determine the utility of these steps and their processes.

As this is the final iteration of the data monitoring system, we provide complete runtime specifi-

cations.

Statistical Parameters and Performance

During the testing and deployment of Enlighten, we used the following parameters:

1. Forecasting Methods:

(a) Simple Forecaster

(xt+1 = avg(xt))

(b) Average of past 7 and future 7 days

xt+1 = average(xt−7,t, xt,t+7)

(c) Barycentric Interpolation of past 7 and future 7 days

xt+1 = interp(xt−7,t)



2. Test Statistics

(a)

|Expected−Observed|

(b)

|Expected−Observed| ∗ stream.std()

3. Stream Save Policy:

(a) Policy 1: Maximum value across a stream’s subsequences

(b) Policy 2: Average value across a stream’s subsequences,

In practice, to select streams, using either policy, we consider all stream with a policy score >

0.95, and then take the top 1000 streams (if there are that many). For situational awareness, we

also add in all states. Then, any subsequences with a score > 0.95 are displayed.

Auxiliary Testing on Baseline Forecasing Method

First, we tested if there was a statistical difference between the choices for forecasting method

and test-statistics. Each of the forecasting methods was evaluated for accuracy on data subset

from as a judge of their relative forecasting power, as shown in Fig 4.10.

While the first two forecasting methods are fairly similar, we expect method 2 to have lower

errors in general as it benefits from the future data point (not just the past). While expect method

3 to perform the best as it tries to fit a line of best fit through points in the window, given the

noisiness of the data, this method may not scale in public health data. We observed this problem

when testing the data. While RMSE may not be the best way to evaluate forecasting methods

for computational epidemiology [95], these results in Fig. 4.10 show that relative performance

clearly varies, especially as window sizes increase.

Then, the ranking outputs of each combination of forecasting method and test statistic (ϕ

generation process) were compared for similarities. Using the Kendall Tau metric for ranking,

we compared list similarities across the 6 combinations of forecasting methods and test statistics.

In the implemented Kendall Tau metric, all rows are weighted equally in importance, so rows that



Figure 4.10: The RMSE of different forecasting methods (detailed earlier) varies widely across
different windows.

are not matching regardless of their position are considered differently. We evaluate the scores

in Fig 4.11 across the whole list, outputs using policy 1, outputs using policy 2 (top row), and

different windows that reflect the results from Fig 4.10 (bottom row).

The results support the observations that the resulting ranked lists are different if the baseline

forescasting and difference metric that generate ϕ are different. In particular, there is generally

high similarity across prior forecast (1a) and simple interpolation methods (1b) , and a negative

Kendall-Tau score for complex interpolation (1c). Given this observation, a data scientist or

methodologist is well suited for identifying which combination of forecasting method and test

statistics is best suited for this application. They may, for example, consider other factors, like

the runtime 3 , shown in Table 4.1 over the span of 3 weeks of data.

Next, there was a check on if the top ranked anomalous sequences were different from their

constituent outlier detection scores. If not, we could just display all the point outliers instead,

or use approximations like multiplying the resulting test statistic scores as a heuristic (given that

the scores for consecutive data points are not independent) as follows:

3Runtime scales linearly with the number of windows considered. Historically, we evaluate windows [1, 2, 4, 7,
14], because these are typical timeliness during which there are changes to public health data.
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Figure 4.11: Mean Kendall-Tau comparisons across 3 weeks and different configurations mea-
sure how different the ranked lists are across forecasting methods, difference methods, policies,
and windows.

Santa Clara County Double Anomaly Example
Google Symptoms S04: Shortness of breath, Wheeze, Croup, Pneumonia...

Figure 4.12: Multiple anomalous subsequences across different windows are present in the data.
These are frequent enough that they should be detected and handled separately and should not
be handled by segmentation-based anomalous subsequence detection methods.



Timing Univariate ϕ Methods (s)
Forecasting

Method
Difference Method

2(a) 2(b)
1(a) 140.48 ± 1.85 143.2 ± 1.68
1(b) 146.46 ± 1.8 147.35 ± 1.7
1(c) 178.6 ± 2.29 181.81 ± 2.96

Table 4.1: Timing Across Different Combinations of Test Statistic Calculations using the
‘Quidel’ source that was updating at the time of evaluation.

Null Hypothesis (H0): The mean of the outlier scores within a window is equal to the anoma-

lousness score of that window.

Alternative Hypothesis (H1): The mean of the outlier scores within a window is not equal to

the anomalousness score of that window.

However, in examples like in Fig 4.12, there are crucial instances where there are multiple

types of anomalous subsequences squashed together. Across all 6 configurations and 3 weeks

of data, using a paired t-test across the the mean of outlier scores within a window and the

anomalousness score of the window is 0 with a std dev of 0. This is unsurprising considering

some of the extreme example differences in Fig 4.13 below.

Hudson County, NJWorth County, GA
COVID, Pneumonia or Influenza Deaths (Weekly new, per 100k people)
Anomalous Segments where Mean Outlier Score is Vastly Different 

Figure 4.13: Examples where anomalous sequence scores are vastly different than mean outlier
scores of the sequence. These are most evident when, if the sequence was removed, there would
be a clear straight line or expected pattern.



Figure 4.14: Simplified achitecture schema for monitoring system combines the methods, engi-
neering, and reviewer perspectives.

Figure 4.15: Web events recorded by Google Analytics since Feb 1 2024.

Engineering & Performance:

The architecture for the monitoring process in Fig 4.14 now runs on Delphi’s production sys-

tems. The backend processes are maintained by Delphi’s backend systems using Cronicle. The

performance of the front-end is displayed in Fig 4.15.

1. Google Chrome’s Lighthouse Analytics: The overall performance of this metric (an ag-

gregate of desirable website properties) is 87 %. Notably, most of the website loads within

2.2 seconds, which is far less than it was historically because of the size of the API call

enabled by the policy-based structure. Often on a new reload, the upper ‘situational aware-



ness panels’ require a page reload so that the data is cached. It typically takes between

5-6 seconds to load the entire page. Each row takes about 3 seconds to open and transfers

about 0.1 MB of data.

2. Google Page Analytics: since being deployed over the past year, we’ve been able to track

changes over time. See Fig. 4.15 for the dashboard values.

On the backend, the overall algorithm runtime is a function of the data processed and the

windows considered. Of note, while processing a longer window might take a univariate algo-

rithm longer, there are also fewer sequences to process. The deployed timing across different

sources, considering 60 days of history using Delphi’s infrastructure generally ranges from 3-10

minutes/source.

Survey Performance:

We administered a survey to evaluate the performance of the anomalous subsequence detection

method vs. other anomalous subsequence detection methods and across Enlighten output quan-

tiles. The comparison anomalous segmentation algorithms are implemented by the TSB-UAD

package and were based on an Autoencoder method, Matrix Profile [125], PCA, and LSTM.

This combination of deep learning, dimension reduction, and recent anomaly detection methods

provides coverage across notable classes of anomaly detection algorithms.

In the survey, there are 4 HTML files , each containing 5 data streams. Streams were selected

based on the quantile of the algorithmic output for the first HTML file and the top 3 ranked data

streams for the other files. One stream was repeated to test internal consistency per reviewer.

Streams are then ranked in a Google Form. For each category, the first question on the Google

form asks users to name the file they are using. Results were excluded if the answer to this

question does not match the question for that section in the Google form (e.g., Respondent writes

they were looking at form A in the form B section) or if there is any evidence of technical

difficulties (e.g., required questions are unanswered).

There were a total of n=21 survey respondents, with n=19 respondents internally consistent

across the survey. To analyze the consistency between results, we consider the concordance

between user values (0.57) and if users ranked the same survey questions the same value (0.85

https://github.com/TheDatumOrg/TSB-UAD


Algorithm Autoencoder Matrix Profile (DR) PCA (DR) LSTM Enlighten
# Ties 136 2 129 1 1

Timing (s) 6602.39 31.3 9.5 6885.19 339.6

Table 4.2: Metrics comparing methods

Accuracy F1 ROCAUC Distance Correlation

Outshines
Quantile
Survey

0.81 ± 0.11 0.82 ±0.11 0.78 ± 0.12 0.73 ± 0.08 0.56 ±0.12

Table 4.3: Survey results from Outshines quantile rankings.

± 0.15). The lower concordance score suggests there was some variance in how different people

evaluated different segments – with some users purely focusing on data quality issues, others on

public health issues, and most on both.

Like in the OutsHiNes evaluation, the following metrics were considered:

1. Binary: To identify positive class points, we select the top-k streams to calculate the Ac-

curacy, F1 Score, and ROCAUC.

2. Ranking: We calculate correlation and distance.

As shown in Fig 4.16, the results across the top-ranked sequences from different algorithms

favor the Enlighten ranking approach across various metrics. This evaluation is reported as it was

preregistered. However, the source of the high variance is that multiple users disagreed on the

anomalousness of missing data sequences. It is likely based on the annotations and descriptions

from survey respondents that those who found missing data anomalous were less familar with

the recent data from Delphi at that data, which generally had notable data outages across all

streams. Nevertheless, on the ranking metrics like distance and correlation, the performance

boost of the Enlighten method is clearer. Adjusting the threshold over which the binary metrics

were calculated could better reflect the uncertainty around missing data and would improve the

performance of the Enlighten method over the presented alternatives.
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Figure 4.16: Results reflect that while the Enlighten method performs the best on average, the
variance built in from people with different opinions about missing anomalous sequences is more
than for single outlier points like in the OutsHiNes evaluation. Still, the correlation metric is
telling that the other approaches are not providing relevant rankings.
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Figure 4.17: System-performance timeline for deployed results and anomalous segments triaged.

Deployed Performance

Versions of Enlighten have been deployed since June 2025, where numerous changes to the

display policies have been implemented. In Fig. 4.17, we show the performance over these

changes.

The story that this data tells us highlights different aspects of the overall monitoring system.

In early June 2025, the Enlighten method was deployed on Delphi’s production data. Over the

following month, it became clear that the underlying test statistic ϕ wasn’t as informative because

it was calibrated for detecting changes in diseases dynamics, which are less common during the

summer, instead of data quality issues, which are more common. As the grey ‘not an event’

triaged data in Fig. 4.17 increased and the number of meaningful triaged data decreased, we

updated ϕ to match the summer data dynamics. The success of that change is in the second region



where more data quality issues were detected. Around September, the system was handed off to

the Delphi engineering team, which started it on a smaller volume of data. The number of triaged

data points adapted accordingly so that fewer points were reviewed. Following an engineering

change, the algorithm stopped updating daily, leading to an interesting natural experiment where

reviewers would go down the list of events, giving us some notion of recall in a deployed setting.

As expected, despite processing many data streams, the frequency of triaged data points dipped

until the system was fully functional again in early December. Finally, given the start of the

respiratory illness season, ϕ was modified to reflect highlighting events that likely corresponded

to notable outbreaks. The final quantitative performance metrics are summarized in Table. 4.4.

Metric Enlighten Closest Baseline (Outshines)

Time Spent/Day 12.9 ± 8.2 16.4 ± 5.3

Rows/Min 1.69 ± 0.74 1.509 ± 0.480

Rows/Day 9.08 ± 0.01 19.4 ± 6.3

Points per Triaged Anomaly 7.25 ± 1.65 1

# Streams Shown 357 ± 161 3500000 ± 280k

Meta Events/Week 17.1 ± 7.79 10 ± 3.35

Table 4.4: Survey results from Outshines quantile rankings during the experimental study.

These results show that Enlighten enabled 1.7x more meta events detected than Outshines

alone, 2.17x increased efficiency via events/day, and an overall 288x efficiency in data points

triaged than manual baseline. To add qualitative context to these quantitative metrics, Tina

Townes, a system user, wrote this reflection:

”Compared to using the early 2024 version of the FlaSH platform, the latest iteration of this

platform that I have been using in the past few months contains several enhancements that make

it more efficient for me to evaluate various anomalous subsequences.

First, this new version has an updated, more fully and consistently populated general overview

map at the top of the page. This improved map immediately highlights for me the locations with

anomalous subsequences in an easily viewable bright dark red color. With this map, I can more

quickly scan this updated map and see the severity of the anomalous subsequences, with the



most severe locations highlighted in bright red as well as less severe locations with decreased red

color gradients. The overview map in the previous FlaSH version was often missing information

and was not consistently populated. For example, recent overview maps have consistently been

indicating a noticeable concentration of deep red coloration in the midwest and, slightly less so,

in the southwestern areas of the United States. Seeing this upon opening the daily FlaSH report

immediately helps me remember these highlighted locations and helps me recall, on a larger

scale, anomaly trends in locations on a weekly, and even monthly, basis.

To the right of the overview map is a chart that is now also more fully and consistently

populated with a list of signals in order from highest to lowest number of FlaSH entries. In the

prior iteration of FlaSH, this chart was frequently poorly properly populated, or not showing

information at all, making it difficult for me to set my expectations for what sorts of signals and

the frequency of occurrence of these signals I should see in the current day’s FlaSH report. In

setting my expectations, I can spend less time in the day’s FlaSH report in starting from scratch

to individually identify a signal’s geographic location and keeping track of the frequency of

its occurrence. With this improved chart, I can now quickly identify the signals with the most

anomalous subsequences and devote more effort on evaluating the actual severity of the reported

anomalous subsequences and noticing larger trends in anomalous subsequences being detected.

Another improvement in this latest iteration of the FlaSH platform is the new inclusion of

anomaly indicators in the form of red vertical bar highlights on the graphs of each individual

FlaSH anomaly. These red highlights draw the eye quickly to points on the days, past through

present, when severe anomalous subsequences occurred or are occurring. The red bars highlight

both dramatic peaks in anomalous subsequences, where within a matter of a few days anomalous

subsequences have risen by leaps and bounds, as well as sudden dips and valleys where high

points fall quickly within a few days. These indicator bars are new, and occasionally a noticeably

high or low data point is not highlighted as expected. Conveniently each daily report graph has

an ”Anomaly Accuracy” feature that allows me to select dates on the graph during which I think

anomalous subsequences occurred but the red bar indicators did not highlight. This new feature

helps me zero in on actual anomalous subsequences and saves me from having to take time to

visually scan, digest and examine an entire graph to locate anomalous subsequences from scratch.



Finally, having a note-taking feature easily accessible next to each signal’s graph makes my

anomaly review process more efficient and enjoyable. Rather than having to move my eyes onto

a separate tab or window to fill in a separate notes form, as I had to in the prior version of FlaSH,

I can now quickly take notes in the box provided while still looking at the signal’s graph and my

anomaly severity selection.”



4.3 Auxiliary Evaluations

In evaluating the thesis methods, we typically focused on performance-oriented aspects of the

scoring process. For example, in the FlaSH experiments, random streams were selected for eval-

uation, where the sample size was augmented by the length of these streams. Then for OutsHiNes

and Enlighted, we focused on the top-k sequences. To get a sense of statistcal false negatives and

recall in addition to precision, we conducted the following auxilliary experiments:

1. Evaluation at Top-k: In the OutsHiNes and Enlighten experiments (survey and deployed),

the focus of the experiment was on measuring the precision of the methods at top-k events or

streams, where k changes based on the reviewer’s capacity.

2. Evaluation at Top-nk for n=2,3,4...: Natural experiments like in Fig. 4.17 demonstrate, in

practice, that the number of events triaged goes down through the ranked list from a single point

in time.

To study recall intentionally, we conducted a small-scale evaluation by sampling random

events conditioned on their Enlighten scores and asking reviewers to classify the points as poten-

tial events (0/1). This sample was pulled from the ‘doctors-visits’ source and using 300 score-

based quintiles from a total of 76,338 subsequences in the last 7 days with windows 1, 2, 4.

Reviewers inspected the resulting 247 rows (some quantiles had no rows), and the results from

our most experienced reviewers showed that the only sequence selected as the event was also the

top-ranked sequence, which is perfect precision and recall.

In another evaluation, a sample of 247 rows were evaluated as subsequences that would

somewhat warrant suspicion based on a larger group of reviewers (n=3), where if at least one

reviewer thought the point merited inspection, it was included as a positive event label. The

following ranks were with the positively labeled events from any of n=3 reviewers (1 experi-

enced, 2 inexperienced) : 1-10, 15, 21, 33, 37, 51, 73, and 191. This supports what was observed

experimentally that the number of events detected decreases down the list of scored points.

3. Evaluation across all data: Although the prior evaluations focus on the meaningfulness



Figure 4.18: Distribution of scores in the random sampling over max events per stream to obtain
information on recall across the stream rankings.

of ranked data based on score, the design of these scores means that a considerable number of

sequences have a score of 0 (which means that they were not more extreme than any of the

historically observed differences). In a final experiment, 250 random samples of streams output

by Enlighten using a maximum value policy from ‘doctors-visits’ streams in the last 14 days with

windows 1, 2, 4, 7, and 14, as they would appear, in order, were reviewed. Unlike the top-nk

setup, this random sample meant that the underlying scores are skewed, with many of them being

near or tied at 0 (see Fig. 4.18). This final experiment gives us information on the performance

of Enlighten across all data and not just the non-zero scored data.



Figure 4.19: Precision and recall graph based on ground truth labels over randomly sampled
streams (based on the maximum event score policy used in practice).

Like in the evaluation at Top-nk, events were randomized and reviewers needed to identify

which events were interesting, with the precision and recall values shown in Fig 4.19. While

some highly ranked rows were not classified as interesting, lower ranked rows were not selected.



Figure 4.20: Precision and recall graph based on ground truth labels over in order reviewed
streams with any possible event serverity (High/Medium/Low) for completeness.



Figure 4.21: Precision and recall graph based on ground truth labels over in order reviewed
streams with only the events the reviewer would likely only consider in practice (Medium/High).



Figure 4.22: Precision and recall graphs for PCA-based baseline demonstrate the improvement
the Enlighten approach provides.

Still, based on phenomena observed during FlaSH, to focus reviewer attention on lower

ranked points, the reviewer was told to review the events in order and explicitly compare lower

ranked streams to higher ranked streams. While their top classifications for ‘high’ and ‘medium’

concern triaged data aligned with top ranking data, there was some interesting variance in ‘low’

ranking data, where some points that were ranked in the 200’s were more interesting than #

16 (relevant metrics shown in Fig 4.20). Nevertheless, reviewers shared they would not have

kept reviewing beyond ‘medium’ concern triaged data if presented to them in a ranked list daily.

Keeping only the highly triaged events results in the metrics shown in Fig 4.21. These curves

show far better performance than baselines like PCA (Fig 4.22).

The results from this final evaluation once again supported that that there were few posi-

tive events beyond the top-ranked data, supporting that the method not only generates a useful

prioritization for practical use, but also likely does not deprioritize important events.



4.4 Thesis Conclusion

This thesis presented novel monitoring algorithms and demonstrated their effectiveness as part

of a human-in-the-loop monitoring approach for large volumes of heterogeneous modern pub-

lic health streams. Constraints of the monitoring setting, including the noisy and challenging

statistical properties of public health data, human attention, and engineering responsiveness, im-

pacted the design of the FlaSH, OutsHiNes, and Enlighten methods. The resulting system meets

our initial design goals of supportive informative detection, reducing the overwhelming alerts

phenomena, and identifying anomalous subsequences in service of situational awareness. The

resulting evaluations were comprehensive, encompassing engineering metrics like runtime and

compute, statistical measurements, like ties, offline surveys on binary and ranking metrics, and,

most importantly, sustained deployment in practice. This approach has met the initial thesis goals

across multiple types of correctness and feasibility evaluations and has now been handed off to

the data reviewers and engineers in Delphi to maintain going forward.





Overview of Miscellaneous Projects

Outside of monitoring, I worked on several tools for public health organizations [95, 96, 96, 97].

These projects required collaborations with domain experts to deliver actionable intelligence.

1. Cases2Beds: Developed a model to predict the anticipated number of hospital beds re-

quired based on COVID-19 case rates for the Allegheny County Public Health Department

(ACHD).

2. Identifying Gaps in Claims Data: Investigated and highlighted intricacies and deficien-

cies in public health data streams derived from claims data.

3. Leading Indicators using Changepoint Detection: am advising Tara Lakadwala in quan-

tifying relationships between public health-related indicators.

These experiences contributed to my perspective and qualifications in developing the core

thesis contribution in data monitoring for critical settings.

5.1 Cases2Beds:

Adapted from the CSD Blog Open Source Code

In early November 2020, as the case rates in Allegheny County continued to increase, the

Allegheny County Health Department was worried that the county’s hospitals would run out of

hospital beds for COVID-19 patients. They needed at least a week to open emergency COVID

facilities but did not want to deploy already stretched-out resources if they wouldn’t be used.

To provide them with county-level intelligence on hospital bed usage 1-2 weeks in advance, we

developed the Cases2Beds model.
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https://www.cs.cmu.edu/~csd-phd-blog/2022/casestobeds/
https://www.cmu.edu/delphi-web/cases2beds-v0.2.3.xlsm


The model used publicly available and ACHD’s line-level data to estimate:

1. the probability that a person who tested positive for COVID-19 would require hospitaliza-

tion

2. offset: the gap between testing and hospitalization

3. duration: the length of hospital stay

4. the current number of COVID infections

.

Across the United States, according to data at county and state public health deparments,

these values vary across age groups and, to a lesser extent, sex and race. We wanted to use this

data to perform Monte Carlo simulations, but because the model used probabilities derived from

Protected Health Information (PHI), ACHD needed to run it privately and offline using Microsoft

Excel, which is ill-suited for these large simulations.

Instead, we developed an analytical model lightweight enough to be used as part of an Excel

macro, where some fraction of individuals who test positive today will be hospitalized after a

varying offset and variable duration based on their age, sex, and race. These parameters are used

to generate Offset Fractions, which is the probability that a patient with given traits will occupy a

bed for a duration of k days after their COVID test. These Offset Fractions and the daily positive

case breakdown give us the expected mean and variance up to 1 month in the future of the number

of patients in the hospital per day based on the cases already seen. This information can be used

to generate plots like (Fig. 5.1), which shows that based on the cases we know, only a few people

will be hospitalized for more than a month.

• Or,l: The offset value for a given subset of the population r ∈ R where R := {race} x

{gender} x {age group}for a given day l where −10 ≤ l ≤ 30. This probability distri-

bution function (pdf) is derived from a piecewise function using segments of exponential

distributions characterized by the offset parameters.

• Dr,k: The duration value for a given subset of the population r ∈ R for a given day k where

0 ≤ k ≤ 40. This pdf is derived from a piecewise function using segments of exponential

distributions characterized by the duration parameters.
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Figure 5.1: Output of Cases2Beds using historical data until January 21st 2021 for Allegheny
County using public parameters

• hr: The hospitalization rate for a given subset of the population r ∈ R where 0 ≤ hr ≤ 1.

• cr,d: The number of cases for a given subset of the population r ∈ R on a particular COVID

test date d (ex: 5 cases with a COVID test on January 1st, 2021).

Then,

OFr,j =
30∑

l=−10

40∑
k=0

I(l ≤ j ≤ l + k)Or,l ∗Dr,k ∗ hr

is the offset fraction for a given subset of the population r ∈ R for a given delta j where −10 ≤

j ≤ 30, which is the probability a patient with given traits will occupy a bed on j days after the

specimen testing date.

E[βi] =
∑
d∈D

∑
r∈R

30∑
j=−10

I(d+ j = i)OFr,j ∗ cr,d

Then, E[βi] is the expected number of beds on date i, where i can start 10 days before the first

case date and can end 30 days after the last case date (cr,d). If we assume independence between

patients, the mean and variance calculations are exact. However, our quantile estimates are based

on approximating the sum of independent binary variables, so the accuracy of the more extreme

quantiles (95%+) depends on the number of cases present. I used this insight when designing the

test-statistic for FlaSH.



Deployment By the end of November 2020, ACHD was using the Cases2Beds spreadsheet.

Over the following months, we also introduced the spreadsheet to other health departments and

hospitals by generating tailored, public parameters instead of relying on ACHD line-level data.

Many of these organizations needed projections more than 2 weeks out, so we used Cases2Beds

as an input to a hospital utilization forecasting model, which, in preliminary evaluations, had

decent predictive power.

Lessons for Data Quality: Cases2Beds highlights the vulnerability of downstream models

to shifts in data quality. Notably, changes in data completeness, as witnessed in the early

stages of the pandemic, can markedly influence the forecasted hospitalization counts. Still, the

Cases2Beds model is an example of a predictive model for hospitalization indicators that review-

ers could input into the monitoring algorithms developed like Enlighten.

5.2 Identifying Gaps in Claims Data

My second project was to identify leading indicators in a claims data set from a data provider

that covers around 50 % of the medical claims in the United States. Due to the limitations of the

data provider, I will only discuss generic lessons about data quality issues from working with a

claims dataset.

Lesson 1: Data Quality Issues Are Common, Counter-intuitive, and Numerous

Despite the richness of a large claims data source, this data was still incomplete (e.g., groups

that receive medical treatment less frequently will be underrepresented), inaccurate (e.g., many

manual reporting errors), and untimely (e.g., with delays up to 60 days). For some important

indicators, the data quality issues overpowered the underlying signal, which led us to exclude

these indicators from the Delphi repository. One example was a potential vaccination indicator,

where data showed that the number of vaccination claims were 40x fewer than expected, given

the market share of the claims. We also should have been able to use the gap between provider

eligibility pings, which occur when a doctor’s office checks for a patient’s insurance (first when

the appointment is made, then on the appointment day), to identify acute illnesses. But even



though there was an average of 2 pings per outpatient visit as expected, most pings were isolated,

with a few outlier patients having hundreds of pings. While both of these indicators had rapidly

changing (improving) data quality as the provider added more claims, those changes in quality

were more prominent than any public health phenomena in the aggregated indicator streams.

To help prevent this issue in investigating future indicators and domain experts understand the

claims data, I created a patient stories module, which allowed engineers and data scientists to

follow patient trajectories through and run automated exploratory check from the available claims

history across multiple relevant tables.

Lesson 2: Claims Data is High Dimensional and Heterogeneous

Our subset of claims did not perfectly represent the United States; market share varied by state,

patient’s ages (e.g., 65+ usually processed by Medicare), and affiliation (e.g., veterans were

excluded). Some patients also had data on their Social Determinants of Health, including race,

education, and income, but these proportions were different from U.S. Census data.

Isolating meaningful indicators from this high health dimensional claims data is difficult due

to the joint interactions between the data features. Consider the hundreds of streams constructed

from all Social Determinants of Health combinations for a single ICD-10 code. The available

streams from these weakly dependent inter-sectional streams across different geographies un-

cover public health insights that are invisible from the marginal stream. Because this data also

has changing resolutions and availability, many streams at different levels of aggregation should

be considered even though the correlations between these streams change drastically across dif-

ferent indicators over time.

I developed a context-sensitive method to generate multiplicative corrective factors on select

features features to recover an estimate of the population values for data streams. But, because

the available data is continuously changing, these corrective factors would have needed to be

recalculated with every sub-daily update.



5.3 Changepoint Detection to Identify Leading Indicators

With Tara Lakadwala

Formalizing relationships between existing indicators using raw data values prove challenging

due to the statistical properties of public health data streams. Our approach investigates how

changepoints derived from different changepoint detection algorithms in revised public health

data align with known shifts in the dominant COVID-19 variants from the CDC. We noticed that

the efficacy of these methods had high geospatial variance and that the relationships between

changepoints between public health-related indicators, even in traditional public health indicators

like COVID-19 Cases and Deaths, changed dramatically given the phase of the variant wave.

Overall, Changepoint detection is a powerful tool to identify early indicators. Of Delphi’s sixty

indicators, we identified several on time and early indicators of emerging variants from the data

available. We also found out that for many of the indicators, the number of days they led or

lagged disease phenomena changed over time. Still, if these public health indicators continue to

receive high quality data, tracking these indicators closely can help us identify changing health

dynamics.

5.4 SAE Steering and Healthcare Results

At IBM Research, Nairobi

For medical applications, adapted from [62] and [70]

Recent work [109] shows that Sparse Autoencoders (SAE) applied to large language model

(LLM) layers have neurons corresponding to interpretable concepts. These SAE neurons can be

modified to align generated outputs, but only towards pre-identified topics and with some pa-

rameter tuning. Our approach leverages the observational and modification properties of SAEs

to enable alignment for any topic. This method 1) scores each SAE neuron by its semantic



similarity to an alignment text and uses them to 2) modify SAE-layer-level outputs by empha-

sizing topic-aligned neurons. We assess the alignment capabilities of this approach on diverse

public topic datasets including Amazon reviews, Medicine, and Sycophancy, across the currently

available open-source LLMs and SAE pairs (GPT2 and Gemma 2.0) with multiple SAEs con-

figurations. Experiments aligning to medical prompts reveal several benefits over fine-tuning,

including increased average language acceptability (0.25 vs. 0.5), reduced training time across

multiple alignment topics (333.6s vs. 62s), and acceptable inference time for many applications

(+0.00092s/token).

79



Generative technologies were used for light document grammar editing and clarity.

Appendix

A.1 Appendix A: Additional Details on Acute Approach

Figure A.1: Additional examples of events in a public health data stream at Delphi.

.

In the first two years of the pandemic, I re-implemented and adapted many of the algorithms de-

tailed in [5] and variations of the validation pipeline from the Epidata package as part of Delphi’s

tooling, via the validation package in covidcast-indicators. Upon review, the resulting events

numbered in the tens of thousands and required continuous parameter tuning. These problems

persisted even when considering only higher-tier geographies, such as state- and nation-level

data, which tend to be more stable, in part, because the frequency of these events is not necessar-

ily uniform over time (see Fig A.1)

Next, I explicitly modeled the data-generating process and residual distributions using bi-

https://cran.r-project.org/web/packages/epidata/index.html
https://github.com/cmu-delphi/covidcast-indicators


nomial and zero-inflated binomial distributions, as well as other intuitive modeling approaches

from the epidemiological domain. This process of parameter tuning remained inconsistent and

unreliable across geographies and time, necessitating an empirical approach that formed the basis

of the described thesis methods. As many of these experiments were run on private data, please

email me for any additional details.

A.2 Appendix B: Initial FlaSH Evaluation

From the alerting paradigm, the approach that was closest to being deployed was an alerting

version of the FlaSH algorithm. This initial architecture was notably different than the ranked

list paradigm in the thesis. For example, the outputs were sent to Delphi users via Slack alerts,

as shown in Fig. A.2.

Figure A.2: Initial alert-based approach had some important elements of the final design (e.g.
external visualization interface for context), but still relied on alerts and did not involve saving
human triaged data

.

These alerts were tested extensively but were never deployed in practice despite strong pre-

liminary practical evaluations over various configurations. However, they informed the first eval-



uation I conducted (published as part of my speaking skills slides) using a threshold (α = 0.01)

to classify points as alerts.

The test samples were collected using a random, stratified sample across % Doctors Visits

with COVID-Like Illnesses and COVID-19 Case Counts streams (90 Points/Location) for Los

Angeles, NY, USA, TX, and Loving County, TX. In that evaluation, 5 volunteers were tasked

with (1) identifying interesting data points in select data streams and then (2) classifying specific

points that were output at the top of different algorithms (outlier detection based on xStream [80],

Prophet [108]) on a sliding scale of if they disagree or are confident that the specific point is an

outlier. The results from this process provided a ground truth measure that included the users’

preferences and their annotations of specific points identified by the candidate algorithms. Out

of the starting set of 450 points across the selected streams, a majority of reviewers, followed by

a consensus among the group of volunteers, confidently labeled 28 points as ground truth, which

was then compared to FlaSH and out-of-the-box evaluations for Prophet and xStream outlier

detection implementations.

Metric FlaSH Prophet xStream
Accuracy 0.98 0.93 0.84
F1 Score 0.90 0.50 0.12
Precision 0.82 1.00 0.12
Recall 1.00 0.33 0.11
Balanced Acc 0.99 0.67 0.51

Table A.1: Performance metrics of FlaSH vs. state-of-the-art outlier detection algorithms in
initial binary experiment based on alerts.

As shown in Table A.1, FlaSH demonstrated competitive accuracy metrics. It also had per-

formance advantages (5m one-time cost and 0.17m daily evaluation cost per signal vs. 1.16m

for Prophet and 0.33m for xStream). Despite strong results, the need for α tuning and the scal-

ing challenges of the alerting approach—despite modifications for aggregation, tiering, and fil-

tering anomalous data—made this alerting design less promising for data monitoring than the

redesigned ranking approach.
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N. McCarthy. Comparison of statistical algorithms for daily syndromic surveillance aber-

ration detection. Bioinformatics, 35(17):3110–3118, 2019. doi: 10.1093/bioinformatics/

btz060. 1.2

[87] MN Department of Health. Data: Quality, analysis, and interpretation, 10 2022. 1.2

[88] United States Government Accountability Office. Covid-19 data quality and considera-

tions for modeling and analysis. https://www.gao.gov/assets/gao-20-635sp.pdf, 07 2020.



1.2

[89] World Health Organization. World health statistics 2023 - monitoring health for

the sdgs. https://www.who.int/publications/i/item/9789240074323,

2023. 1.2

[90] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. Challenges in deploying

machine learning: a survey of case studies. ACM Computing Surveys, 55(6):1–29, 2022.

2.1

[91] William Peter, Amir H Najmi, and Howard S Burkom. Reducing false alarms in syndromic

surveillance. Statistics in Medicine, 30(14):1665–1677, 2011. 1.2
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